Skip to content
Snippets Groups Projects
p4zopt.F90 23.8 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
MODULE p4zopt
   !!======================================================================
   !!                         ***  MODULE p4zopt  ***
   !! TOP - PISCES : Compute the light availability in the water column
   !!======================================================================
   !! History :  1.0  !  2004     (O. Aumont) Original code
   !!            2.0  !  2007-12  (C. Ethe, G. Madec)  F90
   !!            3.2  !  2009-04  (C. Ethe, G. Madec)  optimisation
   !!            3.4  !  2011-06  (O. Aumont, C. Ethe) Improve light availability of nano & diat
   !!----------------------------------------------------------------------
   !!   p4z_opt       : light availability in the water column
   !!----------------------------------------------------------------------
   USE trc            ! tracer variables
   USE oce_trc        ! tracer-ocean share variables
   USE sms_pisces     ! Source Minus Sink of PISCES
   USE iom            ! I/O manager
   USE fldread        !  time interpolation
   USE prtctl         !  print control for debugging

   IMPLICIT NONE
   PRIVATE

   PUBLIC   p4z_opt        ! called in p4zbio.F90 module
   PUBLIC   p4z_opt_init   ! called in trcsms_pisces.F90 module
   PUBLIC   p4z_opt_alloc

   !! * Shared module variables

   LOGICAL  ::   ln_varpar   ! boolean for variable PAR fraction
   REAL(wp) ::   parlux      ! Fraction of shortwave as PAR
   REAL(wp) ::   xparsw      ! parlux/3
   REAL(wp) ::   xsi0r       ! 1. /rn_si0

   TYPE(FLD), ALLOCATABLE, DIMENSION(:) ::   sf_par      ! structure of input par
   INTEGER , PARAMETER :: nbtimes = 366  !: maximum number of times record in a file
   INTEGER  :: ntimes_par                ! number of time steps in a file
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   par_varsw      ! PAR fraction of shortwave
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   ekb, ekg, ekr  ! wavelength (Red-Green-Blue)
   
   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/TOP 4.0 , NEMO Consortium (2018)
   !! $Id: p4zopt.F90 15459 2021-10-29 08:19:18Z cetlod $ 
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE p4z_opt( kt, knt, Kbb, Kmm )
      !!---------------------------------------------------------------------
      !!                     ***  ROUTINE p4z_opt  ***
      !!
      !! ** Purpose :   Compute the light availability in the water column
      !!              depending on the depth and the chlorophyll concentration
      !!
      !! ** Method  : - ???
      !!---------------------------------------------------------------------
      INTEGER, INTENT(in) ::   kt, knt   ! ocean time step
      INTEGER, INTENT(in) ::   Kbb, Kmm  ! time level indices
      !
      INTEGER  ::   ji, jj, jk
      INTEGER  ::   irgb
      REAL(wp) ::   zchl
      REAL(wp) ::   zc0 , zc1 , zc2, zc3, z1_dep
      REAL(wp), ALLOCATABLE, DIMENSION(:,:  ) :: zetmp5
      REAL(wp), DIMENSION(jpi,jpj    ) :: zdepmoy, zetmp1, zetmp2, zetmp3, zetmp4
      REAL(wp), DIMENSION(jpi,jpj    ) :: zqsr100, zqsr_corr
      REAL(wp), DIMENSION(jpi,jpj,jpk) :: zpar, ze0, ze1, ze2, ze3
      !!---------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('p4z_opt')

      IF( knt == 1 .AND. ln_varpar )   CALL p4z_opt_sbc( kt )

      !     Initialisation of variables used to compute PAR
      !     -----------------------------------------------
      ze1(:,:,:) = 0._wp
      ze2(:,:,:) = 0._wp
      ze3(:,:,:) = 0._wp

      !
      ! Attenuation coef. function of Chlorophyll and wavelength (Red-Green-Blue)
      ! Thus the light penetration scheme is based on a decomposition of PAR
      ! into three wave length domains. This was first officially published
      ! in Lengaigne et al. (2007).
      ! --------------------------------------------------------
      !
      ! Computation of the light attenuation parameters based on a 
      ! look-up table
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1)
         zchl =  ( tr(ji,jj,jk,jpnch,Kbb) + tr(ji,jj,jk,jpdch,Kbb) + rtrn ) * 1.e6
         IF( ln_p5z )   zchl = zchl + tr(ji,jj,jk,jppch,Kbb) * 1.e6
         zchl = MIN(  10. , MAX( 0.05, zchl )  )
         irgb = NINT( 41 + 20.* LOG10( zchl ) + rtrn )
         !                                                         
         ekb(ji,jj,jk) = rkrgb(1,irgb) * e3t(ji,jj,jk,Kmm)
         ekg(ji,jj,jk) = rkrgb(2,irgb) * e3t(ji,jj,jk,Kmm)
         ekr(ji,jj,jk) = rkrgb(3,irgb) * e3t(ji,jj,jk,Kmm)
      END_3D


      ! Photosynthetically Available Radiation (PAR)
      ! Two cases are considered in the following : 
      ! (1) An explicit diunal cycle is activated. In that case, mean 
      ! QSR is used as PISCES in its current state has not been parameterized
      ! for an explicit diurnal cycle
      ! (2) no diurnal cycle of SW is active and in that case, QSR is used.
      ! --------------------------------------------
      IF( ln_trcdc2dm ) THEN                     !  diurnal cycle
Guillaume Samson's avatar
Guillaume Samson committed
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
         IF ( ln_p4z_dcyc ) THEN   ! Diurnal cycle in PISCES
            !
            !
            ! SW over the ice free zone of the grid cell. This assumes that
            ! SW is zero below sea ice which is a very crude assumption that is 
            ! not fully correct with LIM3 and SI3 but no information is 
            ! currently available to do a better job. SHould be improved in the 
            ! (near) future.
            zqsr_corr(:,:) = qsr_mean(:,:) / ( 1.-fr_i(:,:) + rtrn )
            !
            CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3, pqsr100 = zqsr100 )
            !
            ! Used PAR is computed for each phytoplankton species
            ! etot_ndcy is PAR at level jk averaged over 24h.
            ! Due to their size, they have different light absorption characteristics
            DO jk = 1, nksr
               etot_ndcy(:,:,jk) =        ze1(:,:,jk) +        ze2(:,:,jk) +       ze3(:,:,jk)
            END DO
            !
            ! SW over the ice free zone of the grid cell. This assumes that
            ! SW is zero below sea ice which is a very crude assumption that is 
            ! not fully correct with LIM3 and SI3 but no information is 
            ! currently available to do a better job. SHould be improved in the 
            ! (near) future.
            zqsr_corr(:,:) = qsr(:,:) / ( 1.-fr_i(:,:) + rtrn )
            !
            CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3 )
            !
            ! Total PAR computation at level jk that includes the diurnal cycle
            DO jk = 1, nksr
               etot (:,:,jk) =  ze1(:,:,jk) + ze2(:,:,jk) + ze3(:,:,jk)
               enano(:,:,jk) =  1.85 * ze1(:,:,jk) + 0.69 * ze2(:,:,jk) + 0.46 * ze3(:,:,jk)
               ediat(:,:,jk) =  1.62 * ze1(:,:,jk) + 0.74 * ze2(:,:,jk) + 0.63 * ze3(:,:,jk)
            END DO
            IF( ln_p5z ) THEN
               DO jk = 1, nksr
                  epico  (:,:,jk) =  1.94 * ze1(:,:,jk) + 0.66 * ze2(:,:,jk) + 0.4 * ze3(:,:,jk)
               END DO
            ENDIF

         ELSE ! No diurnal cycle in PISCES

            !
            !
            ! SW over the ice free zone of the grid cell. This assumes that
            ! SW is zero below sea ice which is a very crude assumption that is 
            ! not fully correct with LIM3 and SI3 but no information is 
            ! currently available to do a better job. SHould be improved in the 
            ! (near) future.
            zqsr_corr(:,:) = qsr_mean(:,:) / ( 1.-fr_i(:,:) + rtrn )
            !
            CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3, pqsr100 = zqsr100 ) 
            !
            ! Used PAR is computed for each phytoplankton species
            ! etot_ndcy is PAR at level jk averaged over 24h.
            ! Due to their size, they have different light absorption characteristics
            DO jk = 1, nksr      
               etot_ndcy(:,:,jk) =        ze1(:,:,jk) +        ze2(:,:,jk) +       ze3(:,:,jk)
               enano    (:,:,jk) =  1.85 * ze1(:,:,jk) + 0.69 * ze2(:,:,jk) + 0.46 * ze3(:,:,jk)
               ediat    (:,:,jk) =  1.62 * ze1(:,:,jk) + 0.74 * ze2(:,:,jk) + 0.63 * ze3(:,:,jk)
            END DO
            IF( ln_p5z ) THEN
               DO jk = 1, nksr      
                  epico  (:,:,jk) =  1.94 * ze1(:,:,jk) + 0.66 * ze2(:,:,jk) + 0.4 * ze3(:,:,jk)
               END DO
            ENDIF
            !
            ! SW over the ice free zone of the grid cell. This assumes that
            ! SW is zero below sea ice which is a very crude assumption that is 
            ! not fully correct with LIM3 and SI3 but no information is 
            ! currently available to do a better job. SHould be improved in the 
            ! (near) future.
            zqsr_corr(:,:) = qsr(:,:) / ( 1.-fr_i(:,:) + rtrn )
            !
            CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3 ) 
            !
            ! Total PAR computation at level jk that includes the diurnal cycle
            DO jk = 1, nksr      
               etot(:,:,jk) =  ze1(:,:,jk) + ze2(:,:,jk) + ze3(:,:,jk)
            END DO
         ENDIF
         !
      ELSE   ! no diurnal cycle
         !
         !
         ! SW over the ice free zone of the grid cell. This assumes that
         ! SW is zero below sea ice which is a very crude assumption that is 
         ! not fully correct with LIM3 and SI3 but no information is 
         ! currently available to do a better job. SHould be improved in the 
         ! (near) future.
         zqsr_corr(:,:) = qsr(:,:) / ( 1.-fr_i(:,:) + rtrn )
         !
         CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3, pqsr100 = zqsr100  ) 
         !

         ! Used PAR is computed for each phytoplankton species
         ! Due to their size, they have different light absorption characteristics
         DO jk = 1, nksr      
            etot (:,:,jk) =        ze1(:,:,jk) +        ze2(:,:,jk) +       ze3(:,:,jk)    ! Total PAR
            enano(:,:,jk) =  1.85 * ze1(:,:,jk) + 0.69 * ze2(:,:,jk) + 0.46 * ze3(:,:,jk)  ! Nanophytoplankton
            ediat(:,:,jk) =  1.62 * ze1(:,:,jk) + 0.74 * ze2(:,:,jk) + 0.63 * ze3(:,:,jk)  ! Diatoms
         END DO
         IF( ln_p5z ) THEN
            DO jk = 1, nksr      
              epico(:,:,jk) =  1.94 * ze1(:,:,jk) + 0.66 * ze2(:,:,jk) + 0.4 * ze3(:,:,jk)  ! Picophytoplankton (PISCES-QUOTA)
            END DO
         ENDIF
         etot_ndcy(:,:,:) =  etot(:,:,:) 
      ENDIF


      ! Biophysical feedback part (computation of vertical penetration of SW)
      IF( ln_qsr_bio ) THEN                    !* heat flux accros w-level (used in the dynamics)
         !                                     !  ------------------------
         CALL p4z_opt_par( kt, Kmm, qsr, ze1, ze2, ze3, pe0=ze0 )
         !
         etot3(:,:,1) =  qsr(:,:) * tmask(:,:,1)
         DO jk = 2, nksr + 1
            etot3(:,:,jk) =  ( ze0(:,:,jk) + ze1(:,:,jk) + ze2(:,:,jk) + ze3(:,:,jk) ) * tmask(:,:,jk)
         END DO
         !                                     !  ------------------------
      ENDIF
      
      ! Euphotic depth and level
      ! Two definitions of the euphotic zone are used here. 
      ! (1) The classical definition based on the relative threshold value
      ! (2) An alternative definition based on a absolute threshold value.
      ! -------------------------------------------------------------------
      neln(:,:) = 1
      heup   (:,:) = gdepw(:,:,2,Kmm)
      heup_01(:,:) = gdepw(:,:,2,Kmm)

      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 2, nksr)
        IF( etot_ndcy(ji,jj,jk) * tmask(ji,jj,jk) >=  zqsr100(ji,jj) )  THEN
           neln(ji,jj) = jk+1                    ! Euphotic level : 1rst T-level strictly below Euphotic layer
           !                                     ! nb: ensure the compatibility with nmld_trc definition in trd_mld_trc_zint
           heup(ji,jj) = gdepw(ji,jj,jk+1,Kmm)     ! Euphotic layer depth
        ENDIF
        IF( etot_ndcy(ji,jj,jk) * tmask(ji,jj,jk) >= 0.10 )  THEN
           heup_01(ji,jj) = gdepw(ji,jj,jk+1,Kmm)  ! Euphotic layer depth (light level definition)
        ENDIF
      END_3D
      !
      ! The euphotic depth can not exceed 300 meters.
      heup   (:,:) = MIN( 300., heup   (:,:) )
      heup_01(:,:) = MIN( 300., heup_01(:,:) )
      
      ! Mean PAR over the mixed layer
      ! -----------------------------
      zdepmoy(:,:)   = 0.e0             
      zetmp1 (:,:)   = 0.e0
      zetmp2 (:,:)   = 0.e0

      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
         IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN
            zetmp1 (ji,jj) = zetmp1 (ji,jj) + etot     (ji,jj,jk) * e3t(ji,jj,jk,Kmm) ! Actual PAR for remineralisation
            zetmp2 (ji,jj) = zetmp2 (ji,jj) + etot_ndcy(ji,jj,jk) * e3t(ji,jj,jk,Kmm) ! Par averaged over 24h for production
            zdepmoy(ji,jj) = zdepmoy(ji,jj) +                       e3t(ji,jj,jk,Kmm)
         ENDIF
      END_3D
      !
      emoy(:,:,:) = etot(:,:,:)       ! remineralisation
      zpar(:,:,:) = etot_ndcy(:,:,:)  ! diagnostic : PAR with no diurnal cycle 
      !
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
         IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN
            z1_dep = 1. / ( zdepmoy(ji,jj) + rtrn )
            emoy (ji,jj,jk) = zetmp1(ji,jj) * z1_dep
            zpar (ji,jj,jk) = zetmp2(ji,jj) * z1_dep
         ENDIF
      END_3D

      ! Computation of the mean usable light for the different phytoplankton
      ! groups based on their absorption characteristics.
      zdepmoy(:,:)   = 0.e0
      zetmp3 (:,:)   = 0.e0
      zetmp4 (:,:)   = 0.e0
      !
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
         IF( gdepw(ji,jj,jk+1,Kmm) <= MIN(hmld(ji,jj), heup_01(ji,jj)) ) THEN
            zetmp3 (ji,jj) = zetmp3 (ji,jj) + enano    (ji,jj,jk) * e3t(ji,jj,jk,Kmm) ! Nanophytoplankton
            zetmp4 (ji,jj) = zetmp4 (ji,jj) + ediat    (ji,jj,jk) * e3t(ji,jj,jk,Kmm) ! Diatoms
            zdepmoy(ji,jj) = zdepmoy(ji,jj) +                       e3t(ji,jj,jk,Kmm)
         ENDIF
      END_3D
      enanom(:,:,:) = enano(:,:,:)
      ediatm(:,:,:) = ediat(:,:,:)
      !
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
         IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN
            z1_dep = 1. / ( zdepmoy(ji,jj) + rtrn )
            enanom(ji,jj,jk) = zetmp3(ji,jj) * z1_dep
            ediatm(ji,jj,jk) = zetmp4(ji,jj) * z1_dep
         ENDIF
      END_3D
      !
      IF( ln_p5z ) THEN
         ! Picophytoplankton when using PISCES-QUOTA
         ALLOCATE( zetmp5(jpi,jpj) )  ;   zetmp5 (:,:) = 0.e0
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
            IF( gdepw(ji,jj,jk+1,Kmm) <= MIN(hmld(ji,jj), heup_01(ji,jj)) ) THEN
               zetmp5(ji,jj)  = zetmp5 (ji,jj) + epico(ji,jj,jk) * e3t(ji,jj,jk,Kmm)
            ENDIF
         END_3D
         !
         epicom(:,:,:) = epico(:,:,:)
         !
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
            IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN
               z1_dep = 1. / ( zdepmoy(ji,jj) + rtrn )
               epicom(ji,jj,jk) = zetmp5(ji,jj) * z1_dep
            ENDIF
         END_3D
         DEALLOCATE( zetmp5 )
      ENDIF
      !
      IF( lk_iomput .AND.  knt == nrdttrc ) THEN
         CALL iom_put( "Heup" , heup(:,:  ) * tmask(:,:,1) )  ! euphotic layer deptht
         IF( iom_use( "PAR" ) ) THEN
            zpar(:,:,1) = zpar(:,:,1) * ( 1._wp - fr_i(:,:) )
            CALL iom_put( "PAR", zpar(:,:,:) * tmask(:,:,:) )  ! Photosynthetically Available Radiation
         ENDIF
      ENDIF
      !
      IF( ln_timing )   CALL timing_stop('p4z_opt')
      !
   END SUBROUTINE p4z_opt


   SUBROUTINE p4z_opt_par( kt, Kmm, pqsr, pe1, pe2, pe3, pe0, pqsr100 ) 
      !!----------------------------------------------------------------------
      !!                  ***  routine p4z_opt_par  ***
      !!
      !! ** purpose :   compute PAR of each wavelength (Red-Green-Blue)
      !!                for a given shortwave radiation
      !!
      !!----------------------------------------------------------------------
      INTEGER                         , INTENT(in)              ::   kt                ! ocean time-step
      INTEGER                         , INTENT(in)              ::   Kmm               ! ocean time-index
      REAL(wp), DIMENSION(jpi,jpj)    , INTENT(in   )           ::   pqsr              ! shortwave
      REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout)           ::   pe1 , pe2 , pe3   ! PAR ( R-G-B)
      REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout), OPTIONAL ::   pe0               !
      REAL(wp), DIMENSION(jpi,jpj)    , INTENT(  out), OPTIONAL ::   pqsr100           !
      !
      INTEGER    ::   ji, jj, jk     ! dummy loop indices
      REAL(wp), DIMENSION(jpi,jpj) ::  zqsr   ! shortwave
      !!----------------------------------------------------------------------

      !  Real shortwave
      IF( ln_varpar ) THEN  ;  zqsr(:,:) = par_varsw(:,:) * pqsr(:,:)
      ELSE                  ;  zqsr(:,:) = xparsw         * pqsr(:,:)
      ENDIF
      
      !  Light at the euphotic depth 
      IF( PRESENT( pqsr100 ) )   pqsr100(:,:) = 0.01 * 3. * zqsr(:,:)

      IF( PRESENT( pe0 ) ) THEN     !  W-level
         !
         pe0(:,:,1) = pqsr(:,:) - 3. * zqsr(:,:)    !   ( 1 - 3 * alpha ) * q
         pe1(:,:,1) = zqsr(:,:)         
         pe2(:,:,1) = zqsr(:,:)
         pe3(:,:,1) = zqsr(:,:)
         !
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 2, nksr + 1)
            pe0(ji,jj,jk) = pe0(ji,jj,jk-1) * EXP( -e3t(ji,jj,jk-1,Kmm) * xsi0r )
            pe1(ji,jj,jk) = pe1(ji,jj,jk-1) * EXP( -ekb  (ji,jj,jk-1 )        )
            pe2(ji,jj,jk) = pe2(ji,jj,jk-1) * EXP( -ekg  (ji,jj,jk-1 )        )
            pe3(ji,jj,jk) = pe3(ji,jj,jk-1) * EXP( -ekr  (ji,jj,jk-1 )        )
        END_3D
        !
      ELSE   ! T- level
        !
        pe1(:,:,1) = zqsr(:,:) * EXP( -0.5 * ekb(:,:,1) )
        pe2(:,:,1) = zqsr(:,:) * EXP( -0.5 * ekg(:,:,1) )
        pe3(:,:,1) = zqsr(:,:) * EXP( -0.5 * ekr(:,:,1) )
        !
        DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 2, nksr)
           pe1(ji,jj,jk) = pe1(ji,jj,jk-1) * EXP( -0.5 * ( ekb(ji,jj,jk-1) + ekb(ji,jj,jk) ) )
           pe2(ji,jj,jk) = pe2(ji,jj,jk-1) * EXP( -0.5 * ( ekg(ji,jj,jk-1) + ekg(ji,jj,jk) ) )
           pe3(ji,jj,jk) = pe3(ji,jj,jk-1) * EXP( -0.5 * ( ekr(ji,jj,jk-1) + ekr(ji,jj,jk) ) )
        END_3D
        !
      ENDIF
      ! 
   END SUBROUTINE p4z_opt_par


   SUBROUTINE p4z_opt_sbc( kt )
      !!----------------------------------------------------------------------
      !!                  ***  routine p4z_opt_sbc  ***
      !!
      !! ** purpose :   read and interpolate the variable PAR fraction
      !!                of shortwave radiation
      !!
      !! ** method  :   read the files and interpolate the appropriate variables
      !!
      !! ** input   :   external netcdf files
      !!
      !!----------------------------------------------------------------------
      INTEGER, INTENT(in) ::   kt   ! ocean time step
      !
      INTEGER  :: ji,jj
      REAL(wp) :: zcoef
      !!---------------------------------------------------------------------
      !
      IF( ln_timing )  CALL timing_start('p4z_optsbc')
      !
      ! Compute par_varsw at nit000 or only if there is more than 1 time record in par coefficient file
      IF( ln_varpar ) THEN
         IF( kt == nit000 .OR. ( kt /= nit000 .AND. ntimes_par > 1 ) ) THEN
            CALL fld_read( kt, 1, sf_par )
            par_varsw(:,:) = ( sf_par(1)%fnow(:,:,1) ) / 3.0
         ENDIF
      ENDIF
      !
      IF( ln_timing )  CALL timing_stop('p4z_optsbc')
      !
   END SUBROUTINE p4z_opt_sbc


   SUBROUTINE p4z_opt_init
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE p4z_opt_init  ***
      !!
      !! ** Purpose :   Initialization of tabulated attenuation coef
      !!                and of the percentage of PAR in Shortwave
      !!
      !! ** Input   :   external ascii and netcdf files
      !!----------------------------------------------------------------------
      INTEGER :: numpar, ierr, ios   ! Local integer 
      !
      CHARACTER(len=100) ::  cn_dir          ! Root directory for location of ssr files
      TYPE(FLD_N) ::   sn_par                ! informations about the fields to be read
      !
      NAMELIST/nampisopt/cn_dir, sn_par, ln_varpar, parlux, ln_p4z_dcyc
      !!----------------------------------------------------------------------
      IF(lwp) THEN
         WRITE(numout,*)
         WRITE(numout,*) 'p4z_opt_init : '
         WRITE(numout,*) '~~~~~~~~~~~~ '
      ENDIF
      READ  ( numnatp_ref, nampisopt, IOSTAT = ios, ERR = 901)
901   IF( ios /= 0 )   CALL ctl_nam ( ios , 'nampisopt in reference namelist' )
      READ  ( numnatp_cfg, nampisopt, IOSTAT = ios, ERR = 902 )
902   IF( ios >  0 )   CALL ctl_nam ( ios , 'nampisopt in configuration namelist' )
      IF(lwm) WRITE ( numonp, nampisopt )

      IF(lwp) THEN
         WRITE(numout,*) '   Namelist : nampisopt '
         WRITE(numout,*) '      PAR as a variable fraction of SW       ln_varpar      = ', ln_varpar
         WRITE(numout,*) '      Default value for the PAR fraction     parlux         = ', parlux
         WRITE(numout,*) '      Activate the diurnal cycle in PISCES   ln_p4z_dcyc    = ', ln_p4z_dcyc
      ENDIF
      !
      xparsw = parlux / 3.0
      xsi0r  = 1.e0 / rn_si0

      ! Warning : activate the diurnal cycle with no diurnal cycle in the forcing fields makes no sense
      ! That does not produce a bug because the model does not use the flag but a warning is necessary
      ! ----------------------------------------------------------------------------------------------
      IF ( ln_p4z_dcyc .AND. l_trcdm2dc ) THEN
         IF (lwp) WRITE(numout,*) 'No diurnal cycle in the PAR forcing field '
         IF (lwp) WRITE(numout,*) 'Activating the diurnal cycle in PISCES has no effect'
      ENDIF
      !
      ! Variable PAR at the surface of the ocean
      ! ----------------------------------------
      IF( ln_varpar ) THEN
         IF(lwp) WRITE(numout,*)
         IF(lwp) WRITE(numout,*) '   ==>>>   initialize variable par fraction (ln_varpar=T)'
         !
         ALLOCATE( par_varsw(jpi,jpj) )
         !
         ALLOCATE( sf_par(1), STAT=ierr )           !* allocate and fill sf_sst (forcing structure) with sn_sst
         IF( ierr > 0 )   CALL ctl_stop( 'STOP', 'p4z_opt_init: unable to allocate sf_par structure' )
         !
         CALL fld_fill( sf_par, (/ sn_par /), cn_dir, 'p4z_opt_init', 'Variable PAR fraction ', 'nampisopt' )
                                   ALLOCATE( sf_par(1)%fnow(jpi,jpj,1)   )
         IF( sn_par%ln_tint )      ALLOCATE( sf_par(1)%fdta(jpi,jpj,1,2) )

         CALL iom_open (  TRIM( sn_par%clname ) , numpar )
         ntimes_par = iom_getszuld( numpar )   ! get number of record in file
      ENDIF
      !
                         ekr      (:,:,:) = 0._wp
                         ekb      (:,:,:) = 0._wp
                         ekg      (:,:,:) = 0._wp
                         etot     (:,:,:) = 0._wp
                         etot_ndcy(:,:,:) = 0._wp
                         enano    (:,:,:) = 0._wp
                         ediat    (:,:,:) = 0._wp
      IF( ln_p5z     )   epico    (:,:,:) = 0._wp
      IF( ln_qsr_bio )   etot3    (:,:,:) = 0._wp
      ! 
   END SUBROUTINE p4z_opt_init


   INTEGER FUNCTION p4z_opt_alloc()
      !!----------------------------------------------------------------------
      !!                     ***  ROUTINE p4z_opt_alloc  ***
      !!----------------------------------------------------------------------
      !
      ALLOCATE( ekb(jpi,jpj,jpk), ekr(jpi,jpj,jpk),  &
                ekg(jpi,jpj,jpk), STAT= p4z_opt_alloc  ) 
      !
      IF( p4z_opt_alloc /= 0 ) CALL ctl_stop( 'STOP', 'p4z_opt_alloc : failed to allocate arrays.' )
      !
   END FUNCTION p4z_opt_alloc

   !!======================================================================
END MODULE p4zopt