Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
MODULE p4zopt
!!======================================================================
!! *** MODULE p4zopt ***
!! TOP - PISCES : Compute the light availability in the water column
!!======================================================================
!! History : 1.0 ! 2004 (O. Aumont) Original code
!! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90
!! 3.2 ! 2009-04 (C. Ethe, G. Madec) optimisation
!! 3.4 ! 2011-06 (O. Aumont, C. Ethe) Improve light availability of nano & diat
!!----------------------------------------------------------------------
!! p4z_opt : light availability in the water column
!!----------------------------------------------------------------------
USE trc ! tracer variables
USE oce_trc ! tracer-ocean share variables
USE sms_pisces ! Source Minus Sink of PISCES
USE iom ! I/O manager
USE fldread ! time interpolation
USE prtctl ! print control for debugging
IMPLICIT NONE
PRIVATE
PUBLIC p4z_opt ! called in p4zbio.F90 module
PUBLIC p4z_opt_init ! called in trcsms_pisces.F90 module
PUBLIC p4z_opt_alloc
!! * Shared module variables
LOGICAL :: ln_varpar ! boolean for variable PAR fraction
REAL(wp) :: parlux ! Fraction of shortwave as PAR
REAL(wp) :: xparsw ! parlux/3
REAL(wp) :: xsi0r ! 1. /rn_si0
TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_par ! structure of input par
INTEGER , PARAMETER :: nbtimes = 366 !: maximum number of times record in a file
INTEGER :: ntimes_par ! number of time steps in a file
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: par_varsw ! PAR fraction of shortwave
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ekb, ekg, ekr ! wavelength (Red-Green-Blue)
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/TOP 4.0 , NEMO Consortium (2018)
!! $Id: p4zopt.F90 15459 2021-10-29 08:19:18Z cetlod $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE p4z_opt( kt, knt, Kbb, Kmm )
!!---------------------------------------------------------------------
!! *** ROUTINE p4z_opt ***
!!
!! ** Purpose : Compute the light availability in the water column
!! depending on the depth and the chlorophyll concentration
!!
!! ** Method : - ???
!!---------------------------------------------------------------------
INTEGER, INTENT(in) :: kt, knt ! ocean time step
INTEGER, INTENT(in) :: Kbb, Kmm ! time level indices
!
INTEGER :: ji, jj, jk
INTEGER :: irgb
REAL(wp) :: zchl
REAL(wp) :: zc0 , zc1 , zc2, zc3, z1_dep
REAL(wp), ALLOCATABLE, DIMENSION(:,: ) :: zetmp5
REAL(wp), DIMENSION(jpi,jpj ) :: zdepmoy, zetmp1, zetmp2, zetmp3, zetmp4
REAL(wp), DIMENSION(jpi,jpj ) :: zqsr100, zqsr_corr
REAL(wp), DIMENSION(jpi,jpj,jpk) :: zpar, ze0, ze1, ze2, ze3
!!---------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('p4z_opt')
IF( knt == 1 .AND. ln_varpar ) CALL p4z_opt_sbc( kt )
! Initialisation of variables used to compute PAR
! -----------------------------------------------
ze1(:,:,:) = 0._wp
ze2(:,:,:) = 0._wp
ze3(:,:,:) = 0._wp
!
! Attenuation coef. function of Chlorophyll and wavelength (Red-Green-Blue)
! Thus the light penetration scheme is based on a decomposition of PAR
! into three wave length domains. This was first officially published
! in Lengaigne et al. (2007).
! --------------------------------------------------------
!
! Computation of the light attenuation parameters based on a
! look-up table
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1)
zchl = ( tr(ji,jj,jk,jpnch,Kbb) + tr(ji,jj,jk,jpdch,Kbb) + rtrn ) * 1.e6
IF( ln_p5z ) zchl = zchl + tr(ji,jj,jk,jppch,Kbb) * 1.e6
zchl = MIN( 10. , MAX( 0.05, zchl ) )
irgb = NINT( 41 + 20.* LOG10( zchl ) + rtrn )
!
ekb(ji,jj,jk) = rkrgb(1,irgb) * e3t(ji,jj,jk,Kmm)
ekg(ji,jj,jk) = rkrgb(2,irgb) * e3t(ji,jj,jk,Kmm)
ekr(ji,jj,jk) = rkrgb(3,irgb) * e3t(ji,jj,jk,Kmm)
END_3D
! Photosynthetically Available Radiation (PAR)
! Two cases are considered in the following :
! (1) An explicit diunal cycle is activated. In that case, mean
! QSR is used as PISCES in its current state has not been parameterized
! for an explicit diurnal cycle
! (2) no diurnal cycle of SW is active and in that case, QSR is used.
! --------------------------------------------
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
IF ( ln_p4z_dcyc ) THEN ! Diurnal cycle in PISCES
!
!
! SW over the ice free zone of the grid cell. This assumes that
! SW is zero below sea ice which is a very crude assumption that is
! not fully correct with LIM3 and SI3 but no information is
! currently available to do a better job. SHould be improved in the
! (near) future.
zqsr_corr(:,:) = qsr_mean(:,:) / ( 1.-fr_i(:,:) + rtrn )
!
CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3, pqsr100 = zqsr100 )
!
! Used PAR is computed for each phytoplankton species
! etot_ndcy is PAR at level jk averaged over 24h.
! Due to their size, they have different light absorption characteristics
DO jk = 1, nksr
etot_ndcy(:,:,jk) = ze1(:,:,jk) + ze2(:,:,jk) + ze3(:,:,jk)
END DO
!
! SW over the ice free zone of the grid cell. This assumes that
! SW is zero below sea ice which is a very crude assumption that is
! not fully correct with LIM3 and SI3 but no information is
! currently available to do a better job. SHould be improved in the
! (near) future.
zqsr_corr(:,:) = qsr(:,:) / ( 1.-fr_i(:,:) + rtrn )
!
CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3 )
!
! Total PAR computation at level jk that includes the diurnal cycle
DO jk = 1, nksr
etot (:,:,jk) = ze1(:,:,jk) + ze2(:,:,jk) + ze3(:,:,jk)
enano(:,:,jk) = 1.85 * ze1(:,:,jk) + 0.69 * ze2(:,:,jk) + 0.46 * ze3(:,:,jk)
ediat(:,:,jk) = 1.62 * ze1(:,:,jk) + 0.74 * ze2(:,:,jk) + 0.63 * ze3(:,:,jk)
END DO
IF( ln_p5z ) THEN
DO jk = 1, nksr
epico (:,:,jk) = 1.94 * ze1(:,:,jk) + 0.66 * ze2(:,:,jk) + 0.4 * ze3(:,:,jk)
END DO
ENDIF
ELSE ! No diurnal cycle in PISCES
!
!
! SW over the ice free zone of the grid cell. This assumes that
! SW is zero below sea ice which is a very crude assumption that is
! not fully correct with LIM3 and SI3 but no information is
! currently available to do a better job. SHould be improved in the
! (near) future.
zqsr_corr(:,:) = qsr_mean(:,:) / ( 1.-fr_i(:,:) + rtrn )
!
CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3, pqsr100 = zqsr100 )
!
! Used PAR is computed for each phytoplankton species
! etot_ndcy is PAR at level jk averaged over 24h.
! Due to their size, they have different light absorption characteristics
DO jk = 1, nksr
etot_ndcy(:,:,jk) = ze1(:,:,jk) + ze2(:,:,jk) + ze3(:,:,jk)
enano (:,:,jk) = 1.85 * ze1(:,:,jk) + 0.69 * ze2(:,:,jk) + 0.46 * ze3(:,:,jk)
ediat (:,:,jk) = 1.62 * ze1(:,:,jk) + 0.74 * ze2(:,:,jk) + 0.63 * ze3(:,:,jk)
END DO
IF( ln_p5z ) THEN
DO jk = 1, nksr
epico (:,:,jk) = 1.94 * ze1(:,:,jk) + 0.66 * ze2(:,:,jk) + 0.4 * ze3(:,:,jk)
END DO
ENDIF
!
! SW over the ice free zone of the grid cell. This assumes that
! SW is zero below sea ice which is a very crude assumption that is
! not fully correct with LIM3 and SI3 but no information is
! currently available to do a better job. SHould be improved in the
! (near) future.
zqsr_corr(:,:) = qsr(:,:) / ( 1.-fr_i(:,:) + rtrn )
!
CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3 )
!
! Total PAR computation at level jk that includes the diurnal cycle
DO jk = 1, nksr
etot(:,:,jk) = ze1(:,:,jk) + ze2(:,:,jk) + ze3(:,:,jk)
END DO
ENDIF
!
ELSE ! no diurnal cycle
!
!
! SW over the ice free zone of the grid cell. This assumes that
! SW is zero below sea ice which is a very crude assumption that is
! not fully correct with LIM3 and SI3 but no information is
! currently available to do a better job. SHould be improved in the
! (near) future.
zqsr_corr(:,:) = qsr(:,:) / ( 1.-fr_i(:,:) + rtrn )
!
CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3, pqsr100 = zqsr100 )
!
! Used PAR is computed for each phytoplankton species
! Due to their size, they have different light absorption characteristics
DO jk = 1, nksr
etot (:,:,jk) = ze1(:,:,jk) + ze2(:,:,jk) + ze3(:,:,jk) ! Total PAR
enano(:,:,jk) = 1.85 * ze1(:,:,jk) + 0.69 * ze2(:,:,jk) + 0.46 * ze3(:,:,jk) ! Nanophytoplankton
ediat(:,:,jk) = 1.62 * ze1(:,:,jk) + 0.74 * ze2(:,:,jk) + 0.63 * ze3(:,:,jk) ! Diatoms
END DO
IF( ln_p5z ) THEN
DO jk = 1, nksr
epico(:,:,jk) = 1.94 * ze1(:,:,jk) + 0.66 * ze2(:,:,jk) + 0.4 * ze3(:,:,jk) ! Picophytoplankton (PISCES-QUOTA)
END DO
ENDIF
etot_ndcy(:,:,:) = etot(:,:,:)
ENDIF
! Biophysical feedback part (computation of vertical penetration of SW)
IF( ln_qsr_bio ) THEN !* heat flux accros w-level (used in the dynamics)
! ! ------------------------
CALL p4z_opt_par( kt, Kmm, qsr, ze1, ze2, ze3, pe0=ze0 )
!
etot3(:,:,1) = qsr(:,:) * tmask(:,:,1)
DO jk = 2, nksr + 1
etot3(:,:,jk) = ( ze0(:,:,jk) + ze1(:,:,jk) + ze2(:,:,jk) + ze3(:,:,jk) ) * tmask(:,:,jk)
END DO
! ! ------------------------
ENDIF
! Euphotic depth and level
! Two definitions of the euphotic zone are used here.
! (1) The classical definition based on the relative threshold value
! (2) An alternative definition based on a absolute threshold value.
! -------------------------------------------------------------------
neln(:,:) = 1
heup (:,:) = gdepw(:,:,2,Kmm)
heup_01(:,:) = gdepw(:,:,2,Kmm)
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 2, nksr)
IF( etot_ndcy(ji,jj,jk) * tmask(ji,jj,jk) >= zqsr100(ji,jj) ) THEN
neln(ji,jj) = jk+1 ! Euphotic level : 1rst T-level strictly below Euphotic layer
! ! nb: ensure the compatibility with nmld_trc definition in trd_mld_trc_zint
heup(ji,jj) = gdepw(ji,jj,jk+1,Kmm) ! Euphotic layer depth
ENDIF
IF( etot_ndcy(ji,jj,jk) * tmask(ji,jj,jk) >= 0.10 ) THEN
heup_01(ji,jj) = gdepw(ji,jj,jk+1,Kmm) ! Euphotic layer depth (light level definition)
ENDIF
END_3D
!
! The euphotic depth can not exceed 300 meters.
heup (:,:) = MIN( 300., heup (:,:) )
heup_01(:,:) = MIN( 300., heup_01(:,:) )
! Mean PAR over the mixed layer
! -----------------------------
zdepmoy(:,:) = 0.e0
zetmp1 (:,:) = 0.e0
zetmp2 (:,:) = 0.e0
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN
zetmp1 (ji,jj) = zetmp1 (ji,jj) + etot (ji,jj,jk) * e3t(ji,jj,jk,Kmm) ! Actual PAR for remineralisation
zetmp2 (ji,jj) = zetmp2 (ji,jj) + etot_ndcy(ji,jj,jk) * e3t(ji,jj,jk,Kmm) ! Par averaged over 24h for production
zdepmoy(ji,jj) = zdepmoy(ji,jj) + e3t(ji,jj,jk,Kmm)
ENDIF
END_3D
!
emoy(:,:,:) = etot(:,:,:) ! remineralisation
zpar(:,:,:) = etot_ndcy(:,:,:) ! diagnostic : PAR with no diurnal cycle
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN
z1_dep = 1. / ( zdepmoy(ji,jj) + rtrn )
emoy (ji,jj,jk) = zetmp1(ji,jj) * z1_dep
zpar (ji,jj,jk) = zetmp2(ji,jj) * z1_dep
ENDIF
END_3D
! Computation of the mean usable light for the different phytoplankton
! groups based on their absorption characteristics.
zdepmoy(:,:) = 0.e0
zetmp3 (:,:) = 0.e0
zetmp4 (:,:) = 0.e0
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
IF( gdepw(ji,jj,jk+1,Kmm) <= MIN(hmld(ji,jj), heup_01(ji,jj)) ) THEN
zetmp3 (ji,jj) = zetmp3 (ji,jj) + enano (ji,jj,jk) * e3t(ji,jj,jk,Kmm) ! Nanophytoplankton
zetmp4 (ji,jj) = zetmp4 (ji,jj) + ediat (ji,jj,jk) * e3t(ji,jj,jk,Kmm) ! Diatoms
zdepmoy(ji,jj) = zdepmoy(ji,jj) + e3t(ji,jj,jk,Kmm)
ENDIF
END_3D
enanom(:,:,:) = enano(:,:,:)
ediatm(:,:,:) = ediat(:,:,:)
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN
z1_dep = 1. / ( zdepmoy(ji,jj) + rtrn )
enanom(ji,jj,jk) = zetmp3(ji,jj) * z1_dep
ediatm(ji,jj,jk) = zetmp4(ji,jj) * z1_dep
ENDIF
END_3D
!
IF( ln_p5z ) THEN
! Picophytoplankton when using PISCES-QUOTA
ALLOCATE( zetmp5(jpi,jpj) ) ; zetmp5 (:,:) = 0.e0
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
IF( gdepw(ji,jj,jk+1,Kmm) <= MIN(hmld(ji,jj), heup_01(ji,jj)) ) THEN
zetmp5(ji,jj) = zetmp5 (ji,jj) + epico(ji,jj,jk) * e3t(ji,jj,jk,Kmm)
ENDIF
END_3D
!
epicom(:,:,:) = epico(:,:,:)
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN
z1_dep = 1. / ( zdepmoy(ji,jj) + rtrn )
epicom(ji,jj,jk) = zetmp5(ji,jj) * z1_dep
ENDIF
END_3D
DEALLOCATE( zetmp5 )
ENDIF
!
IF( lk_iomput .AND. knt == nrdttrc ) THEN
CALL iom_put( "Heup" , heup(:,: ) * tmask(:,:,1) ) ! euphotic layer deptht
IF( iom_use( "PAR" ) ) THEN
zpar(:,:,1) = zpar(:,:,1) * ( 1._wp - fr_i(:,:) )
CALL iom_put( "PAR", zpar(:,:,:) * tmask(:,:,:) ) ! Photosynthetically Available Radiation
ENDIF
ENDIF
!
IF( ln_timing ) CALL timing_stop('p4z_opt')
!
END SUBROUTINE p4z_opt
SUBROUTINE p4z_opt_par( kt, Kmm, pqsr, pe1, pe2, pe3, pe0, pqsr100 )
!!----------------------------------------------------------------------
!! *** routine p4z_opt_par ***
!!
!! ** purpose : compute PAR of each wavelength (Red-Green-Blue)
!! for a given shortwave radiation
!!
!!----------------------------------------------------------------------
INTEGER , INTENT(in) :: kt ! ocean time-step
INTEGER , INTENT(in) :: Kmm ! ocean time-index
REAL(wp), DIMENSION(jpi,jpj) , INTENT(in ) :: pqsr ! shortwave
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pe1 , pe2 , pe3 ! PAR ( R-G-B)
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout), OPTIONAL :: pe0 !
REAL(wp), DIMENSION(jpi,jpj) , INTENT( out), OPTIONAL :: pqsr100 !
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp), DIMENSION(jpi,jpj) :: zqsr ! shortwave
!!----------------------------------------------------------------------
! Real shortwave
IF( ln_varpar ) THEN ; zqsr(:,:) = par_varsw(:,:) * pqsr(:,:)
ELSE ; zqsr(:,:) = xparsw * pqsr(:,:)
ENDIF
! Light at the euphotic depth
IF( PRESENT( pqsr100 ) ) pqsr100(:,:) = 0.01 * 3. * zqsr(:,:)
IF( PRESENT( pe0 ) ) THEN ! W-level
!
pe0(:,:,1) = pqsr(:,:) - 3. * zqsr(:,:) ! ( 1 - 3 * alpha ) * q
pe1(:,:,1) = zqsr(:,:)
pe2(:,:,1) = zqsr(:,:)
pe3(:,:,1) = zqsr(:,:)
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 2, nksr + 1)
pe0(ji,jj,jk) = pe0(ji,jj,jk-1) * EXP( -e3t(ji,jj,jk-1,Kmm) * xsi0r )
pe1(ji,jj,jk) = pe1(ji,jj,jk-1) * EXP( -ekb (ji,jj,jk-1 ) )
pe2(ji,jj,jk) = pe2(ji,jj,jk-1) * EXP( -ekg (ji,jj,jk-1 ) )
pe3(ji,jj,jk) = pe3(ji,jj,jk-1) * EXP( -ekr (ji,jj,jk-1 ) )
END_3D
!
ELSE ! T- level
!
pe1(:,:,1) = zqsr(:,:) * EXP( -0.5 * ekb(:,:,1) )
pe2(:,:,1) = zqsr(:,:) * EXP( -0.5 * ekg(:,:,1) )
pe3(:,:,1) = zqsr(:,:) * EXP( -0.5 * ekr(:,:,1) )
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 2, nksr)
pe1(ji,jj,jk) = pe1(ji,jj,jk-1) * EXP( -0.5 * ( ekb(ji,jj,jk-1) + ekb(ji,jj,jk) ) )
pe2(ji,jj,jk) = pe2(ji,jj,jk-1) * EXP( -0.5 * ( ekg(ji,jj,jk-1) + ekg(ji,jj,jk) ) )
pe3(ji,jj,jk) = pe3(ji,jj,jk-1) * EXP( -0.5 * ( ekr(ji,jj,jk-1) + ekr(ji,jj,jk) ) )
END_3D
!
ENDIF
!
END SUBROUTINE p4z_opt_par
SUBROUTINE p4z_opt_sbc( kt )
!!----------------------------------------------------------------------
!! *** routine p4z_opt_sbc ***
!!
!! ** purpose : read and interpolate the variable PAR fraction
!! of shortwave radiation
!!
!! ** method : read the files and interpolate the appropriate variables
!!
!! ** input : external netcdf files
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! ocean time step
!
INTEGER :: ji,jj
REAL(wp) :: zcoef
!!---------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('p4z_optsbc')
!
! Compute par_varsw at nit000 or only if there is more than 1 time record in par coefficient file
IF( ln_varpar ) THEN
IF( kt == nit000 .OR. ( kt /= nit000 .AND. ntimes_par > 1 ) ) THEN
CALL fld_read( kt, 1, sf_par )
par_varsw(:,:) = ( sf_par(1)%fnow(:,:,1) ) / 3.0
ENDIF
ENDIF
!
IF( ln_timing ) CALL timing_stop('p4z_optsbc')
!
END SUBROUTINE p4z_opt_sbc
SUBROUTINE p4z_opt_init
!!----------------------------------------------------------------------
!! *** ROUTINE p4z_opt_init ***
!!
!! ** Purpose : Initialization of tabulated attenuation coef
!! and of the percentage of PAR in Shortwave
!!
!! ** Input : external ascii and netcdf files
!!----------------------------------------------------------------------
INTEGER :: numpar, ierr, ios ! Local integer
!
CHARACTER(len=100) :: cn_dir ! Root directory for location of ssr files
TYPE(FLD_N) :: sn_par ! informations about the fields to be read
!
NAMELIST/nampisopt/cn_dir, sn_par, ln_varpar, parlux, ln_p4z_dcyc
!!----------------------------------------------------------------------
IF(lwp) THEN
WRITE(numout,*)
WRITE(numout,*) 'p4z_opt_init : '
WRITE(numout,*) '~~~~~~~~~~~~ '
ENDIF
READ ( numnatp_ref, nampisopt, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisopt in reference namelist' )
READ ( numnatp_cfg, nampisopt, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nampisopt in configuration namelist' )
IF(lwm) WRITE ( numonp, nampisopt )
IF(lwp) THEN
WRITE(numout,*) ' Namelist : nampisopt '
WRITE(numout,*) ' PAR as a variable fraction of SW ln_varpar = ', ln_varpar
WRITE(numout,*) ' Default value for the PAR fraction parlux = ', parlux
WRITE(numout,*) ' Activate the diurnal cycle in PISCES ln_p4z_dcyc = ', ln_p4z_dcyc
ENDIF
!
xparsw = parlux / 3.0
xsi0r = 1.e0 / rn_si0
! Warning : activate the diurnal cycle with no diurnal cycle in the forcing fields makes no sense
! That does not produce a bug because the model does not use the flag but a warning is necessary
! ----------------------------------------------------------------------------------------------
IF ( ln_p4z_dcyc .AND. l_trcdm2dc ) THEN
IF (lwp) WRITE(numout,*) 'No diurnal cycle in the PAR forcing field '
IF (lwp) WRITE(numout,*) 'Activating the diurnal cycle in PISCES has no effect'
ENDIF
!
! Variable PAR at the surface of the ocean
! ----------------------------------------
IF( ln_varpar ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' ==>>> initialize variable par fraction (ln_varpar=T)'
!
ALLOCATE( par_varsw(jpi,jpj) )
!
ALLOCATE( sf_par(1), STAT=ierr ) !* allocate and fill sf_sst (forcing structure) with sn_sst
IF( ierr > 0 ) CALL ctl_stop( 'STOP', 'p4z_opt_init: unable to allocate sf_par structure' )
!
CALL fld_fill( sf_par, (/ sn_par /), cn_dir, 'p4z_opt_init', 'Variable PAR fraction ', 'nampisopt' )
ALLOCATE( sf_par(1)%fnow(jpi,jpj,1) )
IF( sn_par%ln_tint ) ALLOCATE( sf_par(1)%fdta(jpi,jpj,1,2) )
CALL iom_open ( TRIM( sn_par%clname ) , numpar )
ntimes_par = iom_getszuld( numpar ) ! get number of record in file
ENDIF
!
ekr (:,:,:) = 0._wp
ekb (:,:,:) = 0._wp
ekg (:,:,:) = 0._wp
etot (:,:,:) = 0._wp
etot_ndcy(:,:,:) = 0._wp
enano (:,:,:) = 0._wp
ediat (:,:,:) = 0._wp
IF( ln_p5z ) epico (:,:,:) = 0._wp
IF( ln_qsr_bio ) etot3 (:,:,:) = 0._wp
!
END SUBROUTINE p4z_opt_init
INTEGER FUNCTION p4z_opt_alloc()
!!----------------------------------------------------------------------
!! *** ROUTINE p4z_opt_alloc ***
!!----------------------------------------------------------------------
!
ALLOCATE( ekb(jpi,jpj,jpk), ekr(jpi,jpj,jpk), &
ekg(jpi,jpj,jpk), STAT= p4z_opt_alloc )
!
IF( p4z_opt_alloc /= 0 ) CALL ctl_stop( 'STOP', 'p4z_opt_alloc : failed to allocate arrays.' )
!
END FUNCTION p4z_opt_alloc
!!======================================================================
END MODULE p4zopt