Newer
Older
!!---------------------------------------------------------------------
REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: pslp ! sea-level pressure [Pa]
REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: pwndi ! atmospheric wind at T-point [m/s]
REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: pwndj ! atmospheric wind at T-point [m/s]

Guillaume Samson
committed
REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: ptair ! atmospheric potential temperature at T-point [K]
REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: pqair ! atmospheric specific humidity at T-point [kg/kg]
REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: puice ! sea-ice velocity on I or C grid [m/s]
REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: pvice ! "
REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: ptsui ! sea-ice surface temperature [K]
REAL(wp) , INTENT( out), DIMENSION(:,: ), OPTIONAL :: putaui ! if ln_blk
REAL(wp) , INTENT( out), DIMENSION(:,: ), OPTIONAL :: pvtaui ! if ln_blk
REAL(wp) , INTENT( out), DIMENSION(:,: ), OPTIONAL :: pseni ! if ln_abl
REAL(wp) , INTENT( out), DIMENSION(:,: ), OPTIONAL :: pevpi ! if ln_abl
REAL(wp) , INTENT( out), DIMENSION(:,: ), OPTIONAL :: pssqi ! if ln_abl
REAL(wp) , INTENT( out), DIMENSION(:,: ), OPTIONAL :: pcd_dui ! if ln_abl
!
INTEGER :: ji, jj ! dummy loop indices
REAL(wp) :: zootm_su ! sea-ice surface mean temperature
REAL(wp) :: zztmp1, zztmp2 ! temporary scalars

Guillaume Samson
committed
REAL(wp), DIMENSION(jpi,jpj) :: ztmp, zsipt ! temporary array
!!---------------------------------------------------------------------
!
! ------------------------------------------------------------ !
! Wind module relative to the moving ice ( U10m - U_ice ) !
! ------------------------------------------------------------ !
! C-grid ice dynamics : U & V-points (same as ocean)
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
wndm_ice(ji,jj) = SQRT( pwndi(ji,jj) * pwndi(ji,jj) + pwndj(ji,jj) * pwndj(ji,jj) )
END_2D
!

Guillaume Samson
committed
! potential sea-ice surface temperature [K]
zsipt(:,:) = theta_exner( ptsui(:,:), pslp(:,:) )

Guillaume Samson
committed
! sea-ice <-> atmosphere bulk transfer coefficients
SELECT CASE( nblk_ice )
CASE( np_ice_cst )
! Constant bulk transfer coefficients over sea-ice:
Cd_ice(:,:) = rn_Cd_i
Ch_ice(:,:) = rn_Ch_i
Ce_ice(:,:) = rn_Ce_i
! no height adjustment, keeping zt values:
theta_zu_i(:,:) = ptair(:,:)
q_zu_i(:,:) = pqair(:,:)
CASE( np_ice_an05 ) ! calculate new drag from Lupkes(2015) equations
ztmp(:,:) = q_sat( ptsui(:,:), pslp(:,:), l_ice=.TRUE. ) ! temporary array for SSQ

Guillaume Samson
committed
CALL turb_ice_an05( rn_zqt, rn_zu, zsipt, ptair, ztmp, pqair, wndm_ice, &
& Cd_ice, Ch_ice, Ce_ice, theta_zu_i, q_zu_i )
!!
CASE( np_ice_lu12 )
ztmp(:,:) = q_sat( ptsui(:,:), pslp(:,:), l_ice=.TRUE. ) ! temporary array for SSQ

Guillaume Samson
committed
CALL turb_ice_lu12( rn_zqt, rn_zu, zsipt, ptair, ztmp, pqair, wndm_ice, fr_i, &
& Cd_ice, Ch_ice, Ce_ice, theta_zu_i, q_zu_i )
!!
CASE( np_ice_lg15 ) ! calculate new drag from Lupkes(2015) equations
ztmp(:,:) = q_sat( ptsui(:,:), pslp(:,:), l_ice=.TRUE. ) ! temporary array for SSQ

Guillaume Samson
committed
CALL turb_ice_lg15( rn_zqt, rn_zu, zsipt, ptair, ztmp, pqair, wndm_ice, fr_i, &
& Cd_ice, Ch_ice, Ce_ice, theta_zu_i, q_zu_i )
!!
END SELECT
IF( iom_use('Cd_ice').OR.iom_use('Ce_ice').OR.iom_use('Ch_ice').OR.iom_use('taum_ice').OR.iom_use('utau_ice').OR.iom_use('vtau_ice') ) &
& ztmp(:,:) = ( 1._wp - MAX(0._wp, SIGN( 1._wp, 1.E-6_wp - fr_i )) )*tmask(:,:,1) ! mask for presence of ice !
IF( iom_use('Cd_ice') ) CALL iom_put("Cd_ice", Cd_ice*ztmp)
IF( iom_use('Ce_ice') ) CALL iom_put("Ce_ice", Ce_ice*ztmp)
IF( iom_use('Ch_ice') ) CALL iom_put("Ch_ice", Ch_ice*ztmp)
IF( ln_blk ) THEN
! ---------------------------------------------------- !
! Wind stress relative to nonmoving ice ( U10m ) !
! ---------------------------------------------------- !
! supress moving ice in wind stress computation as we don't know how to do it properly...
DO_2D( 0, 1, 0, 1 ) ! at T point
zztmp1 = rhoa(ji,jj) * Cd_ice(ji,jj) * wndm_ice(ji,jj)

Guillaume Samson
committed
putaui(ji,jj) = zztmp1 * pwndi(ji,jj)
pvtaui(ji,jj) = zztmp1 * pwndj(ji,jj)
END_2D
!#LB: saving the module, and x-y components, of the ai wind-stress at T-points: NOT weighted by the ice concentration !!!
IF(iom_use('taum_ice')) CALL iom_put('taum_ice', SQRT( putaui*putaui + pvtaui*pvtaui )*ztmp )
!#LB: These 2 lines below mostly here for 'STATION_ASF' test-case, otherwize "utau_oi" (U-grid) and vtau_oi" (V-grid) does the job in: [ICE/icedyn_rhg_evp.F90])
IF(iom_use('utau_ice')) CALL iom_put("utau_ice", putaui*ztmp) ! utau at T-points!
IF(iom_use('vtau_ice')) CALL iom_put("vtau_ice", pvtaui*ztmp) ! vtau at T-points!
!
DO_2D( 0, 0, 0, 0 ) ! U & V-points (same as ocean).
!#LB: QUESTION?? so SI3 expects wind stress vector to be provided at U & V points? Not at T-points ?
! take care of the land-sea mask to avoid "pollution" of coastal stress. p[uv]taui used in frazil and rheology
zztmp1 = 0.5_wp * ( 2. - umask(ji,jj,1) ) * MAX( tmask(ji,jj,1),tmask(ji+1,jj ,1) )
zztmp2 = 0.5_wp * ( 2. - vmask(ji,jj,1) ) * MAX( tmask(ji,jj,1),tmask(ji ,jj+1,1) )
putaui(ji,jj) = zztmp1 * ( putaui(ji,jj) + putaui(ji+1,jj ) )
pvtaui(ji,jj) = zztmp2 * ( pvtaui(ji,jj) + pvtaui(ji ,jj+1) )
END_2D
CALL lbc_lnk( 'sbcblk', putaui, 'U', -1._wp, pvtaui, 'V', -1._wp )
!

Sebastien Masson
committed
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab2d_1=putaui , clinfo1=' blk_ice: putaui : ', mask1=umask &
& , tab2d_2=pvtaui , clinfo2=' pvtaui : ', mask2=vmask )

Guillaume Samson
committed

Guillaume Samson
committed
pcd_dui(ji,jj) = wndm_ice(ji,jj) * Cd_ice(ji,jj)
pseni (ji,jj) = wndm_ice(ji,jj) * Ch_ice(ji,jj)
pevpi (ji,jj) = wndm_ice(ji,jj) * Ce_ice(ji,jj)
END_2D
pssqi(:,:) = q_sat( ptsui(:,:), pslp(:,:), l_ice=.TRUE. ) ; ! more accurate way to obtain ssq !

Guillaume Samson
committed
ENDIF ! ln_blk / ln_abl

Sebastien Masson
committed
IF(sn_cfctl%l_prtctl) CALL prt_ctl(tab2d_1=wndm_ice , clinfo1=' blk_ice: wndm_ice : ', mask1=tmask )
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
!
END SUBROUTINE blk_ice_1
SUBROUTINE blk_ice_2( ptsu, phs, phi, palb, ptair, pqair, pslp, pdqlw, pprec, psnow )
!!---------------------------------------------------------------------
!! *** ROUTINE blk_ice_2 ***
!!
!! ** Purpose : provide the heat and mass fluxes at air-ice interface
!!
!! ** Method : compute heat and freshwater exchanged
!! between atmosphere and sea-ice using bulk formulation
!! formulea, ice variables and read atmmospheric fields.
!!
!! caution : the net upward water flux has with mm/day unit
!!---------------------------------------------------------------------
REAL(wp), DIMENSION(:,:,:), INTENT(in) :: ptsu ! sea ice surface temperature [K]
REAL(wp), DIMENSION(:,:,:), INTENT(in) :: phs ! snow thickness
REAL(wp), DIMENSION(:,:,:), INTENT(in) :: phi ! ice thickness
REAL(wp), DIMENSION(:,:,:), INTENT(in) :: palb ! ice albedo (all skies)
REAL(wp), DIMENSION(:,: ), INTENT(in) :: ptair ! potential temperature of air #LB: okay ???
REAL(wp), DIMENSION(:,: ), INTENT(in) :: pqair ! specific humidity of air
REAL(wp), DIMENSION(:,: ), INTENT(in) :: pslp
REAL(wp), DIMENSION(:,: ), INTENT(in) :: pdqlw
REAL(wp), DIMENSION(:,: ), INTENT(in) :: pprec
REAL(wp), DIMENSION(:,: ), INTENT(in) :: psnow
!!
INTEGER :: ji, jj, jl ! dummy loop indices

Guillaume Samson
committed
REAL(wp) :: zst, zst3, zsq, zsipt ! local variable
REAL(wp) :: zcoef_dqlw, zcoef_dqla ! - -
REAL(wp) :: zztmp, zzblk, zztmp1, z1_rLsub ! - -

Sebastien Masson
committed
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: zmsk ! temporary mask for prt_ctl
REAL(wp), DIMENSION(jpi,jpj,jpl) :: z_qlw ! long wave heat flux over ice
REAL(wp), DIMENSION(jpi,jpj,jpl) :: z_qsb ! sensible heat flux over ice
REAL(wp), DIMENSION(jpi,jpj,jpl) :: z_dqlw ! long wave heat sensitivity over ice
REAL(wp), DIMENSION(jpi,jpj,jpl) :: z_dqsb ! sensible heat sensitivity over ice
REAL(wp), DIMENSION(jpi,jpj) :: zevap, zsnw ! evaporation and snw distribution after wind blowing (SI3)

Guillaume Samson
committed
REAL(wp), DIMENSION(jpi,jpj) :: ztmp, ztmp2
REAL(wp), DIMENSION(jpi,jpj) :: ztri
REAL(wp), DIMENSION(jpi,jpj) :: zcptrain, zcptsnw, zcptn ! Heat content per unit mass (J/kg)
!!---------------------------------------------------------------------
!
zcoef_dqlw = 4._wp * emiss_i * stefan ! local scalars
zztmp = 1. / ( 1. - albo )
dqla_ice(:,:,:) = 0._wp
! Heat content per unit mass (J/kg)
zcptrain(:,:) = ( ptair - rt0 ) * rcp * tmask(:,:,1)
zcptsnw (:,:) = ( MIN( ptair, rt0 ) - rt0 ) * rcpi * tmask(:,:,1)
zcptn (:,:) = sst_m * rcp * tmask(:,:,1)
!
! ! ========================== !
DO jl = 1, jpl ! Loop over ice categories !
! ! ========================== !
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )

Guillaume Samson
committed
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
zst = ptsu(ji,jj,jl) ! surface temperature of sea-ice [K]
zsq = q_sat( zst, pslp(ji,jj), l_ice=.TRUE. ) ! surface saturation specific humidity when ice present
zsipt = theta_exner( zst, pslp(ji,jj) ) ! potential sea-ice surface temperature [K]
! ----------------------------!
! I Radiative FLUXES !
! ----------------------------!
! Short Wave (sw)
qsr_ice(ji,jj,jl) = zztmp * ( 1. - palb(ji,jj,jl) ) * qsr(ji,jj)
! Long Wave (lw)
zst3 = zst * zst * zst
z_qlw(ji,jj,jl) = emiss_i * ( pdqlw(ji,jj) - stefan * zst * zst3 ) * tmask(ji,jj,1)
! lw sensitivity
z_dqlw(ji,jj,jl) = zcoef_dqlw * zst3
! ----------------------------!
! II Turbulent FLUXES !
! ----------------------------!
! ... turbulent heat fluxes with Ch_ice recalculated in blk_ice_1
! Common term in bulk F. equations...
zzblk = rhoa(ji,jj) * wndm_ice(ji,jj)
! Sensible Heat
zztmp1 = zzblk * rCp_air * Ch_ice(ji,jj)
z_qsb (ji,jj,jl) = zztmp1 * (zsipt - theta_zu_i(ji,jj))
z_dqsb(ji,jj,jl) = zztmp1 ! ==> Qsens sensitivity (Dqsb_ice/Dtn_ice)
! Latent Heat
zztmp1 = zzblk * rLsub * Ce_ice(ji,jj)
qla_ice(ji,jj,jl) = MAX( zztmp1 * (zsq - q_zu_i(ji,jj)) , 0._wp ) ! #LB: only sublimation (and not condensation) ???
IF(qla_ice(ji,jj,jl)>0._wp) dqla_ice(ji,jj,jl) = zztmp1*dq_sat_dt_ice(zst, pslp(ji,jj)) ! ==> Qlat sensitivity (dQlat/dT)
! !#LB: dq_sat_dt_ice() in "sbc_phy.F90"
!#LB: without this unjustified "condensation sensure":
!qla_ice( ji,jj,jl) = zztmp1 * (zsq - q_zu_i(ji,jj))
!dqla_ice(ji,jj,jl) = zztmp1 * dq_sat_dt_ice(zst, pslp(ji,jj)) ! ==> Qlat sensitivity (dQlat/dT)
! ----------------------------!
! III Total FLUXES !
! ----------------------------!
! Downward Non Solar flux
qns_ice (ji,jj,jl) = z_qlw (ji,jj,jl) - z_qsb (ji,jj,jl) - qla_ice (ji,jj,jl)
! Total non solar heat flux sensitivity for ice
dqns_ice(ji,jj,jl) = - ( z_dqlw(ji,jj,jl) + z_dqsb(ji,jj,jl) + dqla_ice(ji,jj,jl) ) !#LB: correct signs ????
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
END_2D
!
END DO
!
tprecip(:,:) = pprec(:,:) * rn_pfac * tmask(:,:,1) ! total precipitation [kg/m2/s]
sprecip(:,:) = psnow(:,:) * rn_pfac * tmask(:,:,1) ! solid precipitation [kg/m2/s]
CALL iom_put( 'snowpre', sprecip ) ! Snow precipitation
CALL iom_put( 'precip' , tprecip ) ! Total precipitation
! --- evaporation --- !
z1_rLsub = 1._wp / rLsub
evap_ice (:,:,:) = rn_efac * qla_ice (:,:,:) * z1_rLsub ! sublimation
devap_ice(:,:,:) = rn_efac * dqla_ice(:,:,:) * z1_rLsub ! d(sublimation)/dT
zevap (:,:) = emp(:,:) + tprecip(:,:) ! evaporation over ocean !LB: removed rn_efac here, correct???
! --- evaporation minus precipitation --- !
zsnw(:,:) = 0._wp
CALL ice_var_snwblow( (1.-at_i_b(:,:)), zsnw ) ! snow distribution over ice after wind blowing
emp_oce(:,:) = ( 1._wp - at_i_b(:,:) ) * zevap(:,:) - ( tprecip(:,:) - sprecip(:,:) ) - sprecip(:,:) * (1._wp - zsnw )
emp_ice(:,:) = SUM( a_i_b(:,:,:) * evap_ice(:,:,:), dim=3 ) - sprecip(:,:) * zsnw
emp_tot(:,:) = emp_oce(:,:) + emp_ice(:,:)
! --- heat flux associated with emp --- !
qemp_oce(:,:) = - ( 1._wp - at_i_b(:,:) ) * zevap(:,:) * zcptn(:,:) & ! evap at sst
& + ( tprecip(:,:) - sprecip(:,:) ) * zcptrain(:,:) & ! liquid precip at Tair
& + sprecip(:,:) * ( 1._wp - zsnw ) * ( zcptsnw (:,:) - rLfus ) ! solid precip at min(Tair,Tsnow)
qemp_ice(:,:) = sprecip(:,:) * zsnw * ( zcptsnw (:,:) - rLfus ) ! solid precip (only)
! --- total solar and non solar fluxes --- !
qns_tot(:,:) = ( 1._wp - at_i_b(:,:) ) * qns_oce(:,:) + SUM( a_i_b(:,:,:) * qns_ice(:,:,:), dim=3 ) &
& + qemp_ice(:,:) + qemp_oce(:,:)
qsr_tot(:,:) = ( 1._wp - at_i_b(:,:) ) * qsr_oce(:,:) + SUM( a_i_b(:,:,:) * qsr_ice(:,:,:), dim=3 )
! --- heat content of precip over ice in J/m3 (to be used in 1D-thermo) --- !
qprec_ice(:,:) = rhos * ( zcptsnw(:,:) - rLfus )
! --- heat content of evap over ice in W/m2 (to be used in 1D-thermo) ---
DO jl = 1, jpl
qevap_ice(:,:,jl) = 0._wp ! should be -evap_ice(:,:,jl)*( ( Tice - rt0 ) * rcpi * tmask(:,:,1) )
! ! But we do not have Tice => consider it at 0degC => evap=0
END DO
! --- shortwave radiation transmitted thru the surface scattering layer (W/m2) --- !
IF( nn_qtrice == 0 ) THEN
! formulation derived from Grenfell and Maykut (1977), where transmission rate
! 1) depends on cloudiness
! 2) is 0 when there is any snow
! 3) tends to 1 for thin ice
ztri(:,:) = 0.18 * ( 1.0 - cloud_fra(:,:) ) + 0.35 * cloud_fra(:,:) ! surface transmission when hi>10cm
DO jl = 1, jpl
WHERE ( phs(:,:,jl) <= 0._wp .AND. phi(:,:,jl) < 0.1_wp ) ! linear decrease from hi=0 to 10cm
qtr_ice_top(:,:,jl) = qsr_ice(:,:,jl) * ( ztri(:,:) + ( 1._wp - ztri(:,:) ) * ( 1._wp - phi(:,:,jl) * 10._wp ) )
ELSEWHERE( phs(:,:,jl) <= 0._wp .AND. phi(:,:,jl) >= 0.1_wp ) ! constant (ztri) when hi>10cm
qtr_ice_top(:,:,jl) = qsr_ice(:,:,jl) * ztri(:,:)
ELSEWHERE ! zero when hs>0
qtr_ice_top(:,:,jl) = 0._wp
END WHERE
ENDDO
ELSEIF( nn_qtrice == 1 ) THEN
! formulation is derived from the thesis of M. Lebrun (2019).
! It represents the best fit using several sets of observations
! It comes with snow conductivities adapted to freezing/melting conditions (see icethd_zdf_bl99.F90)
qtr_ice_top(:,:,:) = 0.3_wp * qsr_ice(:,:,:)
ENDIF
!
IF( iom_use('evap_ao_cea') .OR. iom_use('hflx_evap_cea') ) THEN
CALL iom_put( 'evap_ao_cea' , zevap(:,:) * ( 1._wp - at_i_b(:,:) ) * tmask(:,:,1) ) ! ice-free oce evap (cell average)
CALL iom_put( 'hflx_evap_cea', zevap(:,:) * ( 1._wp - at_i_b(:,:) ) * tmask(:,:,1) * zcptn(:,:) ) ! heat flux from evap (cell average)
ENDIF
IF( iom_use('rain') .OR. iom_use('rain_ao_cea') .OR. iom_use('hflx_rain_cea') ) THEN
CALL iom_put( 'rain' , tprecip(:,:) - sprecip(:,:) ) ! liquid precipitation
CALL iom_put( 'rain_ao_cea' , ( tprecip(:,:) - sprecip(:,:) ) * ( 1._wp - at_i_b(:,:) ) ) ! liquid precipitation over ocean (cell average)
CALL iom_put( 'hflx_rain_cea', ( tprecip(:,:) - sprecip(:,:) ) * zcptrain(:,:) ) ! heat flux from rain (cell average)
ENDIF
IF( iom_use('snow_ao_cea') .OR. iom_use('snow_ai_cea') .OR. &
& iom_use('hflx_snow_cea') .OR. iom_use('hflx_snow_ao_cea') .OR. iom_use('hflx_snow_ai_cea') ) THEN
CALL iom_put( 'snow_ao_cea' , sprecip(:,:) * ( 1._wp - zsnw(:,:) ) ) ! Snow over ice-free ocean (cell average)
CALL iom_put( 'snow_ai_cea' , sprecip(:,:) * zsnw(:,:) ) ! Snow over sea-ice (cell average)
CALL iom_put( 'hflx_snow_cea' , sprecip(:,:) * ( zcptsnw(:,:) - rLfus ) ) ! heat flux from snow (cell average)
CALL iom_put( 'hflx_snow_ao_cea', sprecip(:,:) * ( zcptsnw(:,:) - rLfus ) * ( 1._wp - zsnw(:,:) ) ) ! heat flux from snow (over ocean)
CALL iom_put( 'hflx_snow_ai_cea', sprecip(:,:) * ( zcptsnw(:,:) - rLfus ) * zsnw(:,:) ) ! heat flux from snow (over ice)
ENDIF
IF( iom_use('hflx_prec_cea') ) THEN ! heat flux from precip (cell average)
CALL iom_put('hflx_prec_cea' , sprecip(:,:) * ( zcptsnw (:,:) - rLfus ) &
& + ( tprecip(:,:) - sprecip(:,:) ) * zcptrain(:,:) )
ENDIF
IF( iom_use('subl_ai_cea') .OR. iom_use('hflx_subl_cea') ) THEN
CALL iom_put( 'subl_ai_cea' , SUM( a_i_b(:,:,:) * evap_ice(:,:,:), dim=3 ) * tmask(:,:,1) ) ! Sublimation over sea-ice (cell average)
CALL iom_put( 'hflx_subl_cea', SUM( a_i_b(:,:,:) * qevap_ice(:,:,:), dim=3 ) * tmask(:,:,1) ) ! Heat flux from sublimation (cell average)
ENDIF
!
IF(sn_cfctl%l_prtctl) THEN

Sebastien Masson
committed
ALLOCATE(zmsk(jpi,jpj,jpl))
DO jl = 1, jpl
zmsk(:,:,jpl) = tmask(:,:,1)
END DO
CALL prt_ctl(tab3d_1=qla_ice , clinfo1=' blk_ice: qla_ice : ', mask1=zmsk, &
& tab3d_2=z_qsb , clinfo2=' z_qsb : ' , mask2=zmsk, kdim=jpl)
CALL prt_ctl(tab3d_1=z_qlw , clinfo1=' blk_ice: z_qlw : ', mask1=zmsk, &
& tab3d_2=dqla_ice, clinfo2=' dqla_ice : ' , mask2=zmsk, kdim=jpl)
CALL prt_ctl(tab3d_1=z_dqsb , clinfo1=' blk_ice: z_dqsb : ', mask1=zmsk, &
& tab3d_2=z_dqlw , clinfo2=' z_dqlw : ' , mask2=zmsk, kdim=jpl)
CALL prt_ctl(tab3d_1=dqns_ice, clinfo1=' blk_ice: dqns_ice : ', mask1=zmsk, &
& tab3d_2=qsr_ice , clinfo2=' qsr_ice : ' , mask2=zmsk, kdim=jpl)
CALL prt_ctl(tab3d_1=ptsu , clinfo1=' blk_ice: ptsu : ', mask1=zmsk, &
& tab3d_2=qns_ice , clinfo2=' qns_ice : ' , mask2=zmsk, kdim=jpl)
CALL prt_ctl(tab2d_1=tprecip , clinfo1=' blk_ice: tprecip : ', mask1=tmask, &
& tab2d_2=sprecip , clinfo2=' sprecip : ' , mask2=tmask )
DEALLOCATE(zmsk)
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
ENDIF
!#LB:
! air-ice heat flux components that are not written from ice_stp()@icestp.F90:
IF( iom_use('qla_ice') ) CALL iom_put( 'qla_ice', SUM( - qla_ice * a_i_b, dim=3 ) ) !#LB: sign consistent with what's done for ocean
IF( iom_use('qsb_ice') ) CALL iom_put( 'qsb_ice', SUM( - z_qsb * a_i_b, dim=3 ) ) !#LB: ==> negative => loss of heat for sea-ice
IF( iom_use('qlw_ice') ) CALL iom_put( 'qlw_ice', SUM( z_qlw * a_i_b, dim=3 ) )
!#LB.
END SUBROUTINE blk_ice_2
SUBROUTINE blk_ice_qcn( ld_virtual_itd, ptsu, ptb, phs, phi )
!!---------------------------------------------------------------------
!! *** ROUTINE blk_ice_qcn ***
!!
!! ** Purpose : Compute surface temperature and snow/ice conduction flux
!! to force sea ice / snow thermodynamics
!! in the case conduction flux is emulated
!!
!! ** Method : compute surface energy balance assuming neglecting heat storage
!! following the 0-layer Semtner (1976) approach
!!
!! ** Outputs : - ptsu : sea-ice / snow surface temperature (K)
!! - qcn_ice : surface inner conduction flux (W/m2)
!!
!!---------------------------------------------------------------------
LOGICAL , INTENT(in ) :: ld_virtual_itd ! single-category option
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: ptsu ! sea ice / snow surface temperature
REAL(wp), DIMENSION(:,:) , INTENT(in ) :: ptb ! sea ice base temperature
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: phs ! snow thickness
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: phi ! sea ice thickness
!
INTEGER , PARAMETER :: nit = 10 ! number of iterations
REAL(wp), PARAMETER :: zepsilon = 0.1_wp ! characteristic thickness for enhanced conduction
!
INTEGER :: ji, jj, jl ! dummy loop indices
INTEGER :: iter ! local integer
REAL(wp) :: zfac, zfac2, zfac3 ! local scalars
REAL(wp) :: zkeff_h, ztsu, ztsu0 !
REAL(wp) :: zqc, zqnet !
REAL(wp) :: zhe, zqa0 !
REAL(wp), DIMENSION(jpi,jpj,jpl) :: zgfac ! enhanced conduction factor
!!---------------------------------------------------------------------
! -------------------------------------!
! I Enhanced conduction factor !
! -------------------------------------!
! Emulates the enhancement of conduction by unresolved thin ice (ld_virtual_itd = T)
! Fichefet and Morales Maqueda, JGR 1997
!
zgfac(:,:,:) = 1._wp
IF( ld_virtual_itd ) THEN
!
zfac = 1._wp / ( rn_cnd_s + rcnd_i )
zfac2 = EXP(1._wp) * 0.5_wp * zepsilon
zfac3 = 2._wp / zepsilon
!
DO jl = 1, jpl
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zhe = ( rn_cnd_s * phi(ji,jj,jl) + rcnd_i * phs(ji,jj,jl) ) * zfac ! Effective thickness
IF( zhe >= zfac2 ) zgfac(ji,jj,jl) = MIN( 2._wp, 0.5_wp * ( 1._wp + LOG( zhe * zfac3 ) ) ) ! Enhanced conduction factor
END_2D
END DO
!
ENDIF
! -------------------------------------------------------------!
! II Surface temperature and conduction flux !
! -------------------------------------------------------------!
!
zfac = rcnd_i * rn_cnd_s
!
DO jl = 1, jpl
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
!
zkeff_h = zfac * zgfac(ji,jj,jl) / & ! Effective conductivity of the snow-ice system divided by thickness
& ( rcnd_i * phs(ji,jj,jl) + rn_cnd_s * MAX( 0.01, phi(ji,jj,jl) ) )
ztsu = ptsu(ji,jj,jl) ! Store current iteration temperature
ztsu0 = ptsu(ji,jj,jl) ! Store initial surface temperature
zqa0 = qsr_ice(ji,jj,jl) - qtr_ice_top(ji,jj,jl) + qns_ice(ji,jj,jl) ! Net initial atmospheric heat flux
!
DO iter = 1, nit ! --- Iterative loop
zqc = zkeff_h * ( ztsu - ptb(ji,jj) ) ! Conduction heat flux through snow-ice system (>0 downwards)
zqnet = zqa0 + dqns_ice(ji,jj,jl) * ( ztsu - ptsu(ji,jj,jl) ) - zqc ! Surface energy budget
ztsu = ztsu - zqnet / ( dqns_ice(ji,jj,jl) - zkeff_h ) ! Temperature update
END DO
!
ptsu (ji,jj,jl) = MIN( rt0, ztsu )
qcn_ice(ji,jj,jl) = zkeff_h * ( ptsu(ji,jj,jl) - ptb(ji,jj) )
qns_ice(ji,jj,jl) = qns_ice(ji,jj,jl) + dqns_ice(ji,jj,jl) * ( ptsu(ji,jj,jl) - ztsu0 )
qml_ice(ji,jj,jl) = ( qsr_ice(ji,jj,jl) - qtr_ice_top(ji,jj,jl) + qns_ice(ji,jj,jl) - qcn_ice(ji,jj,jl) ) &
& * MAX( 0._wp , SIGN( 1._wp, ptsu(ji,jj,jl) - rt0 ) )
! --- Diagnose the heat loss due to changing non-solar flux (as in icethd_zdf_bl99) --- !
hfx_err_dif(ji,jj) = hfx_err_dif(ji,jj) - ( dqns_ice(ji,jj,jl) * ( ptsu(ji,jj,jl) - ztsu0 ) ) * a_i_b(ji,jj,jl)
END_2D
!
END DO
!
END SUBROUTINE blk_ice_qcn
#endif
!!======================================================================
END MODULE sbcblk