Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
MODULE sbcblk_algo_ice_an05
!!======================================================================
!! *** MODULE sbcblk_algo_ice_an05 ***
!! Computes turbulent components of surface fluxes over sea-ice
!!
!! Andreas, E.L., Jordan, R.E. & Makshtas, A.P. Parameterizing turbulent exchange over sea ice: the ice station weddell results.
!! Boundary-Layer Meteorology 114, 439–460 (2005). https://doi.org/10.1007/s10546-004-1414-7
!!
!! * bulk transfer coefficients C_D, C_E and C_H
!! * air temp. and spec. hum. adjusted from zt (usually 2m) to zu (usually 10m) if needed
!! * the "effective" bulk wind speed at zu: Ub (including gustiness contribution in unstable conditions)
!! => all these are used in bulk formulas in sbcblk.F90
!!
!! Routine turb_ice_an05 maintained and developed in AeroBulk
!! (https://github.com/brodeau/aerobulk/)
!!
!! Author: Laurent Brodeau, Summer 2020
!!
!!----------------------------------------------------------------------
USE par_kind, ONLY: wp
USE par_oce, ONLY: jpi, jpj, Nis0, Nie0, Njs0, Nje0, nn_hls, ntsi, ntsj, ntei, ntej
USE lib_mpp, ONLY: ctl_stop ! distribued memory computing library
USE phycst ! physical constants
USE sbc_phy ! Catalog of functions for physical/meteorological parameters in the marine boundary layer
IMPLICIT NONE
PRIVATE
PUBLIC :: turb_ice_an05
INTEGER , PARAMETER :: nbit = 8 ! number of itterations
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE turb_ice_an05( zt, zu, Ts_i, t_zt, qs_i, q_zt, U_zu, &
& Cd_i, Ch_i, Ce_i, t_zu_i, q_zu_i, &
& CdN, ChN, CeN, xz0, xu_star, xL, xUN10 )
!!----------------------------------------------------------------------
!! *** ROUTINE turb_ice_an05 ***
!!
!! ** Purpose : Computes turbulent transfert coefficients of surface
!! fluxes according to:
!! Andreas, E.L., Jordan, R.E. & Makshtas, A.P. Parameterizing turbulent exchange over sea ice: the ice station weddell results.
!! Boundary-Layer Meteorology 114, 439–460 (2005). https://doi.org/10.1007/s10546-004-1414-7
!!
!! If relevant (zt /= zu), adjust temperature and humidity from height zt to zu
!! Returns the effective bulk wind speed at zu to be used in the bulk formulas
!!
!! INPUT :
!! -------
!! * zt : height for temperature and spec. hum. of air [m]
!! * zu : height for wind speed (usually 10m) [m]
!! * Ts_i : surface temperature of sea-ice [K]
!! * t_zt : potential air temperature at zt [K]
!! * qs_i : saturation specific humidity at temp. Ts_i over ice [kg/kg]
!! * q_zt : specific humidity of air at zt [kg/kg]
!! * U_zu : scalar wind speed at zu [m/s]
!!
!! OUTPUT :
!! --------
!! * Cd_i : drag coefficient over sea-ice
!! * Ch_i : sensible heat coefficient over sea-ice
!! * Ce_i : sublimation coefficient over sea-ice
!! * t_zu_i : pot. air temp. adjusted at zu over sea-ice [K]
!! * q_zu_i : spec. hum. of air adjusted at zu over sea-ice [kg/kg]
!!
!! OPTIONAL OUTPUT:
!! ----------------
!! * CdN : neutral-stability drag coefficient
!! * ChN : neutral-stability sensible heat coefficient
!! * CeN : neutral-stability evaporation coefficient
!! * xz0 : return the aerodynamic roughness length (integration constant for wind stress) [m]
!! * xu_star : return u* the friction velocity [m/s]
!! * xL : return the Obukhov length [m]
!! * xUN10 : neutral wind speed at 10m [m/s]
!!
!! ** Author: L. Brodeau, January 2020 / AeroBulk (https://github.com/brodeau/aerobulk/)
!!----------------------------------------------------------------------------------
REAL(wp), INTENT(in ) :: zt ! height for t_zt and q_zt [m]
REAL(wp), INTENT(in ) :: zu ! height for U_zu [m]
REAL(wp), INTENT(in ), DIMENSION(jpi,jpj) :: Ts_i ! ice surface temperature [Kelvin]
REAL(wp), INTENT(in ), DIMENSION(jpi,jpj) :: t_zt ! potential air temperature [Kelvin]
REAL(wp), INTENT(in ), DIMENSION(jpi,jpj) :: qs_i ! sat. spec. hum. at ice/air interface [kg/kg]
REAL(wp), INTENT(in ), DIMENSION(jpi,jpj) :: q_zt ! spec. air humidity at zt [kg/kg]
REAL(wp), INTENT(in ), DIMENSION(jpi,jpj) :: U_zu ! relative wind module at zu [m/s]
REAL(wp), INTENT(out), DIMENSION(jpi,jpj) :: Cd_i ! drag coefficient over sea-ice
REAL(wp), INTENT(out), DIMENSION(jpi,jpj) :: Ch_i ! transfert coefficient for heat over ice
REAL(wp), INTENT(out), DIMENSION(jpi,jpj) :: Ce_i ! transfert coefficient for sublimation over ice
REAL(wp), INTENT(out), DIMENSION(jpi,jpj) :: t_zu_i ! pot. air temp. adjusted at zu [K]
REAL(wp), INTENT(out), DIMENSION(jpi,jpj) :: q_zu_i ! spec. humidity adjusted at zu [kg/kg]
!!----------------------------------------------------------------------------------
REAL(wp), INTENT(out), DIMENSION(jpi,jpj), OPTIONAL :: CdN
REAL(wp), INTENT(out), DIMENSION(jpi,jpj), OPTIONAL :: ChN
REAL(wp), INTENT(out), DIMENSION(jpi,jpj), OPTIONAL :: CeN
REAL(wp), INTENT(out), DIMENSION(jpi,jpj), OPTIONAL :: xz0 ! Aerodynamic roughness length [m]
REAL(wp), INTENT(out), DIMENSION(jpi,jpj), OPTIONAL :: xu_star ! u*, friction velocity
REAL(wp), INTENT(out), DIMENSION(jpi,jpj), OPTIONAL :: xL ! zeta (zu/L)
REAL(wp), INTENT(out), DIMENSION(jpi,jpj), OPTIONAL :: xUN10 ! Neutral wind at zu
!!----------------------------------------------------------------------------------
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: Ubzu
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ztmp0, ztmp1, ztmp2 ! temporary stuff
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: z0, dt_zu, dq_zu
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: u_star, t_star, q_star
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: znu_a !: Nu_air = kinematic viscosity of air
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: zeta_u, zeta_t ! stability parameter at height zu
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: z0tq
!!
INTEGER :: jit
LOGICAL :: l_zt_equal_zu = .FALSE. ! if q and t are given at same height as U
!!
LOGICAL :: lreturn_cdn=.FALSE., lreturn_chn=.FALSE., lreturn_cen=.FALSE.
LOGICAL :: lreturn_z0=.FALSE., lreturn_ustar=.FALSE., lreturn_L=.FALSE., lreturn_UN10=.FALSE.
!!
CHARACTER(len=40), PARAMETER :: crtnm = 'turb_ice_an05@sbcblk_algo_ice_an05.f90'
!!----------------------------------------------------------------------------------
ALLOCATE ( Ubzu(jpi,jpj), u_star(jpi,jpj), t_star(jpi,jpj), q_star(jpi,jpj), &
& zeta_u(jpi,jpj), dt_zu(jpi,jpj), dq_zu(jpi,jpj), &
& znu_a(jpi,jpj), ztmp1(jpi,jpj), ztmp2(jpi,jpj), &
& z0(jpi,jpj), z0tq(jpi,jpj,2), ztmp0(jpi,jpj) )
lreturn_cdn = PRESENT(CdN)
lreturn_chn = PRESENT(ChN)
lreturn_cen = PRESENT(CeN)
lreturn_z0 = PRESENT(xz0)
lreturn_ustar = PRESENT(xu_star)
lreturn_L = PRESENT(xL)
lreturn_UN10 = PRESENT(xUN10)
l_zt_equal_zu = ( ABS(zu - zt) < 0.01_wp )
IF( .NOT. l_zt_equal_zu ) ALLOCATE( zeta_t(jpi,jpj) )
!! Scalar wind speed cannot be below 0.2 m/s
Ubzu = MAX( U_zu, wspd_thrshld_ice )
!! First guess of temperature and humidity at height zu:
t_zu_i = MAX( t_zt , 100._wp ) ! who knows what's given on masked-continental regions...
q_zu_i = MAX( q_zt , 0.1e-6_wp ) ! "
!! Air-Ice differences (and we don't want it to be 0!)
dt_zu = t_zu_i - Ts_i ; dt_zu = SIGN( MAX(ABS(dt_zu),1.E-6_wp), dt_zu )
dq_zu = q_zu_i - qs_i ; dq_zu = SIGN( MAX(ABS(dq_zu),1.E-9_wp), dq_zu )
znu_a = visc_air(t_zu_i) ! Air viscosity (m^2/s) at zt given from temperature in (K)
!! Very crude first guesses of z0:
z0 = 8.0E-4_wp
!! Crude first guess of turbulent scales
u_star = 0.035_wp*Ubzu*LOG( 10._wp/z0 )/LOG( zu/z0 )
z0 = rough_leng_m( u_star , znu_a )
DO jit = 1, 2
u_star = MAX ( Ubzu*vkarmn/(LOG(zu) - LOG(z0)) , 1.E-9 )
z0 = rough_leng_m( u_star , znu_a )
END DO
z0tq = rough_leng_tq( z0, u_star , znu_a )
t_star = dt_zu*vkarmn/(LOG(zu/z0tq(:,:,1)))
q_star = dq_zu*vkarmn/(LOG(zu/z0tq(:,:,2)))
!! ITERATION BLOCK
DO jit = 1, nbit
!!Inverse of Obukov length (1/L) :
ztmp0 = One_on_L(t_zu_i, q_zu_i, u_star, t_star, q_star) ! 1/L == 1/[Obukhov length]
ztmp0 = SIGN( MIN(ABS(ztmp0),200._wp), ztmp0 ) ! (prevents FPE from stupid values from masked region later on...)
!! Stability parameters "zeta" :
zeta_u = zu*ztmp0
zeta_u = SIGN( MIN(ABS(zeta_u),50.0_wp), zeta_u )
IF( .NOT. l_zt_equal_zu ) THEN
zeta_t = zt*ztmp0
zeta_t = SIGN( MIN(ABS(zeta_t),50.0_wp), zeta_t )
END IF
!! Roughness lengthes z0, z0t, & z0q :
z0 = rough_leng_m ( u_star , znu_a )
z0tq = rough_leng_tq( z0, u_star , znu_a )
!! Turbulent scales at zu :
ztmp0 = psi_h_ice(zeta_u)
t_star = dt_zu*vkarmn/(LOG(zu) - LOG(z0tq(:,:,1)) - ztmp0)
q_star = dq_zu*vkarmn/(LOG(zu) - LOG(z0tq(:,:,2)) - ztmp0)
u_star = MAX( Ubzu*vkarmn/(LOG(zu) - LOG(z0(:,:)) - psi_m_ice(zeta_u)) , 1.E-9 )
IF( .NOT. l_zt_equal_zu ) THEN
!! Re-updating temperature and humidity at zu if zt /= zu :
ztmp1 = LOG(zt/zu) + ztmp0 - psi_h_ice(zeta_t)
t_zu_i = t_zt - t_star/vkarmn*ztmp1
q_zu_i = q_zt - q_star/vkarmn*ztmp1
dt_zu = t_zu_i - Ts_i ; dt_zu = SIGN( MAX(ABS(dt_zu),1.E-6_wp), dt_zu )
dq_zu = q_zu_i - qs_i ; dq_zu = SIGN( MAX(ABS(dq_zu),1.E-9_wp), dq_zu )
END IF
END DO !DO jit = 1, nbit
! compute transfer coefficients at zu :
ztmp0 = u_star/Ubzu
Cd_i = ztmp0*ztmp0
Ch_i = ztmp0*t_star/dt_zu
Ce_i = ztmp0*q_star/dq_zu
IF( lreturn_cdn .OR. lreturn_chn .OR. lreturn_cen ) ztmp0 = 1._wp/LOG( zu/z0(:,:) )
IF( lreturn_cdn ) CdN = vkarmn2*ztmp0*ztmp0
IF( lreturn_chn ) ChN = vkarmn2*ztmp0/LOG(zu/z0tq(:,:,1))
IF( lreturn_cen ) CeN = vkarmn2*ztmp0/LOG(zu/z0tq(:,:,2))
IF( lreturn_z0 ) xz0 = z0
IF( lreturn_ustar ) xu_star = u_star
IF( lreturn_L ) xL = 1./One_on_L(t_zu_i, q_zu_i, u_star, t_star, q_star)
IF( lreturn_UN10 ) xUN10 = u_star/vkarmn*LOG(10./z0)
DEALLOCATE ( Ubzu, u_star, t_star, q_star, zeta_u, dt_zu, dq_zu, z0, z0tq, znu_a, ztmp0, ztmp1, ztmp2 )
IF( .NOT. l_zt_equal_zu ) DEALLOCATE( zeta_t )
END SUBROUTINE turb_ice_an05
FUNCTION rough_leng_m( pus , pnua )
!!----------------------------------------------------------------------------------
!! Computes the roughness length of sea-ice according to Andreas et al. 2005, (eq. 19)
!!
!! Author: L. Brodeau, January 2020 / AeroBulk (https://github.com/brodeau/aerobulk/)
!!----------------------------------------------------------------------------------
REAL(wp), DIMENSION(jpi,jpj) :: rough_leng_m ! roughness length over sea-ice [m]
REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pus ! u* = friction velocity [m/s]
REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pnua ! kinematic viscosity of air [m^2/s]
!!
INTEGER :: ji, jj ! dummy loop indices
REAL(wp) :: zus, zz
!!----------------------------------------------------------------------------------
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zus = MAX( pus(ji,jj) , 1.E-9_wp )
zz = (zus - 0.18_wp) / 0.1_wp
rough_leng_m(ji,jj) = 0.135*pnua(ji,jj)/zus + 0.035*zus*zus/grav*( 5.*EXP(-zz*zz) + 1._wp ) ! Eq.(19) Andreas et al., 2005
END_2D
!!
END FUNCTION rough_leng_m
FUNCTION rough_leng_tq( pz0, pus , pnua )
!!----------------------------------------------------------------------------------
!! Computes the roughness length of sea-ice according to Andreas et al. 2005, (eq. 22)
!! => which still relies on Andreas 1987 !
!!
!! Author: L. Brodeau, January 2020 / AeroBulk (https://github.com/brodeau/aerobulk/)
!!----------------------------------------------------------------------------------
REAL(wp), DIMENSION(jpi,jpj,2) :: rough_leng_tq ! temp.,hum. roughness lengthes over sea-ice [m]
REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pz0 ! roughness length [m]
REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pus ! u* = friction velocity [m/s]
REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pnua ! kinematic viscosity of air [m^2/s]
!!
INTEGER :: ji, jj ! dummy loop indices
REAL(wp) :: zz0, zus, zre, zsmoot, ztrans, zrough
REAL(wp) :: zb0, zb1, zb2, zlog, zlog2, zlog_z0s_on_z0
!!----------------------------------------------------------------------------------
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zz0 = pz0(ji,jj)
zus = MAX( pus(ji,jj) , 1.E-9_wp )
zre = MAX( zus*zz0/pnua(ji,jj) , 0._wp ) ! Roughness Reynolds number
!! *** TABLE 1 of Andreas et al. 2005 ***
zsmoot = 0._wp ; ztrans = 0._wp ; zrough = 0._wp
IF ( zre <= 0.135_wp ) THEN ! Smooth flow condition (R* <= 0.135):
zsmoot = 1._wp
ELSEIF( zre < 2.5_wp ) THEN ! Transition (0.135 < R* < 2.5)
ztrans = 1._wp
ELSE ! Rough ( R* > 2.5)
zrough = 1._wp
ENDIF
zlog = LOG(zre)
zlog2 = zlog*zlog
!! z0t:
zb0 = zsmoot*1.25_wp + ztrans*0.149_wp + zrough*0.317_wp
zb1 = - ztrans*0.550_wp - zrough*0.565_wp
zb2 = - zrough*0.183_wp
zlog_z0s_on_z0 = zb0 + zb1*zlog + zb2*zlog2
rough_leng_tq(ji,jj,1) = zz0 * EXP( zlog_z0s_on_z0 )
!! z0q:
zb0 = zsmoot*1.61_wp + ztrans*0.351_wp + zrough*0.396_wp
zb1 = - ztrans*0.628_wp - zrough*0.512_wp
zb2 = - zrough*0.180_wp
zlog = LOG(zre)
zlog_z0s_on_z0 = zb0 + zb1*zlog + zb2*zlog2
rough_leng_tq(ji,jj,2) = zz0 * EXP( zlog_z0s_on_z0 )
END_2D
!!
END FUNCTION rough_leng_tq
FUNCTION psi_m_ice( pzeta )
!!----------------------------------------------------------------------------------
!! ** Purpose: compute the universal profile stability function for momentum
!!
!!
!! Andreas et al 2005 == Jordan et al. 1999
!!
!! Psi:
!! Unstable => Paulson 1970
!! Stable => Holtslag & De Bruin 1988
!!
!! pzeta : stability paramenter, z/L where z is altitude
!! measurement and L is M-O length
!!
!! ** Author: L. Brodeau, 2020 / AeroBulk (https://github.com/brodeau/aerobulk/)
!!----------------------------------------------------------------------------------
REAL(wp), DIMENSION(jpi,jpj) :: psi_m_ice
REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pzeta
!
INTEGER :: ji, jj ! dummy loop indices
REAL(wp) :: zta, zx, zpsi_u, zpsi_s, zstab
!!----------------------------------------------------------------------------------
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) !
zta = pzeta(ji,jj)
!
! Unstable stratification:
zx = ABS(1._wp - 16._wp*zta)**.25 ! (16 here, not 15!)
zpsi_u = LOG( (1._wp + zx*zx)/2. ) & ! Eq.(30) Jordan et al. 1999
& + 2.*LOG( (1._wp + zx )/2. ) &
& - 2.*ATAN( zx ) + 0.5*rpi
! Stable stratification:
zpsi_s = - ( 0.7_wp*zta + 0.75_wp*(zta - 14.3_wp)*EXP( -0.35*zta) + 10.7_wp ) ! Eq.(33) Jordan et al. 1999
!! Combine:
zstab = 0.5 + SIGN(0.5_wp, zta)
psi_m_ice(ji,jj) = (1._wp - zstab) * zpsi_u & ! Unstable (zta < 0)
& + zstab * zpsi_s ! Stable (zta > 0)
!
END_2D
END FUNCTION psi_m_ice
FUNCTION psi_h_ice( pzeta )
!!----------------------------------------------------------------------------------
!! ** Purpose: compute the universal profile stability function for
!! temperature and humidity
!!
!!
!! Andreas et al 2005 == Jordan et al. 1999
!!
!! Psi:
!! Unstable => Paulson 1970
!! Stable => Holtslag & De Bruin 1988
!!
!! pzeta : stability paramenter, z/L where z is altitude
!! measurement and L is M-O length
!!
!! ** Author: L. Brodeau, 2020 / AeroBulk (https://github.com/brodeau/aerobulk/)
!!----------------------------------------------------------------------------------
REAL(wp), DIMENSION(jpi,jpj) :: psi_h_ice
REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pzeta
!
INTEGER :: ji, jj ! dummy loop indices
REAL(wp) :: zta, zx, zpsi_u, zpsi_s, zstab
!!----------------------------------------------------------------------------------
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) !
zta = pzeta(ji,jj)
!
! Unstable stratification:
zx = ABS(1._wp - 16._wp*zta)**.25 ! (16 here, not 15!)
zpsi_u = 2.*LOG( (1._wp + zx*zx)/2. ) ! Eq.(31) Jordan et al. 1999
! Stable stratification (identical to Psi_m!):
zpsi_s = - ( 0.7_wp*zta + 0.75_wp*(zta - 14.3_wp)*EXP( -0.35*zta) + 10.7_wp ) ! Eq.(33) Jordan et al. 1999
!! Combine:
zstab = 0.5 + SIGN(0.5_wp, zta)
psi_h_ice(ji,jj) = (1._wp - zstab) * zpsi_u & ! Unstable (zta < 0)
& + zstab * zpsi_s ! Stable (zta > 0)
!
END_2D
END FUNCTION psi_h_ice
!!======================================================================
END MODULE sbcblk_algo_ice_an05