Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
MODULE icethd_zdf_BL99
!!======================================================================
!! *** MODULE icethd_zdf_BL99 ***
!! sea-ice: vertical heat diffusion in sea ice (computation of temperatures)
!!======================================================================
!! History : ! 2003-02 (M. Vancoppenolle) original 1D code
!! ! 2005-06 (M. Vancoppenolle) 3d version
!! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube]
!!----------------------------------------------------------------------
#if defined key_si3
!!----------------------------------------------------------------------
!! 'key_si3' SI3 sea-ice model
!!----------------------------------------------------------------------
!! ice_thd_zdf_BL99 : vertical diffusion computation
!!----------------------------------------------------------------------
USE dom_oce ! ocean space and time domain
USE phycst ! physical constants (ocean directory)
USE ice ! sea-ice: variables
USE ice1D ! sea-ice: thermodynamics variables
USE icevar ! sea-ice: operations
!
USE in_out_manager ! I/O manager
USE lib_mpp ! MPP library
USE lib_fortran ! fortran utilities (glob_sum + no signed zero)
IMPLICIT NONE
PRIVATE
PUBLIC ice_thd_zdf_BL99 ! called by icethd_zdf
!!----------------------------------------------------------------------
!! NEMO/ICE 4.0 , NEMO Consortium (2018)
!! $Id: icethd_zdf_bl99.F90 14072 2020-12-04 07:48:38Z laurent $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE ice_thd_zdf_BL99( k_cnd )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_thd_zdf_BL99 ***
!!
!! ** Purpose : computes the time evolution of snow and sea-ice temperature
!! profiles, using the original Bitz and Lipscomb (1999) algorithm
!!
!! ** Method : solves the heat equation diffusion with a Neumann boundary
!! condition at the surface and a Dirichlet one at the bottom.
!! Solar radiation is partially absorbed into the ice.
!! The specific heat and thermal conductivities depend on ice
!! salinity and temperature to take into account brine pocket
!! melting. The numerical scheme is an iterative Crank-Nicolson
!! on a non-uniform multilayer grid in the ice and snow system.
!!
!! The successive steps of this routine are
!! 1. initialization of ice-snow layers thicknesses
!! 2. Internal absorbed and transmitted radiation
!! Then iterative procedure begins
!! 3. Thermal conductivity
!! 4. Kappa factors
!! 5. specific heat in the ice
!! 6. eta factors
!! 7. surface flux computation
!! 8. tridiagonal system terms
!! 9. solving the tridiagonal system with Gauss elimination
!! Iterative procedure ends according to a criterion on evolution
!! of temperature
!! 10. Fluxes at the interfaces
!!
!! ** Inputs / Ouputs : (global commons)
!! surface temperature : t_su_1d
!! ice/snow temperatures : t_i_1d, t_s_1d
!! ice salinities : sz_i_1d
!! number of layers in the ice/snow : nlay_i, nlay_s
!! total ice/snow thickness : h_i_1d, h_s_1d
!!-------------------------------------------------------------------
INTEGER, INTENT(in) :: k_cnd ! conduction flux (off, on, emulated)
!
INTEGER :: ji, jk ! spatial loop index
INTEGER :: jm ! current reference number of equation
INTEGER :: jm_mint, jm_maxt
INTEGER :: iconv ! number of iterations in iterative procedure
INTEGER :: iconv_max = 50 ! max number of iterations in iterative procedure
!
INTEGER, DIMENSION(jpij) :: jm_min ! reference number of top equation
INTEGER, DIMENSION(jpij) :: jm_max ! reference number of bottom equation
LOGICAL, DIMENSION(jpij) :: l_T_converged ! true when T converges (per grid point)
!
REAL(wp) :: zg1s = 2._wp ! for the tridiagonal system
REAL(wp) :: zg1 = 2._wp !
REAL(wp) :: zgamma = 18009._wp ! for specific heat
REAL(wp) :: zbeta = 0.117_wp ! for thermal conductivity (could be 0.13)
REAL(wp) :: zkimin = 0.10_wp ! minimum ice thermal conductivity
REAL(wp) :: ztsu_err = 1.e-5_wp ! range around which t_su is considered at 0C
REAL(wp) :: zdti_bnd = 1.e-4_wp ! maximal authorized error on temperature
REAL(wp) :: zhs_ssl = 0.03_wp ! surface scattering layer in the snow
REAL(wp) :: zhi_ssl = 0.10_wp ! surface scattering layer in the ice
REAL(wp) :: zh_min = 1.e-3_wp ! minimum ice/snow thickness for conduction
REAL(wp) :: ztmelts ! ice melting temperature
REAL(wp) :: zdti_max ! current maximal error on temperature
REAL(wp) :: zcpi ! Ice specific heat
REAL(wp) :: zhfx_err, zdq ! diag errors on heat
!
REAL(wp), DIMENSION(jpij) :: zraext_s ! extinction coefficient of radiation in the snow
REAL(wp), DIMENSION(jpij) :: ztsub ! surface temperature at previous iteration
REAL(wp), DIMENSION(jpij) :: zh_i, z1_h_i ! ice layer thickness
REAL(wp), DIMENSION(jpij) :: zh_s, z1_h_s ! snow layer thickness
REAL(wp), DIMENSION(jpij) :: zqns_ice_b ! solar radiation absorbed at the surface
REAL(wp), DIMENSION(jpij) :: zfnet ! surface flux function
REAL(wp), DIMENSION(jpij) :: zdqns_ice_b ! derivative of the surface flux function
!
REAL(wp), DIMENSION(jpij ) :: ztsuold ! Old surface temperature in the ice
REAL(wp), DIMENSION(jpij,nlay_i) :: ztiold ! Old temperature in the ice
REAL(wp), DIMENSION(jpij,nlay_s) :: ztsold ! Old temperature in the snow
REAL(wp), DIMENSION(jpij,nlay_i) :: ztib ! Temporary temperature in the ice to check the convergence
REAL(wp), DIMENSION(jpij,nlay_s) :: ztsb ! Temporary temperature in the snow to check the convergence
REAL(wp), DIMENSION(jpij,0:nlay_i) :: ztcond_i ! Ice thermal conductivity
REAL(wp), DIMENSION(jpij,0:nlay_i) :: ztcond_i_cp ! copy
REAL(wp), DIMENSION(jpij,0:nlay_i) :: zradtr_i ! Radiation transmitted through the ice
REAL(wp), DIMENSION(jpij,0:nlay_i) :: zradab_i ! Radiation absorbed in the ice
REAL(wp), DIMENSION(jpij,0:nlay_i) :: zkappa_i ! Kappa factor in the ice
REAL(wp), DIMENSION(jpij,0:nlay_i) :: zeta_i ! Eta factor in the ice
REAL(wp), DIMENSION(jpij,0:nlay_s) :: zradtr_s ! Radiation transmited through the snow
REAL(wp), DIMENSION(jpij,0:nlay_s) :: zradab_s ! Radiation absorbed in the snow
REAL(wp), DIMENSION(jpij,0:nlay_s) :: zkappa_s ! Kappa factor in the snow
REAL(wp), DIMENSION(jpij,0:nlay_s) :: zeta_s ! Eta factor in the snow
REAL(wp), DIMENSION(jpij) :: zkappa_comb ! Combined snow and ice surface conductivity
REAL(wp), DIMENSION(jpij) :: zq_ini ! diag errors on heat
REAL(wp), DIMENSION(jpij) :: zghe ! G(he), th. conduct enhancement factor, mono-cat
REAL(wp), DIMENSION(jpij) :: za_s_fra ! ice fraction covered by snow
REAL(wp), DIMENSION(jpij) :: isnow ! snow presence (1) or not (0)
REAL(wp), DIMENSION(jpij) :: isnow_comb ! snow presence for met-office
REAL(wp), DIMENSION(jpij,nlay_i+nlay_s+1) :: zindterm ! 'Ind'ependent term
REAL(wp), DIMENSION(jpij,nlay_i+nlay_s+1) :: zindtbis ! Temporary 'ind'ependent term
REAL(wp), DIMENSION(jpij,nlay_i+nlay_s+1) :: zdiagbis ! Temporary 'dia'gonal term
REAL(wp), DIMENSION(jpij,nlay_i+nlay_s+1,3) :: ztrid ! Tridiagonal system terms
!
! Mono-category
REAL(wp) :: zepsilon ! determines thres. above which computation of G(h) is done
REAL(wp) :: zhe ! dummy factor
REAL(wp) :: zcnd_i ! mean sea ice thermal conductivity
!!------------------------------------------------------------------
! --- diag error on heat diffusion - PART 1 --- !
DO ji = 1, npti
zq_ini(ji) = ( SUM( e_i_1d(ji,1:nlay_i) ) * h_i_1d(ji) * r1_nlay_i + &
& SUM( e_s_1d(ji,1:nlay_s) ) * h_s_1d(ji) * r1_nlay_s )
END DO
! calculate ice fraction covered by snow for radiation
CALL ice_var_snwfra( h_s_1d(1:npti), za_s_fra(1:npti) )
!------------------
! 1) Initialization
!------------------
!
! extinction radiation in the snow
IF ( nn_qtrice == 0 ) THEN ! constant
zraext_s(1:npti) = rn_kappa_s
ELSEIF( nn_qtrice == 1 ) THEN ! depends on melting/freezing conditions
WHERE( t_su_1d(1:npti) < rt0 ) ; zraext_s(1:npti) = rn_kappa_sdry ! no surface melting
ELSEWHERE ; zraext_s(1:npti) = rn_kappa_smlt ! surface melting
END WHERE
ENDIF
!
! thicknesses
DO ji = 1, npti
! ice thickness
IF( h_i_1d(ji) > 0._wp ) THEN
zh_i (ji) = MAX( zh_min , h_i_1d(ji) ) * r1_nlay_i ! set a minimum thickness for conduction
z1_h_i(ji) = 1._wp / zh_i(ji) ! it must be very small
ELSE
zh_i (ji) = 0._wp
z1_h_i(ji) = 0._wp
ENDIF
! snow thickness
IF( h_s_1d(ji) > 0._wp ) THEN
zh_s (ji) = MAX( zh_min , h_s_1d(ji) ) * r1_nlay_s ! set a minimum thickness for conduction
z1_h_s(ji) = 1._wp / zh_s(ji) ! it must be very small
isnow (ji) = 1._wp
ELSE
zh_s (ji) = 0._wp
z1_h_s(ji) = 0._wp
isnow (ji) = 0._wp
ENDIF
! for Met-Office
IF( h_s_1d(ji) < zh_min ) THEN
isnow_comb(ji) = h_s_1d(ji) / zh_min
ELSE
isnow_comb(ji) = 1._wp
ENDIF
END DO
! clem: we should apply correction on snow thickness to take into account snow fraction
! it must be a distribution, so it is a bit complicated
!
! Store initial temperatures and non solar heat fluxes
IF( k_cnd == np_cnd_OFF .OR. k_cnd == np_cnd_EMU ) THEN
ztsub (1:npti) = t_su_1d(1:npti) ! surface temperature at iteration n-1
ztsuold (1:npti) = t_su_1d(1:npti) ! surface temperature initial value
t_su_1d (1:npti) = MIN( t_su_1d(1:npti), rt0 - ztsu_err ) ! required to leave the choice between melting or not
zdqns_ice_b(1:npti) = dqns_ice_1d(1:npti) ! derivative of incoming nonsolar flux
zqns_ice_b (1:npti) = qns_ice_1d(1:npti) ! store previous qns_ice_1d value
!
ENDIF
!
ztsold (1:npti,:) = t_s_1d(1:npti,:) ! Old snow temperature
ztiold (1:npti,:) = t_i_1d(1:npti,:) ! Old ice temperature
!-------------
! 2) Radiation
!-------------
! --- Transmission/absorption of solar radiation in the ice --- !
zradtr_s(1:npti,0) = qtr_ice_top_1d(1:npti)
DO jk = 1, nlay_s
DO ji = 1, npti
! ! radiation transmitted below the layer-th snow layer
zradtr_s(ji,jk) = zradtr_s(ji,0) * EXP( - zraext_s(ji) * MAX( 0._wp, zh_s(ji) * REAL(jk) - zhs_ssl ) )
! ! radiation absorbed by the layer-th snow layer
zradab_s(ji,jk) = zradtr_s(ji,jk-1) - zradtr_s(ji,jk)
END DO
END DO
!
zradtr_i(1:npti,0) = zradtr_s(1:npti,nlay_s) * za_s_fra(1:npti) + qtr_ice_top_1d(1:npti) * ( 1._wp - za_s_fra(1:npti) )
DO jk = 1, nlay_i
DO ji = 1, npti
! ! radiation transmitted below the layer-th ice layer
zradtr_i(ji,jk) = za_s_fra(ji) * zradtr_s(ji,nlay_s) & ! part covered by snow
& * EXP( - rn_kappa_i * MAX( 0._wp, zh_i(ji) * REAL(jk) - zh_min ) ) &
& + ( 1._wp - za_s_fra(ji) ) * qtr_ice_top_1d(ji) & ! part snow free
& * EXP( - rn_kappa_i * MAX( 0._wp, zh_i(ji) * REAL(jk) - zhi_ssl ) )
! ! radiation absorbed by the layer-th ice layer
zradab_i(ji,jk) = zradtr_i(ji,jk-1) - zradtr_i(ji,jk)
END DO
END DO
!
qtr_ice_bot_1d(1:npti) = zradtr_i(1:npti,nlay_i) ! record radiation transmitted below the ice
!
iconv = 0 ! number of iterations
!
l_T_converged(:) = .FALSE.
! Convergence calculated until all sub-domain grid points have converged
! Calculations keep going for all grid points until sub-domain convergence (vectorisation optimisation)
! but values are not taken into account (results independant of MPI partitioning)
!
! !============================!
DO WHILE ( ( .NOT. ALL (l_T_converged(1:npti)) ) .AND. iconv < iconv_max ) ! Iterative procedure begins !
! !============================!
iconv = iconv + 1
!
ztib(1:npti,:) = t_i_1d(1:npti,:)
ztsb(1:npti,:) = t_s_1d(1:npti,:)
!
!--------------------------------
! 3) Sea ice thermal conductivity
!--------------------------------
IF( ln_cndi_U64 ) THEN !-- Untersteiner (1964) formula: k = k0 + beta.S/T
!
DO ji = 1, npti
ztcond_i_cp(ji,0) = rcnd_i + zbeta * sz_i_1d(ji,1) / MIN( -epsi10, t_i_1d(ji,1) - rt0 )
ztcond_i_cp(ji,nlay_i) = rcnd_i + zbeta * sz_i_1d(ji,nlay_i) / MIN( -epsi10, t_bo_1d(ji) - rt0 )
END DO
DO jk = 1, nlay_i-1
DO ji = 1, npti
ztcond_i_cp(ji,jk) = rcnd_i + zbeta * 0.5_wp * ( sz_i_1d(ji,jk) + sz_i_1d(ji,jk+1) ) / &
& MIN( -epsi10, 0.5_wp * ( t_i_1d(ji,jk) + t_i_1d(ji,jk+1) ) - rt0 )
END DO
END DO
!
ELSEIF( ln_cndi_P07 ) THEN !-- Pringle et al formula: k = k0 + beta1.S/T - beta2.T
!
DO ji = 1, npti
ztcond_i_cp(ji,0) = rcnd_i + 0.09_wp * sz_i_1d(ji,1) / MIN( -epsi10, t_i_1d(ji,1) - rt0 ) &
& - 0.011_wp * ( t_i_1d(ji,1) - rt0 )
ztcond_i_cp(ji,nlay_i) = rcnd_i + 0.09_wp * sz_i_1d(ji,nlay_i) / MIN( -epsi10, t_bo_1d(ji) - rt0 ) &
& - 0.011_wp * ( t_bo_1d(ji) - rt0 )
END DO
DO jk = 1, nlay_i-1
DO ji = 1, npti
ztcond_i_cp(ji,jk) = rcnd_i + 0.09_wp * 0.5_wp * ( sz_i_1d(ji,jk) + sz_i_1d(ji,jk+1) ) / &
& MIN( -epsi10, 0.5_wp * ( t_i_1d(ji,jk) + t_i_1d(ji,jk+1) ) - rt0 ) &
& - 0.011_wp * ( 0.5_wp * ( t_i_1d(ji,jk) + t_i_1d(ji,jk+1) ) - rt0 )
END DO
END DO
!
ENDIF
! Variable used after iterations
! Value must be frozen after convergence for MPP independance reason
DO ji = 1, npti
IF ( .NOT. l_T_converged(ji) ) &
ztcond_i(ji,:) = MAX( zkimin, ztcond_i_cp(ji,:) )
END DO
!
!--- G(he) : enhancement of thermal conductivity in mono-category case
! Computation of effective thermal conductivity G(h)
! Used in mono-category case only to simulate an ITD implicitly
! Fichefet and Morales Maqueda, JGR 1997
zghe(1:npti) = 1._wp
!
IF( ln_virtual_itd ) THEN
!
zepsilon = 0.1_wp
DO ji = 1, npti
zcnd_i = SUM( ztcond_i(ji,:) ) / REAL( nlay_i+1, wp ) ! Mean sea ice thermal conductivity
zhe = ( rn_cnd_s * h_i_1d(ji) + zcnd_i * h_s_1d(ji) ) / ( rn_cnd_s + zcnd_i ) ! Effective thickness he (zhe)
IF( zhe >= zepsilon * 0.5_wp * EXP(1._wp) ) &
& zghe(ji) = MIN( 2._wp, 0.5_wp * ( 1._wp + LOG( 2._wp * zhe / zepsilon ) ) ) ! G(he)
END DO
!
ENDIF
!
!-----------------
! 4) kappa factors
!-----------------
!--- Snow
! Variable used after iterations
! Value must be frozen after convergence for MPP independance reason
DO jk = 0, nlay_s-1
DO ji = 1, npti
IF ( .NOT. l_T_converged(ji) ) &
zkappa_s(ji,jk) = zghe(ji) * rn_cnd_s * z1_h_s(ji)
END DO
END DO
DO ji = 1, npti ! Snow-ice interface
IF ( .NOT. l_T_converged(ji) ) &
zkappa_s(ji,nlay_s) = isnow(ji) * zghe(ji) * rn_cnd_s * ztcond_i(ji,0) &
& / ( 0.5_wp * ( ztcond_i(ji,0) * zh_s(ji) + rn_cnd_s * zh_i(ji) ) )
END DO
!--- Ice
! Variable used after iterations
! Value must be frozen after convergence for MPP independance reason
DO jk = 0, nlay_i
DO ji = 1, npti
IF ( .NOT. l_T_converged(ji) ) &
zkappa_i(ji,jk) = zghe(ji) * ztcond_i(ji,jk) * z1_h_i(ji)
END DO
END DO
DO ji = 1, npti ! Snow-ice interface
IF ( .NOT. l_T_converged(ji) ) THEN
! Calculate combined surface snow and ice conductivity to pass through the coupler (met-office)
zkappa_comb(ji) = isnow_comb(ji) * zkappa_s(ji,0) + ( 1._wp - isnow_comb(ji) ) * zkappa_i(ji,0)
! If there is snow then use the same snow-ice interface conductivity for the top layer of ice
IF( h_s_1d(ji) > 0._wp ) zkappa_i(ji,0) = zkappa_s(ji,nlay_s)
ENDIF
END DO
!
!--------------------------------------
! 5) Sea ice specific heat, eta factors
!--------------------------------------
DO jk = 1, nlay_i
DO ji = 1, npti
zcpi = rcpi + zgamma * sz_i_1d(ji,jk) / MAX( ( t_i_1d(ji,jk) - rt0 ) * ( ztiold(ji,jk) - rt0 ), epsi10 )
zeta_i(ji,jk) = rDt_ice * r1_rhoi * z1_h_i(ji) / zcpi
END DO
END DO
DO jk = 1, nlay_s
DO ji = 1, npti
zeta_s(ji,jk) = rDt_ice * r1_rhos * r1_rcpi * z1_h_s(ji)
END DO
END DO
!
!----------------------------------------!
! !
! Conduction flux is off or emulated !
! !
!----------------------------------------!
!
IF( k_cnd == np_cnd_OFF .OR. k_cnd == np_cnd_EMU ) THEN
!
! ==> The original BL99 temperature computation is used
! (with qsr_ice, qns_ice and dqns_ice as inputs)
!
!----------------------------
! 6) surface flux computation
!----------------------------
! update of the non solar flux according to the update in T_su
DO ji = 1, npti
! Variable used after iterations
! Value must be frozen after convergence for MPP independance reason
IF ( .NOT. l_T_converged(ji) ) &
qns_ice_1d(ji) = qns_ice_1d(ji) + dqns_ice_1d(ji) * ( t_su_1d(ji) - ztsub(ji) )
END DO
DO ji = 1, npti
zfnet(ji) = qsr_ice_1d(ji) - qtr_ice_top_1d(ji) + qns_ice_1d(ji) ! net heat flux = net - transmitted solar + non solar
END DO
!
!----------------------------
! 7) tridiagonal system terms
!----------------------------
! layer denotes the number of the layer in the snow or in the ice
! jm denotes the reference number of the equation in the tridiagonal
! system, terms of tridiagonal system are indexed as following :
! 1 is subdiagonal term, 2 is diagonal and 3 is superdiagonal one
! ice interior terms (top equation has the same form as the others)
ztrid (1:npti,:,:) = 0._wp
zindterm(1:npti,:) = 0._wp
zindtbis(1:npti,:) = 0._wp
zdiagbis(1:npti,:) = 0._wp
DO jm = nlay_s + 2, nlay_s + nlay_i
DO ji = 1, npti
jk = jm - nlay_s - 1
ztrid (ji,jm,1) = - zeta_i(ji,jk) * zkappa_i(ji,jk-1)
ztrid (ji,jm,2) = 1._wp + zeta_i(ji,jk) * ( zkappa_i(ji,jk-1) + zkappa_i(ji,jk) )
ztrid (ji,jm,3) = - zeta_i(ji,jk) * zkappa_i(ji,jk)
zindterm(ji,jm) = ztiold(ji,jk) + zeta_i(ji,jk) * zradab_i(ji,jk)
END DO
END DO
jm = nlay_s + nlay_i + 1
DO ji = 1, npti
! ice bottom term
ztrid (ji,jm,1) = - zeta_i(ji,nlay_i) * zkappa_i(ji,nlay_i-1)
ztrid (ji,jm,2) = 1._wp + zeta_i(ji,nlay_i) * ( zkappa_i(ji,nlay_i-1) + zkappa_i(ji,nlay_i) * zg1 )
ztrid (ji,jm,3) = 0._wp
zindterm(ji,jm) = ztiold(ji,nlay_i) + zeta_i(ji,nlay_i) * &
& ( zradab_i(ji,nlay_i) + zkappa_i(ji,nlay_i) * zg1 * t_bo_1d(ji) )
END DO
DO ji = 1, npti
! !---------------------!
IF( h_s_1d(ji) > 0._wp ) THEN ! snow-covered cells !
! !---------------------!
! snow interior terms (bottom equation has the same form as the others)
DO jm = 3, nlay_s + 1
jk = jm - 1
ztrid (ji,jm,1) = - zeta_s(ji,jk) * zkappa_s(ji,jk-1)
ztrid (ji,jm,2) = 1._wp + zeta_s(ji,jk) * ( zkappa_s(ji,jk-1) + zkappa_s(ji,jk) )
ztrid (ji,jm,3) = - zeta_s(ji,jk) * zkappa_s(ji,jk)
zindterm(ji,jm) = ztsold(ji,jk) + zeta_s(ji,jk) * zradab_s(ji,jk)
END DO
! case of only one layer in the ice (ice equation is altered)
IF( nlay_i == 1 ) THEN
ztrid (ji,nlay_s+2,3) = 0._wp
zindterm(ji,nlay_s+2) = zindterm(ji,nlay_s+2) + zeta_i(ji,1) * zkappa_i(ji,1) * t_bo_1d(ji)
ENDIF
IF( t_su_1d(ji) < rt0 ) THEN !-- case 1 : no surface melting
jm_min(ji) = 1
jm_max(ji) = nlay_i + nlay_s + 1
! surface equation
ztrid (ji,1,1) = 0._wp
ztrid (ji,1,2) = zdqns_ice_b(ji) - zg1s * zkappa_s(ji,0)
ztrid (ji,1,3) = zg1s * zkappa_s(ji,0)
zindterm(ji,1) = zdqns_ice_b(ji) * t_su_1d(ji) - zfnet(ji)
! first layer of snow equation
ztrid (ji,2,1) = - zeta_s(ji,1) * zkappa_s(ji,0) * zg1s
ztrid (ji,2,2) = 1._wp + zeta_s(ji,1) * ( zkappa_s(ji,1) + zkappa_s(ji,0) * zg1s )
ztrid (ji,2,3) = - zeta_s(ji,1) * zkappa_s(ji,1)
zindterm(ji,2) = ztsold(ji,1) + zeta_s(ji,1) * zradab_s(ji,1)
ELSE !-- case 2 : surface is melting
!
jm_min(ji) = 2
jm_max(ji) = nlay_i + nlay_s + 1
! first layer of snow equation
ztrid (ji,2,1) = 0._wp
ztrid (ji,2,2) = 1._wp + zeta_s(ji,1) * ( zkappa_s(ji,1) + zkappa_s(ji,0) * zg1s )
ztrid (ji,2,3) = - zeta_s(ji,1) * zkappa_s(ji,1)
zindterm(ji,2) = ztsold(ji,1) + zeta_s(ji,1) * ( zradab_s(ji,1) + zkappa_s(ji,0) * zg1s * t_su_1d(ji) )
ENDIF
! !---------------------!
ELSE ! cells without snow !
! !---------------------!
!
IF( t_su_1d(ji) < rt0 ) THEN !-- case 1 : no surface melting
!
jm_min(ji) = nlay_s + 1
jm_max(ji) = nlay_i + nlay_s + 1
! surface equation
ztrid (ji,jm_min(ji),1) = 0._wp
ztrid (ji,jm_min(ji),2) = zdqns_ice_b(ji) - zkappa_i(ji,0) * zg1
ztrid (ji,jm_min(ji),3) = zkappa_i(ji,0) * zg1
zindterm(ji,jm_min(ji)) = zdqns_ice_b(ji) * t_su_1d(ji) - zfnet(ji)
! first layer of ice equation
ztrid (ji,jm_min(ji)+1,1) = - zeta_i(ji,1) * zkappa_i(ji,0) * zg1
ztrid (ji,jm_min(ji)+1,2) = 1._wp + zeta_i(ji,1) * ( zkappa_i(ji,1) + zkappa_i(ji,0) * zg1 )
ztrid (ji,jm_min(ji)+1,3) = - zeta_i(ji,1) * zkappa_i(ji,1)
zindterm(ji,jm_min(ji)+1) = ztiold(ji,1) + zeta_i(ji,1) * zradab_i(ji,1)
! case of only one layer in the ice (surface & ice equations are altered)
IF( nlay_i == 1 ) THEN
ztrid (ji,jm_min(ji),1) = 0._wp
ztrid (ji,jm_min(ji),2) = zdqns_ice_b(ji) - zkappa_i(ji,0) * 2._wp
ztrid (ji,jm_min(ji),3) = zkappa_i(ji,0) * 2._wp
ztrid (ji,jm_min(ji)+1,1) = - zeta_i(ji,1) * zkappa_i(ji,0) * 2._wp
ztrid (ji,jm_min(ji)+1,2) = 1._wp + zeta_i(ji,1) * ( zkappa_i(ji,0) * 2._wp + zkappa_i(ji,1) )
ztrid (ji,jm_min(ji)+1,3) = 0._wp
zindterm(ji,jm_min(ji)+1) = ztiold(ji,1) + zeta_i(ji,1) * (zradab_i(ji,1) + zkappa_i(ji,1) * t_bo_1d(ji))
ENDIF
ELSE !-- case 2 : surface is melting
jm_min(ji) = nlay_s + 2
jm_max(ji) = nlay_i + nlay_s + 1
! first layer of ice equation
ztrid (ji,jm_min(ji),1) = 0._wp
ztrid (ji,jm_min(ji),2) = 1._wp + zeta_i(ji,1) * ( zkappa_i(ji,1) + zkappa_i(ji,0) * zg1 )
ztrid (ji,jm_min(ji),3) = - zeta_i(ji,1) * zkappa_i(ji,1)
zindterm(ji,jm_min(ji)) = ztiold(ji,1) + zeta_i(ji,1) * (zradab_i(ji,1) + zkappa_i(ji,0) * zg1 * t_su_1d(ji))
! case of only one layer in the ice (surface & ice equations are altered)
IF( nlay_i == 1 ) THEN
ztrid (ji,jm_min(ji),1) = 0._wp
ztrid (ji,jm_min(ji),2) = 1._wp + zeta_i(ji,1) * ( zkappa_i(ji,0) * 2._wp + zkappa_i(ji,1) )
ztrid (ji,jm_min(ji),3) = 0._wp
zindterm(ji,jm_min(ji)) = ztiold(ji,1) + zeta_i(ji,1) * ( zradab_i(ji,1) + zkappa_i(ji,1) * t_bo_1d(ji) ) &
& + t_su_1d(ji) * zeta_i(ji,1) * zkappa_i(ji,0) * 2._wp
ENDIF
ENDIF
ENDIF
!
zindtbis(ji,jm_min(ji)) = zindterm(ji,jm_min(ji))
zdiagbis(ji,jm_min(ji)) = ztrid (ji,jm_min(ji),2)
!
END DO
!
!------------------------------
! 8) tridiagonal system solving
!------------------------------
! Solve the tridiagonal system with Gauss elimination method.
! Thomas algorithm, from Computational fluid Dynamics, J.D. ANDERSON, McGraw-Hill 1984
!!$ jm_maxt = 0
!!$ jm_mint = nlay_i+5
!!$ DO ji = 1, npti
!!$ jm_mint = MIN(jm_min(ji),jm_mint)
!!$ jm_maxt = MAX(jm_max(ji),jm_maxt)
!!$ END DO
!!$ !!clem SNWLAY => check why LIM1D does not get this loop. Is nlay_i+5 correct?
!!$
!!$ DO jk = jm_mint+1, jm_maxt
!!$ DO ji = 1, npti
!!$ jm = MIN(MAX(jm_min(ji)+1,jk),jm_max(ji))
!!$ zdiagbis(ji,jm) = ztrid (ji,jm,2) - ztrid(ji,jm,1) * ztrid (ji,jm-1,3) / zdiagbis(ji,jm-1)
!!$ zindtbis(ji,jm) = zindterm(ji,jm ) - ztrid(ji,jm,1) * zindtbis(ji,jm-1 ) / zdiagbis(ji,jm-1)
!!$ END DO
!!$ END DO
! clem: maybe one should find a way to reverse this loop for mpi performance
DO ji = 1, npti
jm_mint = jm_min(ji)
jm_maxt = jm_max(ji)
DO jm = jm_mint+1, jm_maxt
zdiagbis(ji,jm) = ztrid (ji,jm,2) - ztrid(ji,jm,1) * ztrid (ji,jm-1,3) / zdiagbis(ji,jm-1)
zindtbis(ji,jm) = zindterm(ji,jm ) - ztrid(ji,jm,1) * zindtbis(ji,jm-1 ) / zdiagbis(ji,jm-1)
END DO
END DO
! ice temperatures
DO ji = 1, npti
! Variable used after iterations
! Value must be frozen after convergence for MPP independance reason
IF ( .NOT. l_T_converged(ji) ) &
t_i_1d(ji,nlay_i) = zindtbis(ji,jm_max(ji)) / zdiagbis(ji,jm_max(ji))
END DO
DO jm = nlay_i + nlay_s, nlay_s + 2, -1
DO ji = 1, npti
jk = jm - nlay_s - 1
IF ( .NOT. l_T_converged(ji) ) &
t_i_1d(ji,jk) = ( zindtbis(ji,jm) - ztrid(ji,jm,3) * t_i_1d(ji,jk+1) ) / zdiagbis(ji,jm)
END DO
END DO
! snow temperatures
DO ji = 1, npti
! Variables used after iterations
! Value must be frozen after convergence for MPP independance reason
IF ( .NOT. l_T_converged(ji) .AND. h_s_1d(ji) > 0._wp ) &
& t_s_1d(ji,nlay_s) = ( zindtbis(ji,nlay_s+1) - ztrid(ji,nlay_s+1,3) * t_i_1d(ji,1) ) / zdiagbis(ji,nlay_s+1)
END DO
!!clem SNWLAY
DO jm = nlay_s, 2, -1
DO ji = 1, npti
jk = jm - 1
IF ( .NOT. l_T_converged(ji) .AND. h_s_1d(ji) > 0._wp ) &
& t_s_1d(ji,jk) = ( zindtbis(ji,jm) - ztrid(ji,jm,3) * t_s_1d(ji,jk+1) ) / zdiagbis(ji,jm)
END DO
END DO
! surface temperature
DO ji = 1, npti
IF( .NOT. l_T_converged(ji) ) THEN
ztsub(ji) = t_su_1d(ji)
IF( t_su_1d(ji) < rt0 ) THEN
t_su_1d(ji) = ( zindtbis(ji,jm_min(ji)) - ztrid(ji,jm_min(ji),3) * &
& ( isnow(ji) * t_s_1d(ji,1) + ( 1._wp - isnow(ji) ) * t_i_1d(ji,1) ) ) / zdiagbis(ji,jm_min(ji))
ENDIF
ENDIF
END DO
!
!--------------------------------------------------------------
! 9) Has the scheme converged?, end of the iterative procedure
!--------------------------------------------------------------
! check that nowhere it has started to melt
! zdti_max is a measure of error, it has to be under zdti_bnd
DO ji = 1, npti
zdti_max = 0._wp
IF ( .NOT. l_T_converged(ji) ) THEN
t_su_1d(ji) = MAX( MIN( t_su_1d(ji) , rt0 ) , rt0 - 100._wp )
zdti_max = MAX( zdti_max, ABS( t_su_1d(ji) - ztsub(ji) ) )
IF( h_s_1d(ji) > 0._wp ) THEN
DO jk = 1, nlay_s
t_s_1d(ji,jk) = MAX( MIN( t_s_1d(ji,jk), rt0 ), rt0 - 100._wp )
zdti_max = MAX ( zdti_max , ABS( t_s_1d(ji,jk) - ztsb(ji,jk) ) )
END DO
ENDIF
DO jk = 1, nlay_i
ztmelts = -rTmlt * sz_i_1d(ji,jk) + rt0
t_i_1d(ji,jk) = MAX( MIN( t_i_1d(ji,jk), ztmelts ), rt0 - 100._wp )
zdti_max = MAX( zdti_max, ABS( t_i_1d(ji,jk) - ztib(ji,jk) ) )
END DO
! convergence test
IF( ln_zdf_chkcvg ) THEN
tice_cvgerr_1d(ji) = zdti_max
tice_cvgstp_1d(ji) = REAL(iconv)
ENDIF
IF( zdti_max < zdti_bnd ) l_T_converged(ji) = .TRUE.
ENDIF
END DO
!----------------------------------------!
! !
! Conduction flux is on !
! !
!----------------------------------------!
!
ELSEIF( k_cnd == np_cnd_ON ) THEN
!
! ==> we use a modified BL99 solver with conduction flux (qcn_ice) as forcing term
!
!----------------------------
! 7) tridiagonal system terms
!----------------------------
! layer denotes the number of the layer in the snow or in the ice
! jm denotes the reference number of the equation in the tridiagonal
! system, terms of tridiagonal system are indexed as following :
! 1 is subdiagonal term, 2 is diagonal and 3 is superdiagonal one
! ice interior terms (top equation has the same form as the others)
ztrid (1:npti,:,:) = 0._wp
zindterm(1:npti,:) = 0._wp
zindtbis(1:npti,:) = 0._wp
zdiagbis(1:npti,:) = 0._wp
DO jm = nlay_s + 2, nlay_s + nlay_i
DO ji = 1, npti
jk = jm - nlay_s - 1
ztrid (ji,jm,1) = - zeta_i(ji,jk) * zkappa_i(ji,jk-1)
ztrid (ji,jm,2) = 1._wp + zeta_i(ji,jk) * ( zkappa_i(ji,jk-1) + zkappa_i(ji,jk) )
ztrid (ji,jm,3) = - zeta_i(ji,jk) * zkappa_i(ji,jk)
zindterm(ji,jm) = ztiold(ji,jk) + zeta_i(ji,jk) * zradab_i(ji,jk)
END DO
ENDDO
jm = nlay_s + nlay_i + 1
DO ji = 1, npti
! ice bottom term
ztrid (ji,jm,1) = - zeta_i(ji,nlay_i) * zkappa_i(ji,nlay_i-1)
ztrid (ji,jm,2) = 1._wp + zeta_i(ji,nlay_i) * ( zkappa_i(ji,nlay_i-1) + zkappa_i(ji,nlay_i) * zg1 )
ztrid (ji,jm,3) = 0._wp
zindterm(ji,jm) = ztiold(ji,nlay_i) + zeta_i(ji,nlay_i) * &
& ( zradab_i(ji,nlay_i) + zkappa_i(ji,nlay_i) * zg1 * t_bo_1d(ji) )
ENDDO
DO ji = 1, npti
! !---------------------!
IF( h_s_1d(ji) > 0._wp ) THEN ! snow-covered cells !
! !---------------------!
! snow interior terms (bottom equation has the same form as the others)
DO jm = 3, nlay_s + 1
jk = jm - 1
ztrid (ji,jm,1) = - zeta_s(ji,jk) * zkappa_s(ji,jk-1)
ztrid (ji,jm,2) = 1._wp + zeta_s(ji,jk) * ( zkappa_s(ji,jk-1) + zkappa_s(ji,jk) )
ztrid (ji,jm,3) = - zeta_s(ji,jk) * zkappa_s(ji,jk)
zindterm(ji,jm) = ztsold(ji,jk) + zeta_s(ji,jk) * zradab_s(ji,jk)
END DO
! case of only one layer in the ice (ice equation is altered)
IF ( nlay_i == 1 ) THEN
ztrid (ji,nlay_s+2,3) = 0._wp
zindterm(ji,nlay_s+2) = zindterm(ji,nlay_s+2) + zeta_i(ji,1) * zkappa_i(ji,1) * t_bo_1d(ji)
ENDIF
jm_min(ji) = 2
jm_max(ji) = nlay_i + nlay_s + 1
! first layer of snow equation
ztrid (ji,2,1) = 0._wp
ztrid (ji,2,2) = 1._wp + zeta_s(ji,1) * zkappa_s(ji,1)
ztrid (ji,2,3) = - zeta_s(ji,1) * zkappa_s(ji,1)
zindterm(ji,2) = ztsold(ji,1) + zeta_s(ji,1) * ( zradab_s(ji,1) + qcn_ice_1d(ji) )
! !---------------------!
ELSE ! cells without snow !
! !---------------------!
jm_min(ji) = nlay_s + 2
jm_max(ji) = nlay_i + nlay_s + 1
! first layer of ice equation
ztrid (ji,jm_min(ji),1) = 0._wp
ztrid (ji,jm_min(ji),2) = 1._wp + zeta_i(ji,1) * zkappa_i(ji,1)
ztrid (ji,jm_min(ji),3) = - zeta_i(ji,1) * zkappa_i(ji,1)
zindterm(ji,jm_min(ji)) = ztiold(ji,1) + zeta_i(ji,1) * ( zradab_i(ji,1) + qcn_ice_1d(ji) )
! case of only one layer in the ice (surface & ice equations are altered)
IF( nlay_i == 1 ) THEN
ztrid (ji,jm_min(ji),1) = 0._wp
ztrid (ji,jm_min(ji),2) = 1._wp + zeta_i(ji,1) * zkappa_i(ji,1)
ztrid (ji,jm_min(ji),3) = 0._wp
zindterm(ji,jm_min(ji)) = ztiold(ji,1) + zeta_i(ji,1) * &
& ( zradab_i(ji,1) + zkappa_i(ji,1) * t_bo_1d(ji) + qcn_ice_1d(ji) )
ENDIF
ENDIF
!
zindtbis(ji,jm_min(ji)) = zindterm(ji,jm_min(ji))
zdiagbis(ji,jm_min(ji)) = ztrid (ji,jm_min(ji),2)
!
END DO
!
!------------------------------
! 8) tridiagonal system solving
!------------------------------
! Solve the tridiagonal system with Gauss elimination method.
! Thomas algorithm, from Computational fluid Dynamics, J.D. ANDERSON, McGraw-Hill 1984
!!$ jm_maxt = 0
!!$ jm_mint = nlay_i+5
!!$ DO ji = 1, npti
!!$ jm_mint = MIN(jm_min(ji),jm_mint)
!!$ jm_maxt = MAX(jm_max(ji),jm_maxt)
!!$ END DO
!!$
!!$ DO jk = jm_mint+1, jm_maxt
!!$ DO ji = 1, npti
!!$ jm = MIN(MAX(jm_min(ji)+1,jk),jm_max(ji))
!!$ zdiagbis(ji,jm) = ztrid (ji,jm,2) - ztrid(ji,jm,1) * ztrid (ji,jm-1,3) / zdiagbis(ji,jm-1)
!!$ zindtbis(ji,jm) = zindterm(ji,jm) - ztrid(ji,jm,1) * zindtbis(ji,jm-1) / zdiagbis(ji,jm-1)
!!$ END DO
!!$ END DO
! clem: maybe one should find a way to reverse this loop for mpi performance
DO ji = 1, npti
jm_mint = jm_min(ji)
jm_maxt = jm_max(ji)
DO jm = jm_mint+1, jm_maxt
zdiagbis(ji,jm) = ztrid (ji,jm,2) - ztrid(ji,jm,1) * ztrid (ji,jm-1,3) / zdiagbis(ji,jm-1)
zindtbis(ji,jm) = zindterm(ji,jm ) - ztrid(ji,jm,1) * zindtbis(ji,jm-1 ) / zdiagbis(ji,jm-1)
END DO
END DO
! ice temperatures
DO ji = 1, npti
! Variable used after iterations
! Value must be frozen after convergence for MPP independance reason
IF ( .NOT. l_T_converged(ji) ) &
t_i_1d(ji,nlay_i) = zindtbis(ji,jm_max(ji)) / zdiagbis(ji,jm_max(ji))
END DO
DO jm = nlay_i + nlay_s, nlay_s + 2, -1
DO ji = 1, npti
IF ( .NOT. l_T_converged(ji) ) THEN
jk = jm - nlay_s - 1
t_i_1d(ji,jk) = ( zindtbis(ji,jm) - ztrid(ji,jm,3) * t_i_1d(ji,jk+1) ) / zdiagbis(ji,jm)
ENDIF
END DO
END DO
! snow temperatures
DO ji = 1, npti
! Variables used after iterations
! Value must be frozen after convergence for MPP independance reason
IF ( .NOT. l_T_converged(ji) .AND. h_s_1d(ji) > 0._wp ) &
& t_s_1d(ji,nlay_s) = ( zindtbis(ji,nlay_s+1) - ztrid(ji,nlay_s+1,3) * t_i_1d(ji,1) ) / zdiagbis(ji,nlay_s+1)
END DO
!!clem SNWLAY
DO jm = nlay_s, 2, -1
DO ji = 1, npti
jk = jm - 1
IF ( .NOT. l_T_converged(ji) .AND. h_s_1d(ji) > 0._wp ) &
& t_s_1d(ji,jk) = ( zindtbis(ji,jm) - ztrid(ji,jm,3) * t_s_1d(ji,jk+1) ) / zdiagbis(ji,jm)
END DO
END DO
!
!--------------------------------------------------------------
! 9) Has the scheme converged?, end of the iterative procedure
!--------------------------------------------------------------
! check that nowhere it has started to melt
! zdti_max is a measure of error, it has to be under zdti_bnd
DO ji = 1, npti
zdti_max = 0._wp
IF ( .NOT. l_T_converged(ji) ) THEN
IF( h_s_1d(ji) > 0._wp ) THEN
DO jk = 1, nlay_s
t_s_1d(ji,jk) = MAX( MIN( t_s_1d(ji,jk), rt0 ), rt0 - 100._wp )
zdti_max = MAX ( zdti_max , ABS( t_s_1d(ji,jk) - ztsb(ji,jk) ) )
END DO
ENDIF
DO jk = 1, nlay_i
ztmelts = -rTmlt * sz_i_1d(ji,jk) + rt0
t_i_1d(ji,jk) = MAX( MIN( t_i_1d(ji,jk), ztmelts ), rt0 - 100._wp )
zdti_max = MAX ( zdti_max, ABS( t_i_1d(ji,jk) - ztib(ji,jk) ) )
END DO
! convergence test
IF( ln_zdf_chkcvg ) THEN
tice_cvgerr_1d(ji) = zdti_max
tice_cvgstp_1d(ji) = REAL(iconv)
ENDIF
IF( zdti_max < zdti_bnd ) l_T_converged(ji) = .TRUE.
ENDIF
END DO
ENDIF ! k_cnd
END DO ! End of the do while iterative procedure
!
!-----------------------------
! 10) Fluxes at the interfaces
!-----------------------------
!
! --- calculate conduction fluxes (positive downward)
! bottom ice conduction flux
DO ji = 1, npti
qcn_ice_bot_1d(ji) = - zkappa_i(ji,nlay_i) * zg1 * ( t_bo_1d(ji ) - t_i_1d (ji,nlay_i) )
END DO
! surface ice conduction flux
IF( k_cnd == np_cnd_OFF .OR. k_cnd == np_cnd_EMU ) THEN
!
DO ji = 1, npti
qcn_ice_top_1d(ji) = - isnow(ji) * zkappa_s(ji,0) * zg1s * ( t_s_1d(ji,1) - t_su_1d(ji) ) &
& - ( 1._wp - isnow(ji) ) * zkappa_i(ji,0) * zg1 * ( t_i_1d(ji,1) - t_su_1d(ji) )
END DO
!
ELSEIF( k_cnd == np_cnd_ON ) THEN
!
DO ji = 1, npti
qcn_ice_top_1d(ji) = qcn_ice_1d(ji)
END DO
!
ENDIF
! surface ice temperature
IF( k_cnd == np_cnd_ON .AND. ln_cndemulate ) THEN
!
DO ji = 1, npti
t_su_1d(ji) = ( qcn_ice_top_1d(ji) + isnow(ji) * zkappa_s(ji,0) * zg1s * t_s_1d(ji,1) + &
& ( 1._wp - isnow(ji) ) * zkappa_i(ji,0) * zg1 * t_i_1d(ji,1) ) &
& / MAX( epsi10, isnow(ji) * zkappa_s(ji,0) * zg1s + ( 1._wp - isnow(ji) ) * zkappa_i(ji,0) * zg1 )
t_su_1d(ji) = MAX( MIN( t_su_1d(ji), rt0 ), rt0 - 100._wp ) ! cap t_su
END DO
!
ENDIF
!
! --- Diagnose the heat loss due to changing non-solar / conduction flux --- !
!
IF( k_cnd == np_cnd_OFF .OR. k_cnd == np_cnd_EMU ) THEN
!
DO ji = 1, npti
hfx_err_dif_1d(ji) = hfx_err_dif_1d(ji) - ( qns_ice_1d(ji) - zqns_ice_b(ji) ) * a_i_1d(ji)
END DO
!
ENDIF
!
! --- Diagnose the heat loss due to non-fully converged temperature solution (should not be above 10-4 W-m2) --- !
!
IF( k_cnd == np_cnd_OFF .OR. k_cnd == np_cnd_ON ) THEN
CALL ice_var_enthalpy
! zhfx_err = correction on the diagnosed heat flux due to non-convergence of the algorithm used to solve heat equation
DO ji = 1, npti
zdq = - zq_ini(ji) + ( SUM( e_i_1d(ji,1:nlay_i) ) * h_i_1d(ji) * r1_nlay_i + &
& SUM( e_s_1d(ji,1:nlay_s) ) * h_s_1d(ji) * r1_nlay_s )
IF( k_cnd == np_cnd_OFF ) THEN
IF( t_su_1d(ji) < rt0 ) THEN ! case T_su < 0degC
zhfx_err = ( qns_ice_1d(ji) + qsr_ice_1d(ji) - zradtr_i(ji,nlay_i) - qcn_ice_bot_1d(ji) &
& + zdq * r1_Dt_ice ) * a_i_1d(ji)
ELSE ! case T_su = 0degC
zhfx_err = ( qcn_ice_top_1d(ji) + qtr_ice_top_1d(ji) - zradtr_i(ji,nlay_i) - qcn_ice_bot_1d(ji) &
& + zdq * r1_Dt_ice ) * a_i_1d(ji)
ENDIF
ELSEIF( k_cnd == np_cnd_ON ) THEN
zhfx_err = ( qcn_ice_top_1d(ji) + qtr_ice_top_1d(ji) - zradtr_i(ji,nlay_i) - qcn_ice_bot_1d(ji) &
& + zdq * r1_Dt_ice ) * a_i_1d(ji)
ENDIF
!
! total heat sink to be sent to the ocean
hfx_err_dif_1d(ji) = hfx_err_dif_1d(ji) + zhfx_err
!
! hfx_dif = Heat flux diagnostic of sensible heat used to warm/cool ice in W.m-2
hfx_dif_1d(ji) = hfx_dif_1d(ji) - zdq * r1_Dt_ice * a_i_1d(ji)
!
END DO
!
ENDIF
!
!--------------------------------------------------------------------
! 11) reset inner snow and ice temperatures, update conduction fluxes
!--------------------------------------------------------------------
! effective conductivity and 1st layer temperature (needed by Met Office)
! this is a conductivity at mid-layer, hence the factor 2
DO ji = 1, npti
IF( h_i_1d(ji) >= zhi_ssl ) THEN
cnd_ice_1d(ji) = 2._wp * zkappa_comb(ji)
!!cnd_ice_1d(ji) = 2._wp * zkappa_i(ji,0)
ELSE
cnd_ice_1d(ji) = 2._wp * ztcond_i(ji,0) / zhi_ssl ! cnd_ice is capped by: cond_i/zhi_ssl
ENDIF
t1_ice_1d(ji) = isnow_comb(ji) * t_s_1d(ji,1) + ( 1._wp - isnow_comb(ji) ) * t_i_1d(ji,1)
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
END DO
!
IF( k_cnd == np_cnd_EMU ) THEN
! Restore temperatures to their initial values
t_s_1d (1:npti,:) = ztsold (1:npti,:)
t_i_1d (1:npti,:) = ztiold (1:npti,:)
qcn_ice_1d(1:npti) = qcn_ice_top_1d(1:npti)
ENDIF
!
! --- SIMIP diagnostics
!
DO ji = 1, npti
!--- Snow-ice interfacial temperature (diagnostic SIMIP)
IF( h_s_1d(ji) >= zhs_ssl ) THEN
t_si_1d(ji) = ( rn_cnd_s * h_i_1d(ji) * r1_nlay_i * t_s_1d(ji,nlay_s) &
& + ztcond_i(ji,1) * h_s_1d(ji) * r1_nlay_s * t_i_1d(ji,1) ) &
& / ( rn_cnd_s * h_i_1d(ji) * r1_nlay_i &
& + ztcond_i(ji,1) * h_s_1d(ji) * r1_nlay_s )
ELSE
t_si_1d(ji) = t_su_1d(ji)
ENDIF
END DO
!
END SUBROUTINE ice_thd_zdf_BL99
#else
!!----------------------------------------------------------------------
!! Default option Dummy Module No SI3 sea-ice model
!!----------------------------------------------------------------------
#endif
!!======================================================================
END MODULE icethd_zdf_BL99