Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#if defined key_agrif
SUBROUTINE agrif_user()
!!----------------------------------------------------------------------
!! *** ROUTINE agrif_user ***
!!----------------------------------------------------------------------
END SUBROUTINE agrif_user
SUBROUTINE agrif_initworkspace()
!!----------------------------------------------------------------------
!! *** ROUTINE Agrif_InitWorkspace ***
!!----------------------------------------------------------------------
END SUBROUTINE agrif_initworkspace
SUBROUTINE Agrif_InitValues
!!----------------------------------------------------------------------
!! *** ROUTINE Agrif_InitValues ***
!!
!! ** Purpose :: Declaration of variables to be interpolated
!!----------------------------------------------------------------------
USE Agrif_Util
USE dom_oce
USE nemogcm
USE domain
!!
IMPLICIT NONE
! No temporal refinement
CALL Agrif_Set_coeffreft(1)
CALL nemo_init !* Initializations of each fine grid
CALL dom_nam
END SUBROUTINE Agrif_InitValues
SUBROUTINE Agrif_InitValues_cont
!!----------------------------------------------------------------------
!! *** ROUTINE Agrif_InitValues_cont ***
!!
!! ** Purpose :: Initialisation of variables to be interpolated
!!----------------------------------------------------------------------
USE dom_oce
USE lbclnk
!!
IMPLICIT NONE
!
INTEGER :: irafx, irafy
LOGICAL :: ln_perio, ldIperio, ldNFold, l_deg
!
irafx = agrif_irhox()
irafy = agrif_irhoy()
! IF(jperio /=1 .AND. jperio/=4 .AND. jperio/=6 ) THEN
! nx = (nbcellsx)+2*nbghostcellsfine+2
! ny = (nbcellsy)+2*nbghostcellsfine+2
! nbghostcellsfine_tot_x= nbghostcellsfine_x +1
! nbghostcellsfine_tot_y= nbghostcellsfine_y +1
! ELSE
! nx = (nbcellsx)+2*nbghostcellsfine_x
! ny = (nbcellsy)+2*nbghostcellsfine+2
! nbghostcellsfine_tot_x= 1
! nbghostcellsfine_tot_y= nbghostcellsfine_y +1
! ENDIF
! ELSE
! nbghostcellsfine = 0
! nx = nbcellsx+irafx
! ny = nbcellsy+irafy
WRITE(*,*) ' '
WRITE(*,*)'Size of the High resolution grid: ',jpi,' x ',jpj
WRITE(*,*) ' '
ln_perio = .FALSE.
l_deg = .TRUE.
ldIperio = (jperio == 1 .OR. jperio == 4 .OR. jperio == 6 .OR. jperio == 7)
ldNFold = jperio >= 3 .AND. jperio <= 6
IF( ldIperio.OR.ldNFold ) ln_perio=.TRUE.
IF ( Agrif_Parent(jphgr_msh)==2 &
&.OR.Agrif_Parent(jphgr_msh)==3 &
&.OR.Agrif_Parent(jphgr_msh)==5 ) l_deg = .FALSE.
CALL agrif_init_lonlat()
IF ( l_deg ) THEN
WHERE (glamt < -180) glamt = glamt +360.
WHERE (glamt > +180) glamt = glamt -360.
WHERE (glamu < -180) glamu = glamu +360.
WHERE (glamu > +180) glamu = glamu -360.
WHERE (glamv < -180) glamv = glamv +360.
WHERE (glamv > +180) glamv = glamv -360.
WHERE (glamf < -180) glamf = glamf +360.
WHERE (glamf > +180) glamf = glamf -360.
ENDIF
CALL lbc_lnk( 'glamt', glamt, 'T', 1._wp)
CALL lbc_lnk( 'gphit', gphit, 'T', 1._wp)
CALL lbc_lnk( 'glamu', glamu, 'U', 1._wp)
CALL lbc_lnk( 'gphiu', gphiu, 'U', 1._wp)
CALL lbc_lnk( 'glamv', glamv, 'V', 1._wp)
CALL lbc_lnk( 'gphiv', gphiv, 'V', 1._wp)
CALL lbc_lnk( 'glamf', glamf, 'F', 1._wp)
CALL lbc_lnk( 'gphif', gphif, 'F', 1._wp)
! Correct South and North
IF ((.not.lk_south).AND.((nbondj == -1).OR.(nbondj == 2))) THEN
glamt(:,1+nn_hls) = glamt(:,2+nn_hls)
gphit(:,1+nn_hls) = gphit(:,2+nn_hls)
glamu(:,1+nn_hls) = glamu(:,2+nn_hls)
gphiu(:,1+nn_hls) = gphiu(:,2+nn_hls)
ENDIF
!South:
IF ((nbondj == -1).OR.(nbondj == 2)) THEN
gphif(:,nn_hls) = gphif(:,1+nn_hls)
glamf(:,nn_hls) = glamf(:,1+nn_hls)
ENDIF
IF ( .NOT.ldNFold ) THEN
IF ((.not.lk_north).AND.((nbondj == 1).OR.(nbondj == 2))) THEN
glamt(:,jpj-nn_hls) = glamt(:,jpj-nn_hls-1)
gphit(:,jpj-nn_hls) = gphit(:,jpj-nn_hls-1)
glamu(:,jpj-nn_hls) = glamu(:,jpj-nn_hls-1)
gphiu(:,jpj-nn_hls) = gphiu(:,jpj-nn_hls-1)
glamv(:,jpj-nn_hls) = glamv(:,jpj-nn_hls-1)
gphiv(:,jpj-nn_hls) = gphiv(:,jpj-nn_hls-1)
glamf(:,jpj-nn_hls) = glamf(:,jpj-nn_hls-1)
gphif(:,jpj-nn_hls) = gphif(:,jpj-nn_hls-1)
ENDIF
ENDIF
IF ((nbondj == 1).OR.(nbondj == 2)) THEN
glamf(:,jpj-nn_hls+1) = glamf(:,jpj-nn_hls)
gphif(:,jpj-nn_hls+1) = gphif(:,jpj-nn_hls)
ENDIF
! Correct West and East
IF( .NOT.ldIperio ) THEN
IF((nbondi == -1) .OR. (nbondi == 2) ) THEN
glamt(1+nn_hls,:) = glamt(2+nn_hls,:)
gphit(1+nn_hls,:) = gphit(2+nn_hls,:)
glamv(1+nn_hls,:) = glamv(2+nn_hls,:)
gphiv(1+nn_hls,:) = gphiv(2+nn_hls,:)
ENDIF
IF( (nbondi == 1) .OR. (nbondi == 2) ) THEN
glamt(jpi-nn_hls,:) = glamt(jpi-nn_hls-1,:)
gphit(jpi-nn_hls,:) = gphit(jpi-nn_hls-1,:)
glamu(jpi-nn_hls,:) = glamu(jpi-nn_hls-1,:)
gphiu(jpi-nn_hls,:) = gphiu(jpi-nn_hls-1,:)
glamv(jpi-nn_hls,:) = glamv(jpi-nn_hls-1,:)
gphiv(jpi-nn_hls,:) = gphiv(jpi-nn_hls-1,:)
glamf(jpi-nn_hls,:) = glamf(jpi-nn_hls-1,:)
gphif(jpi-nn_hls,:) = gphif(jpi-nn_hls-1,:)
ENDIF
ENDIF
IF((nbondi == -1) .OR. (nbondi == 2) ) THEN
gphif(nn_hls,:) = gphif(nn_hls+1,:)
glamf(nn_hls,:) = glamf(nn_hls+1,:)
ENDIF
IF( (nbondi == 1) .OR. (nbondi == 2) ) THEN
glamf(jpi-nn_hls+1,:) = glamf(jpi-nn_hls,:)
gphif(jpi-nn_hls+1,:) = gphif(jpi-nn_hls,:)
ENDIF
CALL agrif_init_scales()
! Fill ghost points in case of closed boundaries:
! Correct South and North
IF ((.NOT.lk_south).AND.((nbondj == -1).OR.(nbondj == 2))) THEN
e1t(:,1+nn_hls) = e1t(:,2+nn_hls)
e2t(:,1+nn_hls) = e2t(:,2+nn_hls)
e1u(:,1+nn_hls) = e1u(:,2+nn_hls)
e2u(:,1+nn_hls) = e2u(:,2+nn_hls)
ENDIF
IF ( .NOT.ldNFold ) THEN
IF((.NOT.lk_north).AND.((nbondj == 1) .OR. (nbondj == 2) )) THEN
e1t(:,jpj-nn_hls) = e1t(:,jpj-nn_hls-1)
e2t(:,jpj-nn_hls) = e2t(:,jpj-nn_hls-1)
e1u(:,jpj-nn_hls) = e1u(:,jpj-nn_hls-1)
e2u(:,jpj-nn_hls) = e2u(:,jpj-nn_hls-1)
e1v(:,jpj-nn_hls) = e1v(:,jpj-nn_hls-1)
e2v(:,jpj-nn_hls) = e2v(:,jpj-nn_hls-1)
e1f(:,jpj-nn_hls) = e1f(:,jpj-nn_hls-1)
e2f(:,jpj-nn_hls) = e2f(:,jpj-nn_hls-1)
ENDIF
ENDIF
! Correct West and East
IF( .NOT.ldIperio ) THEN
IF((.NOT.lk_west).AND.(nbondj == -1).OR.(nbondj == 2) ) THEN
e1t(1+nn_hls,:) = e1t(2+nn_hls,:)
e2t(1+nn_hls,:) = e2t(2+nn_hls,:)
e1v(1+nn_hls,:) = e1v(2+nn_hls,:)
e2v(1+nn_hls,:) = e2v(2+nn_hls,:)
ENDIF
IF((.NOT.lk_east).AND.(nbondj == 1) .OR. (nbondj == 2) ) THEN
e1t(jpi-nn_hls,:) = e1t(jpi-nn_hls-1,:)
e2t(jpi-nn_hls,:) = e2t(jpi-nn_hls-1,:)
e1u(jpi-nn_hls,:) = e1u(jpi-nn_hls-1,:)
e2u(jpi-nn_hls,:) = e2u(jpi-nn_hls-1,:)
e1v(jpi-nn_hls,:) = e1v(jpi-nn_hls-1,:)
e2v(jpi-nn_hls,:) = e2v(jpi-nn_hls-1,:)
e1f(jpi-nn_hls,:) = e1f(jpi-nn_hls-1,:)
e2f(jpi-nn_hls,:) = e2f(jpi-nn_hls-1,:)
ENDIF
ENDIF
END SUBROUTINE Agrif_InitValues_cont
SUBROUTINE agrif_declare_var()
!!----------------------------------------------------------------------
!! *** ROUTINE Agrif_InitValues_cont ***
!!
!! ** Purpose :: Declaration of variables to be interpolated
!!----------------------------------------------------------------------
USE par_oce
USE dom_oce
USE agrif_profiles
USE agrif_parameters
IMPLICIT NONE
INTEGER :: ind1, ind2, ind3
INTEGER ::nbghostcellsfine_tot_x, nbghostcellsfine_tot_y
INTEGER :: iraf
EXTERNAL :: nemo_mapping
! 1. Declaration of the type of variable which have to be interpolated
!---------------------------------------------------------------------
ind2 = nn_hls + 1 + nbghostcells_x_w
ind3 = nn_hls + 1 + nbghostcells_y_s
nbghostcellsfine_tot_x=max(nbghostcells_x_w,nbghostcells_x_e)+1
nbghostcellsfine_tot_y=max(nbghostcells_y_s,nbghostcells_y_n)+1
iraf = MAX(Agrif_irhox(), Agrif_irhoy())
! In case of East-West periodicity, prevent AGRIF interpolation at east and west boundaries
! The procnames will not be CALLed at these boundaries
if (.not.lk_west) THEN
CALL Agrif_Set_NearCommonBorderX(.TRUE.)
endif
if (.not.lk_east) THEN
CALL Agrif_Set_DistantCommonBorderX(.TRUE.)
endif
if (.not.lk_south) THEN
CALL Agrif_Set_NearCommonBorderY(.TRUE.)
endif
if (.not.lk_north) THEN
CALL Agrif_Set_DistantCommonBorderY(.TRUE.)
endif
CALL agrif_declare_variable((/2,2/),(/ind2,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),glamt_id)
CALL agrif_declare_variable((/1,2/),(/ind2-1,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),glamu_id)
CALL agrif_declare_variable((/2,1/),(/ind2,ind3-1/),(/'x','y'/),(/1,1/),(/jpi,jpj/),glamv_id)
CALL agrif_declare_variable((/1,1/),(/ind2-1,ind3-1/),(/'x','y'/),(/1,1/),(/jpi,jpj/),glamf_id)
CALL agrif_declare_variable((/2,2/),(/ind2,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),gphit_id)
CALL agrif_declare_variable((/1,2/),(/ind2-1,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),gphiu_id)
CALL agrif_declare_variable((/2,1/),(/ind2,ind3-1/),(/'x','y'/),(/1,1/),(/jpi,jpj/),gphiv_id)
CALL agrif_declare_variable((/1,1/),(/ind2-1,ind3-1/),(/'x','y'/),(/1,1/),(/jpi,jpj/),gphif_id)
! Horizontal scale factors
CALL agrif_declare_variable((/2,2/),(/ind2,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),e1t_id)
CALL agrif_declare_variable((/1,2/),(/ind2-1,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),e1u_id)
CALL agrif_declare_variable((/2,1/),(/ind2,ind3-1/),(/'x','y'/),(/1,1/),(/jpi,jpj/),e1v_id)
CALL agrif_declare_variable((/1,1/),(/ind2-1,ind3-1/),(/'x','y'/),(/1,1/),(/jpi,jpj/),e1f_id)
CALL agrif_declare_variable((/2,2/),(/ind2,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),e2t_id)
CALL agrif_declare_variable((/1,2/),(/ind2-1,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),e2u_id)
CALL agrif_declare_variable((/2,1/),(/ind2,ind3-1/),(/'x','y'/),(/1,1/),(/jpi,jpj/),e2v_id)
CALL agrif_declare_variable((/1,1/),(/ind2-1,ind3-1/),(/'x','y'/),(/1,1/),(/jpi,jpj/),e2f_id)
CALL agrif_declare_variable((/2,2,0/),(/ind2,ind3,0/),(/'x','y','N'/),(/1,1,1/),(/jpi,jpj,3/),e1e2t_upd_id)
CALL agrif_declare_variable((/2,2/),(/ind2,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),e1e2t_frac_id)
CALL agrif_declare_variable((/1,2/),(/ind2-1,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),e2u_frac_id)
CALL agrif_declare_variable((/2,1/),(/ind2,ind3-1/),(/'x','y'/),(/1,1/),(/jpi,jpj/),e1v_frac_id)
! Bathymetry
CALL agrif_declare_variable((/2,2/),(/ind2,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),bathy_id)
CALL agrif_declare_variable((/2,2/),(/ind2,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),ht0_id)
! Vertical scale factors
CALL agrif_declare_variable((/2,2,0/),(/ind2,ind3,0/),(/'x','y','N'/),(/1,1,1/),(/jpi,jpj,jpk/),e3t_id)
CALL agrif_declare_variable((/2,2,0/),(/ind2,ind3,0/),(/'x','y','N'/),(/1,1,1/),(/jpi,jpj,jpk/),e3t_copy_id)
CALL agrif_declare_variable((/2,2,0/),(/ind2,ind3,0/),(/'x','y','N'/),(/1,1,1/),(/jpi,jpj,jpk+1/),e3t_connect_id)
CALL agrif_declare_variable((/2,2,0/),(/ind2,ind3,0/),(/'x','y','N'/),(/1,1,1/),(/jpi,jpj,jpk/),e3w_id)
CALL agrif_declare_variable((/1,2,0/),(/ind2-1,ind3 ,0/),(/'x','y','N'/),(/1,1,1/),(/jpi,jpj,jpk/),e3u_id)
CALL agrif_declare_variable((/2,1,0/),(/ind2 ,ind3-1,0/),(/'x','y','N'/),(/1,1,1/),(/jpi,jpj,jpk/),e3v_id)
CALL agrif_declare_variable((/1,1,0/),(/ind2-1,ind3-1,0/),(/'x','y','N'/),(/1,1,1/),(/jpi,jpj,jpk/),e3f_id)
CALL agrif_declare_variable((/1,2,0/),(/ind2-1,ind3 ,0/),(/'x','y','N'/),(/1,1,1/),(/jpi,jpj,jpk/),e3uw_id)
CALL agrif_declare_variable((/2,1,0/),(/ind2 ,ind3-1,0/),(/'x','y','N'/),(/1,1,1/),(/jpi,jpj,jpk/),e3vw_id)
CALL agrif_declare_variable((/2,2/),(/ind2,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),mbkt_id)
CALL agrif_declare_variable((/1,2/),(/ind2-1,ind3/),(/'x','y'/),(/1,1/),(/jpi,jpj/),mbku_id)
CALL agrif_declare_variable((/2,1/),(/ind2,ind3-1/),(/'x','y'/),(/1,1/),(/jpi,jpj/),mbkv_id)
CALL agrif_declare_variable((/1,1/),(/ind2-1,ind3-1/),(/'x','y'/),(/1,1/),(/jpi,jpj/),mbkf_id)
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
CALL Agrif_Set_bcinterp(glamt_id,interp=AGRIF_linear)
CALL Agrif_Set_interp(glamt_id,interp=AGRIF_linear)
CALL Agrif_Set_bc( glamt_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/) )
CALL Agrif_Set_bcinterp(glamu_id,interp=AGRIF_linear)
CALL Agrif_Set_interp(glamu_id,interp=AGRIF_linear)
CALL Agrif_Set_bc( glamu_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
CALL Agrif_Set_bcinterp(glamv_id,interp=AGRIF_linear)
CALL Agrif_Set_interp(glamv_id,interp=AGRIF_linear)
CALL Agrif_Set_bc( glamv_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
CALL Agrif_Set_bcinterp(glamf_id,interp=AGRIF_linear)
CALL Agrif_Set_interp(glamf_id,interp=AGRIF_linear)
CALL Agrif_Set_bc( glamf_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
CALL Agrif_Set_bcinterp(gphit_id,interp=AGRIF_linear)
CALL Agrif_Set_interp(gphit_id,interp=AGRIF_linear)
CALL Agrif_Set_bc( gphit_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/) )
CALL Agrif_Set_bcinterp(gphiu_id,interp=AGRIF_linear)
CALL Agrif_Set_interp(gphiu_id,interp=AGRIF_linear)
CALL Agrif_Set_bc( gphiu_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
CALL Agrif_Set_bcinterp(gphiv_id,interp=AGRIF_linear)
CALL Agrif_Set_interp(gphiv_id,interp=AGRIF_linear)
CALL Agrif_Set_bc( gphiv_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
CALL Agrif_Set_bcinterp(gphif_id,interp=AGRIF_linear)
CALL Agrif_Set_interp(gphif_id,interp=AGRIF_linear)
CALL Agrif_Set_bc( gphif_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
!
! CALL Agrif_Set_bcinterp(e1t_id,interp=AGRIF_ppm)
CALL Agrif_Set_bcinterp(e1t_id,interp=AGRIF_constant)
CALL Agrif_Set_bc( e1t_id, (/-MAX(Agrif_irhox(), Agrif_irhoy())*npt_shift_bar,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/) )
CALL Agrif_Set_bcinterp(e1u_id, interp1=Agrif_linear, interp2=AGRIF_ppm)
CALL Agrif_Set_interp(e1u_id, interp1=Agrif_linear, interp2=AGRIF_ppm)
CALL Agrif_Set_bc( e1u_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
CALL Agrif_Set_bcinterp(e1v_id,interp1=AGRIF_ppm, interp2=Agrif_linear)
CALL Agrif_Set_interp(e1v_id, interp1=AGRIF_ppm, interp2=Agrif_linear)
CALL Agrif_Set_bc( e1v_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
CALL Agrif_Set_Updatetype(e1v_id,update1 = Agrif_Update_Average, update2 = Agrif_Update_Copy)
CALL Agrif_Set_bcinterp(e1f_id,interp=AGRIF_linear)
CALL Agrif_Set_interp(e1f_id,interp=AGRIF_linear)
CALL Agrif_Set_bc( e1f_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
! CALL Agrif_Set_bcinterp(e2t_id,interp=AGRIF_ppm)
CALL Agrif_Set_bcinterp(e2t_id,interp=AGRIF_constant)
CALL Agrif_Set_bc( e2t_id, (/-MAX(Agrif_irhox(), Agrif_irhoy())*npt_shift_bar,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/) )
CALL Agrif_Set_bcinterp(e2u_id,interp1=Agrif_linear, interp2=AGRIF_ppm)
CALL Agrif_Set_interp(e2u_id,interp1=Agrif_linear, interp2=AGRIF_ppm)
CALL Agrif_Set_bc( e2u_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
CALL Agrif_Set_Updatetype(e2u_id,update1 = Agrif_Update_Copy, update2 = Agrif_Update_Average)
CALL Agrif_Set_bcinterp(e2v_id,interp1=AGRIF_ppm, interp2=Agrif_linear)
CALL Agrif_Set_interp(e2v_id,interp1=AGRIF_ppm, interp2=Agrif_linear)
CALL Agrif_Set_bc( e2v_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
CALL Agrif_Set_bcinterp(e2f_id,interp=AGRIF_linear)
CALL Agrif_Set_interp(e2f_id,interp=AGRIF_linear)
CALL Agrif_Set_bc( e2f_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
CALL Agrif_Set_bcinterp(e1e2t_frac_id,interp=AGRIF_constant)
CALL Agrif_Set_interp(e1e2t_frac_id,interp=AGRIF_constant)
CALL Agrif_Set_bc(e1e2t_frac_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
CALL Agrif_Set_bcinterp(e2u_frac_id,interp=AGRIF_constant)
CALL Agrif_Set_interp(e2u_frac_id,interp=AGRIF_constant)
CALL Agrif_Set_bc(e2u_frac_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
CALL Agrif_Set_bcinterp(e1v_frac_id,interp=AGRIF_constant)
CALL Agrif_Set_interp(e1v_frac_id,interp=AGRIF_constant)
CALL Agrif_Set_bc(e1v_frac_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)/) )
CALL Agrif_Set_Updatetype(e1e2t_upd_id, update = AGRIF_Update_Average)
CALL Agrif_Set_bcinterp(bathy_id,interp=AGRIF_linear)
CALL Agrif_Set_interp(bathy_id,interp=AGRIF_linear)
CALL Agrif_Set_bc(bathy_id, (/0, max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/) )
CALL Agrif_Set_bcinterp(ht0_id,interp=AGRIF_constant)
CALL Agrif_Set_interp( ht0_id,interp=AGRIF_constant)
CALL Agrif_Set_bc( ht0_id, (/-npt_copy*MAX(Agrif_irhox(), Agrif_irhoy())-2, max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/) )
CALL Agrif_Set_bcinterp(e3t_id,interp=AGRIF_constant)
CALL Agrif_Set_interp(e3t_id,interp=AGRIF_constant)
CALL Agrif_Set_bc( e3t_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/) )
CALL Agrif_Set_Updatetype( e3t_id, update = AGRIF_Update_Average)
CALL Agrif_Set_bcinterp(e3t_copy_id,interp=AGRIF_constant)
CALL Agrif_Set_interp(e3t_copy_id,interp=AGRIF_constant)
CALL Agrif_Set_bc( e3t_copy_id, (/-npt_copy*iraf-1,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/))
CALL Agrif_Set_Updatetype( e3t_copy_id, update = AGRIF_Update_Max)
! CALL Agrif_Set_bcinterp(e3t_connect_id,interp=AGRIF_linear)
! CALL Agrif_Set_interp(e3t_connect_id,interp=AGRIF_linear)
CALL Agrif_Set_bcinterp(e3t_connect_id,interp=AGRIF_constant)
CALL Agrif_Set_interp(e3t_connect_id,interp=AGRIF_constant)
! CALL Agrif_Set_bc( e3t_connect_id, (/-(npt_copy+npt_connect)*iraf-1,-npt_copy*iraf-1/))
CALL Agrif_Set_bc( e3t_connect_id, &
& (/-(npt_copy+npt_connect)*iraf-1,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/))
CALL Agrif_Set_bcinterp(e3w_id,interp=AGRIF_constant)
CALL Agrif_Set_interp(e3w_id,interp=AGRIF_constant)
CALL Agrif_Set_bc( e3w_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/) )
CALL Agrif_Set_Updatetype( e3w_id, update = AGRIF_Update_Average)
CALL Agrif_Set_bcinterp(e3u_id, interp1=Agrif_linear, interp2=AGRIF_ppm)
CALL Agrif_Set_interp(e3u_id, interp1=Agrif_linear, interp2=AGRIF_ppm)
CALL Agrif_Set_bc( e3u_id, (/-npt_copy*MAX(Agrif_irhox(), Agrif_irhoy()),max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/) )
CALL Agrif_Set_Updatetype(e3u_id,update1 = Agrif_Update_Copy, update2 = Agrif_Update_Average)
CALL Agrif_Set_bcinterp(e3v_id,interp1=AGRIF_linear, interp2=Agrif_linear)
CALL Agrif_Set_interp(e3v_id, interp1=AGRIF_ppm, interp2=Agrif_linear)
CALL Agrif_Set_bc( e3v_id, (/-npt_copy*MAX(Agrif_irhox(), Agrif_irhoy()),max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/) )
CALL Agrif_Set_Updatetype(e3v_id,update1 = Agrif_Update_Average, update2 = Agrif_Update_Copy)
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
CALL Agrif_Set_bcinterp(e3f_id,interp1=AGRIF_ppm, interp2=Agrif_linear)
CALL Agrif_Set_interp(e3f_id, interp1=AGRIF_ppm, interp2=Agrif_linear)
CALL Agrif_Set_bc( e3f_id, (/-npt_copy*MAX(Agrif_irhox(), Agrif_irhoy()),max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/) )
CALL Agrif_Set_Updatetype(e3f_id,update = Agrif_Update_Copy)
CALL Agrif_Set_bcinterp(e3uw_id, interp1=Agrif_linear, interp2=AGRIF_ppm)
CALL Agrif_Set_interp(e3uw_id, interp1=Agrif_linear, interp2=AGRIF_ppm)
CALL Agrif_Set_bc( e3uw_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/) )
CALL Agrif_Set_Updatetype(e3uw_id,update1 = Agrif_Update_Copy, update2 = Agrif_Update_Average)
CALL Agrif_Set_bcinterp(e3vw_id,interp1=AGRIF_ppm, interp2=Agrif_linear)
CALL Agrif_Set_interp(e3vw_id, interp1=AGRIF_ppm, interp2=Agrif_linear)
CALL Agrif_Set_bc( e3vw_id, (/0,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/) )
CALL Agrif_Set_Updatetype(e3vw_id,update1 = Agrif_Update_Average, update2 = Agrif_Update_Copy)
! Bottom levels
CALL Agrif_Set_bcinterp(mbkt_id,interp=AGRIF_constant)
CALL Agrif_Set_interp(mbkt_id,interp=AGRIF_constant)
CALL Agrif_Set_bc( mbkt_id, (/-npt_copy*iraf-1,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/))
CALL Agrif_Set_Updatetype( mbkt_id, update = AGRIF_Update_Max)
CALL Agrif_Set_bcinterp(mbku_id,interp=AGRIF_constant)
CALL Agrif_Set_interp(mbku_id,interp=AGRIF_constant)
CALL Agrif_Set_bc( mbku_id, (/-npt_copy*iraf-1,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/))
CALL Agrif_Set_Updatetype( mbku_id, update1 = Agrif_Update_Copy, update2 = AGRIF_Update_Max)
CALL Agrif_Set_bcinterp(mbkv_id,interp=AGRIF_constant)
CALL Agrif_Set_interp(mbkv_id,interp=AGRIF_constant)
CALL Agrif_Set_bc( mbkv_id, (/-npt_copy*iraf-1,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/))
CALL Agrif_Set_Updatetype( mbkv_id, update1 = Agrif_Update_Max, update2 = AGRIF_Update_Copy)
CALL Agrif_Set_bcinterp(mbkf_id,interp=AGRIF_constant)
CALL Agrif_Set_interp(mbkf_id,interp=AGRIF_constant)
CALL Agrif_Set_bc( mbkf_id, (/-npt_copy*iraf-1,max(nbghostcellsfine_tot_x,nbghostcellsfine_tot_y)-1/))
CALL Agrif_Set_Updatetype( mbkf_id, update = Agrif_Update_Copy)
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
END SUBROUTINE agrif_declare_var
SUBROUTINE nemo_mapping(ndim,ptx,pty,bounds,bounds_chunks,correction_required,nb_chunks)
USE dom_oce
INTEGER :: ndim
INTEGER :: ptx, pty
INTEGER,DIMENSION(ndim,2,2) :: bounds
INTEGER,DIMENSION(:,:,:,:),allocatable :: bounds_chunks
LOGICAL,DIMENSION(:),allocatable :: correction_required
LOGICAL :: ldIperio, ldNFold
INTEGER :: nb_chunks
INTEGER :: i
IF (agrif_debug_interp) THEN
DO i = 1, ndim
print *,'direction = ',i,bounds(i,1,2),bounds(i,2,2)
END DO
ENDIF
ldIperio = (jperio == 1 .OR. jperio == 4 .OR. jperio == 6 .OR. jperio == 7)
ldNFold = jperio >= 3 .AND. jperio <= 6
IF( ( bounds(2,2,2) > jpjglo ).AND.ldNFold ) THEN
IF( bounds(2,1,2) <= jpjglo ) THEN
nb_chunks = 2
ALLOCATE(bounds_chunks(nb_chunks,ndim,2,2))
ALLOCATE(correction_required(nb_chunks))
DO i = 1, nb_chunks
bounds_chunks(i,:,:,:) = bounds
END DO
! FIRST CHUNCK (for j<=jpjglo)
! Original indices
bounds_chunks(1,1,1,1) = bounds(1,1,2)
bounds_chunks(1,1,2,1) = bounds(1,2,2)
bounds_chunks(1,2,1,1) = bounds(2,1,2)
bounds_chunks(1,2,2,1) = jpjglo
bounds_chunks(1,1,1,2) = bounds(1,1,2)
bounds_chunks(1,1,2,2) = bounds(1,2,2)
bounds_chunks(1,2,1,2) = bounds(2,1,2)
bounds_chunks(1,2,2,2) = jpjglo
! Correction required or not
correction_required(1)=.FALSE.
! SECOND CHUNCK (for j>jpjglo)
!Original indices
bounds_chunks(2,1,1,1) = bounds(1,1,2)
bounds_chunks(2,1,2,1) = bounds(1,2,2)
bounds_chunks(2,2,1,1) = jpjglo-2*nn_hls
bounds_chunks(2,2,2,1) = bounds(2,2,2)
! Where to find them
! We use the relation TAB(ji,jj)=TAB(jpiglo-ji+2,jpjglo-2-(jj-jpjglo))
! We use the relation TAB(ji,jj)=TAB(jpiglo-ji+2,jpjglo-2*nn_hls-(jj-jpjglo))
IF (ptx == 2) THEN ! T, V points
bounds_chunks(2,1,1,2) = jpiglo-bounds(1,2,2)+2
bounds_chunks(2,1,2,2) = jpiglo-bounds(1,1,2)+2
ELSE ! U, F points
bounds_chunks(2,1,1,2) = jpiglo-bounds(1,2,2)+1
bounds_chunks(2,1,2,2) = jpiglo-bounds(1,1,2)+1
ENDIF
IF (pty == 2) THEN ! T, U points
bounds_chunks(2,2,1,2) = jpjglo-2*nn_hls-(bounds(2,2,2) -jpjglo)
bounds_chunks(2,2,2,2) = jpjglo-2*nn_hls-(jpjglo-nn_hls -jpjglo)
ELSE ! V, F points
bounds_chunks(2,2,1,2) = jpjglo-2*nn_hls-1-(bounds(2,2,2) -jpjglo)
bounds_chunks(2,2,2,2) = jpjglo-2*nn_hls-1-(jpjglo-nn_hls -jpjglo)
ENDIF
! Correction required or not
correction_required(2)=.TRUE.
ELSE
nb_chunks = 1
ALLOCATE(bounds_chunks(nb_chunks,ndim,2,2))
ALLOCATE(correction_required(nb_chunks))
DO i=1,nb_chunks
bounds_chunks(i,:,:,:) = bounds
END DO
bounds_chunks(1,1,1,1) = bounds(1,1,2)
bounds_chunks(1,1,2,1) = bounds(1,2,2)
bounds_chunks(1,2,1,1) = bounds(2,1,2)
bounds_chunks(1,2,2,1) = bounds(2,2,2)
bounds_chunks(1,1,1,2) = jpiglo-bounds(1,2,2)+2
bounds_chunks(1,1,2,2) = jpiglo-bounds(1,1,2)+2
bounds_chunks(1,2,1,2) = jpjglo-nn_hls-1-(bounds(2,2,2)-jpjglo)
bounds_chunks(1,2,2,2) = jpjglo-nn_hls-1-(bounds(2,1,2)-jpjglo)
IF (ptx == 2) THEN ! T, V points
bounds_chunks(1,1,1,2) = jpiglo-bounds(1,2,2)+2
bounds_chunks(1,1,2,2) = jpiglo-bounds(1,1,2)+2
ELSE ! U, F points
bounds_chunks(1,1,1,2) = jpiglo-bounds(1,2,2)+1
bounds_chunks(1,1,2,2) = jpiglo-bounds(1,1,2)+1
ENDIF
IF (pty == 2) THEN ! T, U points
bounds_chunks(1,2,1,2) = jpjglo-2*nn_hls-(bounds(2,2,2) -jpjglo)
bounds_chunks(1,2,2,2) = jpjglo-2*nn_hls-(bounds(2,1,2) -jpjglo)
ELSE ! V, F points
bounds_chunks(1,2,1,2) = jpjglo-2*nn_hls-1-(bounds(2,2,2) -jpjglo)
bounds_chunks(1,2,2,2) = jpjglo-2*nn_hls-1-(bounds(2,1,2) -jpjglo)
ENDIF
correction_required(1)=.TRUE.
ENDIF ! bounds(2,1,2) <= jpjglo
ELSE IF ( (bounds(1,1,2) < 1).AND.ldIperio ) THEN
IF (bounds(1,2,2) > 0) THEN
nb_chunks = 2
ALLOCATE(correction_required(nb_chunks))
correction_required=.FALSE.
ALLOCATE(bounds_chunks(nb_chunks,ndim,2,2))
DO i=1,nb_chunks
bounds_chunks(i,:,:,:) = bounds
END DO
bounds_chunks(1,1,1,2) = bounds(1,1,2)+jpiglo-2*nn_hls
bounds_chunks(1,1,2,2) = jpiglo-nn_hls
bounds_chunks(1,1,1,1) = bounds(1,1,2)
bounds_chunks(1,1,2,1) = 1+nn_hls
bounds_chunks(2,1,1,2) = 1+nn_hls
bounds_chunks(2,1,2,2) = bounds(1,2,2)
bounds_chunks(2,1,1,1) = 1+nn_hls
bounds_chunks(2,1,2,1) = bounds(1,2,2)
ELSE
nb_chunks = 1
ALLOCATE(correction_required(nb_chunks))
correction_required=.FALSE.
ALLOCATE(bounds_chunks(nb_chunks,ndim,2,2))
DO i=1,nb_chunks
bounds_chunks(i,:,:,:) = bounds
END DO
bounds_chunks(1,1,1,2) = bounds(1,1,2)+jpiglo-2*nn_hls
bounds_chunks(1,1,2,2) = bounds(1,2,2)+jpiglo-2*nn_hls
bounds_chunks(1,1,1,1) = bounds(1,1,2)
bounds_chunks(1,1,2,1) = bounds(1,2,2)
ENDIF
ELSE
nb_chunks=1
ALLOCATE(correction_required(nb_chunks))
correction_required=.FALSE.
ALLOCATE(bounds_chunks(nb_chunks,ndim,2,2))
DO i=1,nb_chunks
bounds_chunks(i,:,:,:) = bounds
END DO
bounds_chunks(1,1,1,2) = bounds(1,1,2)
bounds_chunks(1,1,2,2) = bounds(1,2,2)
bounds_chunks(1,2,1,2) = bounds(2,1,2)
bounds_chunks(1,2,2,2) = bounds(2,2,2)
bounds_chunks(1,1,1,1) = bounds(1,1,2)
bounds_chunks(1,1,2,1) = bounds(1,2,2)
bounds_chunks(1,2,1,1) = bounds(2,1,2)
bounds_chunks(1,2,2,1) = bounds(2,2,2)
ENDIF
END SUBROUTINE nemo_mapping
FUNCTION agrif_external_switch_index(ptx,pty,i1,isens)
USE dom_oce
INTEGER :: ptx, pty, i1, isens
INTEGER :: agrif_external_switch_index
IF( isens == 1 ) THEN
IF( ptx == 2 ) THEN ! T, V points
agrif_external_switch_index = jpiglo-i1+2
ELSE ! U, F points
agrif_external_switch_index = jpiglo-i1+1
ENDIF
ELSE IF (isens ==2) THEN
IF (pty == 2) THEN ! T, U points
agrif_external_switch_index = jpjglo-2*nn_hls-(i1 -jpjglo)
ELSE ! V, F points
agrif_external_switch_index = jpjglo-2*nn_hls-1-(i1 -jpjglo)
ENDIF
ENDIF
END FUNCTION agrif_external_switch_index
SUBROUTINE correct_field(tab2d,i1,i2,j1,j2)
USE dom_oce
INTEGER :: i1,i2,j1,j2
REAL,DIMENSION(i1:i2,j1:j2) :: tab2d
INTEGER :: i,j
REAL,DIMENSION(i1:i2,j1:j2) :: tab2dtemp
tab2dtemp = tab2d
DO j=j1,j2
DO i=i1,i2
tab2d(i,j)=tab2dtemp(i2-(i-i1),j2-(j-j1))
END DO
ENDDO
END SUBROUTINE correct_field
SUBROUTINE agrif_init_lonlat()
USE agrif_profiles
USE agrif_util
USE dom_oce
LOGICAL :: l_deg
EXTERNAL :: init_glamt, init_glamu, init_glamv, init_glamf
EXTERNAL :: init_gphit, init_gphiu, init_gphiv, init_gphif
REAL,EXTERNAL :: longitude_linear_interp
l_deg = .TRUE.
IF ( Agrif_Parent(jphgr_msh)==2 &
& .OR.Agrif_Parent(jphgr_msh)==3 &
& .OR.Agrif_Parent(jphgr_msh)==5 ) l_deg = .FALSE.
IF ( l_deg ) THEN
CALL Agrif_Set_external_linear_interp(longitude_linear_interp)
ENDIF
CALL Agrif_Init_variable(glamt_id, procname = init_glamt)
CALL Agrif_Init_variable(glamu_id, procname = init_glamu)
CALL Agrif_Init_variable(glamv_id, procname = init_glamv)
CALL Agrif_Init_variable(glamf_id, procname = init_glamf)
CALL Agrif_UnSet_external_linear_interp()
CALL Agrif_Init_variable(gphit_id, procname = init_gphit)
CALL Agrif_Init_variable(gphiu_id, procname = init_gphiu)
CALL Agrif_Init_variable(gphiv_id, procname = init_gphiv)
CALL Agrif_Init_variable(gphif_id, procname = init_gphif)
END SUBROUTINE agrif_init_lonlat
REAL FUNCTION longitude_linear_interp(x1,x2,coeff)
REAL :: x1, x2, coeff
REAL :: val_interp
IF( (x1*x2 <= -50*50) ) THEN
IF( x1 < 0 ) THEN
val_interp = coeff *(x1+360.) + (1.-coeff) *x2
ELSE
val_interp = coeff *x1 + (1.-coeff) *(x2+360.)
ENDIF
IF ((val_interp) >=180.) val_interp = val_interp - 360.
ELSE
val_interp = coeff * x1 + (1.-coeff) * x2
ENDIF
longitude_linear_interp = val_interp
END FUNCTION longitude_linear_interp
SUBROUTINE agrif_init_scales()
USE agrif_profiles
USE agrif_util
USE dom_oce
USE lbclnk
LOGICAL :: ln_perio
INTEGER jpi,jpj
EXTERNAL :: init_e1t, init_e1u, init_e1v, init_e1f
EXTERNAL :: init_e2t, init_e2u, init_e2v, init_e2f
ln_perio=.FALSE.
IF( jperio == 1 .OR. jperio == 2 .OR. jperio == 4 .OR. jperio == 6 ) ln_perio=.TRUE.
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
CALL Agrif_Init_variable(e1t_id, procname = init_e1t)
CALL Agrif_Init_variable(e1u_id, procname = init_e1u)
CALL Agrif_Init_variable(e1v_id, procname = init_e1v)
CALL Agrif_Init_variable(e1f_id, procname = init_e1f)
CALL Agrif_Init_variable(e2t_id, procname = init_e2t)
CALL Agrif_Init_variable(e2u_id, procname = init_e2u)
CALL Agrif_Init_variable(e2v_id, procname = init_e2v)
CALL Agrif_Init_variable(e2f_id, procname = init_e2f)
CALL lbc_lnk( 'e1t', e1t, 'T', 1._wp)
CALL lbc_lnk( 'e2t', e2t, 'T', 1._wp)
CALL lbc_lnk( 'e1u', e1u, 'U', 1._wp)
CALL lbc_lnk( 'e2u', e2u, 'U', 1._wp)
CALL lbc_lnk( 'e1v', e1v, 'V', 1._wp)
CALL lbc_lnk( 'e2v', e2v, 'V', 1._wp)
CALL lbc_lnk( 'e1f', e1f, 'F', 1._wp)
CALL lbc_lnk( 'e2f', e2f, 'F', 1._wp)
END SUBROUTINE agrif_init_scales
SUBROUTINE init_glamt( ptab, i1, i2, j1, j2, before, nb,ndir)
USE dom_oce
!!----------------------------------------------------------------------
!! *** ROUTINE interpsshn ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: i1, i2, j1, j2
REAL, DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab
LOGICAL , INTENT(in ) :: before
INTEGER , INTENT(in ) :: nb , ndir
!
!!----------------------------------------------------------------------
!
IF( before) THEN
ptab(i1:i2,j1:j2) = glamt(i1:i2,j1:j2)
ELSE
glamt(i1:i2,j1:j2) = ptab(i1:i2,j1:j2)
ENDIF
!
END SUBROUTINE init_glamt
SUBROUTINE init_glamu( ptab, i1, i2, j1, j2, before, nb,ndir)
USE dom_oce
!!----------------------------------------------------------------------
!! *** ROUTINE interpsshn ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: i1, i2, j1, j2
REAL, DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab
LOGICAL , INTENT(in ) :: before
INTEGER , INTENT(in ) :: nb , ndir
LOGICAL :: western_side, eastern_side,northern_side,southern_side
!
!!----------------------------------------------------------------------
!
IF( before) THEN
ptab(i1:i2,j1:j2) = glamu(i1:i2,j1:j2)
ELSE
glamu(i1:i2,j1:j2) = ptab(i1:i2,j1:j2)
ENDIF
!
END SUBROUTINE init_glamu
SUBROUTINE init_glamv( ptab, i1, i2, j1, j2, before, nb,ndir)
USE dom_oce
!!----------------------------------------------------------------------
!! *** ROUTINE interpsshn ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: i1, i2, j1, j2
REAL, DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab
LOGICAL , INTENT(in ) :: before
INTEGER , INTENT(in ) :: nb , ndir
!
!!----------------------------------------------------------------------
!
IF( before) THEN
ptab(i1:i2,j1:j2) = glamv(i1:i2,j1:j2)
ELSE
glamv(i1:i2,j1:j2) = ptab(i1:i2,j1:j2)
ENDIF
!
END SUBROUTINE init_glamv
SUBROUTINE init_glamf( ptab, i1, i2, j1, j2, before, nb,ndir)
USE dom_oce
!!----------------------------------------------------------------------
!! *** ROUTINE init_glamf ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: i1, i2, j1, j2
REAL, DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab
LOGICAL , INTENT(in ) :: before
INTEGER , INTENT(in ) :: nb , ndir
!
!!----------------------------------------------------------------------
!
IF( before) THEN
ptab(i1:i2,j1:j2) = glamf(i1:i2,j1:j2)
ELSE
glamf(i1:i2,j1:j2) = ptab(i1:i2,j1:j2)
ENDIF
!
END SUBROUTINE init_glamf
SUBROUTINE init_gphit( ptab, i1, i2, j1, j2, before, nb,ndir)
USE dom_oce
!!----------------------------------------------------------------------
!! *** ROUTINE init_gphit ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: i1, i2, j1, j2
REAL, DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab
LOGICAL , INTENT(in ) :: before
INTEGER , INTENT(in ) :: nb , ndir
!
!!----------------------------------------------------------------------
!
IF( before) THEN
ptab(i1:i2,j1:j2) = gphit(i1:i2,j1:j2)
ELSE
gphit(i1:i2,j1:j2)=ptab
ENDIF
!
END SUBROUTINE init_gphit
SUBROUTINE init_gphiu( ptab, i1, i2, j1, j2, before, nb,ndir)
USE dom_oce
!!----------------------------------------------------------------------
!! *** ROUTINE init_gphiu ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: i1, i2, j1, j2
REAL, DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab
LOGICAL , INTENT(in ) :: before
INTEGER , INTENT(in ) :: nb , ndir
!
!!----------------------------------------------------------------------
!
IF( before) THEN
ptab(i1:i2,j1:j2) = gphiu(i1:i2,j1:j2)
ELSE
gphiu(i1:i2,j1:j2)=ptab
ENDIF
!
END SUBROUTINE init_gphiu
SUBROUTINE init_gphiv( ptab, i1, i2, j1, j2, before, nb,ndir)
USE dom_oce
!!----------------------------------------------------------------------
!! *** ROUTINE init_gphiv ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: i1, i2, j1, j2
REAL, DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab
LOGICAL , INTENT(in ) :: before
INTEGER , INTENT(in ) :: nb , ndir
!
!!----------------------------------------------------------------------
IF( before) THEN
ptab(i1:i2,j1:j2) = gphiv(i1:i2,j1:j2)
ELSE
gphiv(i1:i2,j1:j2)=ptab
ENDIF
!
END SUBROUTINE init_gphiv
SUBROUTINE init_gphif( ptab, i1, i2, j1, j2, before, nb,ndir)
USE dom_oce
!!----------------------------------------------------------------------
!! *** ROUTINE init_gphif ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: i1, i2, j1, j2
REAL, DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab
LOGICAL , INTENT(in ) :: before
INTEGER , INTENT(in ) :: nb , ndir
!
!!----------------------------------------------------------------------
!
IF( before) THEN
ptab(i1:i2,j1:j2) = gphif(i1:i2,j1:j2)
ELSE
gphif(i1:i2,j1:j2)=ptab
ENDIF
!
END SUBROUTINE init_gphif
SUBROUTINE init_e1t( ptab, i1, i2, j1, j2, before, nb,ndir)
USE dom_oce
USE agrif_parameters
!!----------------------------------------------------------------------
!! *** ROUTINE init_e1t ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: i1, i2, j1, j2
REAL, DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab
LOGICAL , INTENT(in ) :: before
INTEGER , INTENT(in ) :: nb , ndir
!
!!----------------------------------------------------------------------
!
INTEGER :: jj
IF( before) THEN
! May need to extend at south boundary
IF (j1<1) THEN
IF (.NOT.agrif_child(lk_south)) THEN
IF ((nbondj == -1).OR.(nbondj == 2)) THEN
DO jj=1,j2
ptab(i1:i2,jj)=e1t(i1:i2,jj)
ENDDO
DO jj=j1,0
ptab(i1:i2,jj)=e1t(i1:i2,1)
ENDDO
ENDIF
ELSE
stop "OUT OF BOUNDS"
ENDIF
ELSE
ptab(i1:i2,j1:j2) = e1t(i1:i2,j1:j2)
ENDIF
ELSE
e1t(i1:i2,j1:j2)=ptab/Agrif_Rhox()
ENDIF
!
END SUBROUTINE init_e1t
SUBROUTINE init_e1u( ptab, i1, i2, j1, j2, before, nb,ndir)
USE dom_oce
USE agrif_parameters
!!----------------------------------------------------------------------
!! *** ROUTINE init_e1u ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: i1, i2, j1, j2
REAL, DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab
LOGICAL , INTENT(in ) :: before
INTEGER , INTENT(in ) :: nb , ndir
!
!!----------------------------------------------------------------------
!
INTEGER :: jj
IF( before) THEN
IF (j1<1) THEN
IF (.NOT.agrif_child(lk_south)) THEN
IF ((nbondj == -1).OR.(nbondj == 2)) THEN
DO jj=1,j2
ptab(i1:i2,jj)=e1u(i1:i2,jj)
ENDDO
DO jj=j1,0
ptab(i1:i2,jj)=e1u(i1:i2,1)