Forked from
Consortium Members / UKMO / GOSI / GOSI
140 commits behind the upstream repository.
-
Guillaume Samson authored89746a6d
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
p4zlim.F90 21.07 KiB
MODULE p4zlim
!!======================================================================
!! *** MODULE p4zlim ***
!! TOP : Computes the nutrient limitation terms of phytoplankton
!!======================================================================
!! History : 1.0 ! 2004 (O. Aumont) Original code
!! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90
!! 3.4 ! 2011-04 (O. Aumont, C. Ethe) Limitation for iron modelled in quota
!!----------------------------------------------------------------------
!! p4z_lim : Compute the nutrients limitation terms
!! p4z_lim_init : Read the namelist
!!----------------------------------------------------------------------
USE oce_trc ! Shared ocean-passive tracers variables
USE trc ! Tracers defined
USE sms_pisces ! PISCES variables
USE iom ! I/O manager
IMPLICIT NONE
PRIVATE
PUBLIC p4z_lim ! called in p4zbio.F90
PUBLIC p4z_lim_init ! called in trcsms_pisces.F90
PUBLIC p4z_lim_alloc ! called in trcini_pisces.F90
!! * Shared module variables
REAL(wp), PUBLIC :: concnno3 !: NO3, PO4 half saturation
REAL(wp), PUBLIC :: concdno3 !: Phosphate half saturation for diatoms
REAL(wp), PUBLIC :: concnnh4 !: NH4 half saturation for nanophyto
REAL(wp), PUBLIC :: concdnh4 !: NH4 half saturation for diatoms
REAL(wp), PUBLIC :: concnfer !: Iron half saturation for nanophyto
REAL(wp), PUBLIC :: concdfer !: Iron half saturation for diatoms
REAL(wp), PUBLIC :: concbno3 !: NO3 half saturation for bacteria
REAL(wp), PUBLIC :: concbnh4 !: NH4 half saturation for bacteria
REAL(wp), PUBLIC :: xsizedia !: Minimum size criteria for diatoms
REAL(wp), PUBLIC :: xsizephy !: Minimum size criteria for nanophyto
REAL(wp), PUBLIC :: xsizern !: Size ratio for nanophytoplankton
REAL(wp), PUBLIC :: xsizerd !: Size ratio for diatoms
REAL(wp), PUBLIC :: xksi1 !: half saturation constant for Si uptake
REAL(wp), PUBLIC :: xksi2 !: half saturation constant for Si/C
REAL(wp), PUBLIC :: xkdoc !: 2nd half-sat. of DOC remineralization
REAL(wp), PUBLIC :: concbfe !: Fe half saturation for bacteria
REAL(wp), PUBLIC :: qnfelim !: optimal Fe quota for nanophyto
REAL(wp), PUBLIC :: qdfelim !: optimal Fe quota for diatoms
REAL(wp), PUBLIC :: caco3r !: mean rainratio
!!* Phytoplankton limitation terms
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xnanono3 !: Nanophyto limitation by NO3
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xdiatno3 !: Diatoms limitation by NO3
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xnanonh4 !: Nanophyto limitation by NH4
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xdiatnh4 !: Diatoms limitation by NH4
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xnanopo4 !: Nanophyto limitation by PO4
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xdiatpo4 !: Diatoms limitation by PO4
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimphy !: Nutrient limitation term of nanophytoplankton
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimdia !: Nutrient limitation term of diatoms
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimnfe !: Nanophyto limitation by Iron
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimdfe !: Diatoms limitation by iron
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimsi !: Diatoms limitation by Si
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimbac !: Bacterial limitation term
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xlimbacl !: Bacterial limitation term
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: concdfe !: Limitation of diatoms uptake of Fe
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: concnfe !: Limitation of Nano uptake of Fe
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xnanofer !: Limitation of Fe uptake by nanophyto
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xdiatfer !: Limitation of Fe uptake by diatoms
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xqfuncfecd, xqfuncfecn
! Coefficient for iron limitation following Flynn and Hipkin (1999)
REAL(wp) :: xcoef1 = 0.0016 / 55.85
REAL(wp) :: xcoef2 = 1.21E-5 * 14. / 55.85 / 7.3125 * 0.5 * 1.5
REAL(wp) :: xcoef3 = 1.15E-4 * 14. / 55.85 / 7.3125 * 0.5
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/TOP 4.0 , NEMO Consortium (2018)
!! $Id: p4zlim.F90 10069 2018-08-28 14:12:24Z nicolasmartin $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE p4z_lim( kt, knt, Kbb, Kmm )
!!---------------------------------------------------------------------
!! *** ROUTINE p4z_lim ***
!!
!! ** Purpose : Compute the co-limitations by the various nutrients
!! for the various phytoplankton species
!!
!! ** Method : - Limitation follows the Liebieg law of the minimum
!! - Monod approach for N, P and Si. Quota approach
!! for Iron
!!---------------------------------------------------------------------
INTEGER, INTENT(in) :: kt, knt
INTEGER, INTENT(in) :: Kbb, Kmm ! time level indices
!
INTEGER :: ji, jj, jk
REAL(wp) :: zlim1, zlim2, zlim3, zlim4, zcoef
REAL(wp) :: z1_trbdia, z1_trbphy, ztem1, ztem2, zetot1, zetot2
REAL(wp) :: zdenom, zratio, zironmin, zbactno3, zbactnh4
REAL(wp) :: zconc1d, zconc1dnh4, zconc0n, zconc0nnh4
REAL(wp) :: fananof, fadiatf, znutlim, zfalim
REAL(wp) :: znutlimtot, zlimno3, zlimnh4, zbiron
!!---------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('p4z_lim')
!
sizena(:,:,:) = 1.0 ; sizeda(:,:,:) = 1.0
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1)
! Computation of a variable Ks for iron on diatoms taking into account
! that increasing biomass is made of generally bigger cells
! The allometric relationship is classical.
!------------------------------------------------
z1_trbphy = 1. / ( tr(ji,jj,jk,jpphy,Kbb) + rtrn )
z1_trbdia = 1. / ( tr(ji,jj,jk,jpdia,Kbb) + rtrn )
concnfe(ji,jj,jk) = concnfer * sizen(ji,jj,jk)**0.81
zconc0n = concnno3 * sizen(ji,jj,jk)**0.81
zconc0nnh4 = concnnh4 * sizen(ji,jj,jk)**0.81
concdfe(ji,jj,jk) = concdfer * sized(ji,jj,jk)**0.81
zconc1d = concdno3 * sized(ji,jj,jk)**0.81
zconc1dnh4 = concdnh4 * sized(ji,jj,jk)**0.81
! Computation of the optimal allocation parameters
! Based on the different papers by Pahlow et al., and
! Smith et al.
! ---------------------------------------------------
! Nanophytoplankton
zbiron = ( 75.0 * ( 1.0 - plig(ji,jj,jk) ) + plig(ji,jj,jk) ) * biron(ji,jj,jk)
znutlim = zbiron / concnfe(ji,jj,jk)
fananof = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) )
! Diatoms
znutlim = zbiron / concdfe(ji,jj,jk)
fadiatf = MAX(0.01, MIN(0.99, 1. / ( SQRT(znutlim) + 1.) ) )
! Michaelis-Menten Limitation term by nutrients of
! heterotrophic bacteria
! -------------------------------------------------
zlimnh4 = tr(ji,jj,jk,jpnh4,Kbb) / ( concbno3 + tr(ji,jj,jk,jpnh4,Kbb) )
zlimno3 = tr(ji,jj,jk,jpno3,Kbb) / ( concbno3 + tr(ji,jj,jk,jpno3,Kbb) )
znutlimtot = ( tr(ji,jj,jk,jpnh4,Kbb) + tr(ji,jj,jk,jpno3,Kbb) ) / ( concbno3 + tr(ji,jj,jk,jpnh4,Kbb) + tr(ji,jj,jk,jpno3,Kbb) )
zbactnh4 = znutlimtot * 5.0 * zlimnh4 / ( zlimno3 + 5.0 * zlimnh4 + rtrn )
zbactno3 = znutlimtot * zlimno3 / ( zlimno3 + 5.0 * zlimnh4 + rtrn )
!
zlim1 = zbactno3 + zbactnh4
zlim2 = tr(ji,jj,jk,jppo4,Kbb) / ( tr(ji,jj,jk,jppo4,Kbb) + concbnh4 )
zlim3 = tr(ji,jj,jk,jpfer,Kbb) / ( concbfe + tr(ji,jj,jk,jpfer,Kbb) )
zlim4 = tr(ji,jj,jk,jpdoc,Kbb) / ( xkdoc + tr(ji,jj,jk,jpdoc,Kbb) )
! Xlimbac is used for DOC solubilization whereas xlimbacl
! is used for all the other bacterial-dependent terms
! -------------------------------------------------------
xlimbacl(ji,jj,jk) = MIN( zlim1, zlim2, zlim3 )
xlimbac (ji,jj,jk) = MIN( zlim1, zlim2, zlim3 ) * zlim4
! Michaelis-Menten Limitation term by nutrients: Nanophyto
! Optimal parameterization by Smith and Pahlow series of
! papers is used. Optimal allocation is supposed independant
! for all nutrients.
! --------------------------------------------------------
! Limitation of Fe uptake (Quota formalism)
zfalim = (1.-fananof) / fananof
xnanofer(ji,jj,jk) = (1. - fananof) * zbiron / ( zbiron + zfalim * concnfe(ji,jj,jk) )
! Limitation of nanophytoplankton growth
zlimnh4 = tr(ji,jj,jk,jpnh4,Kbb) / ( zconc0n + tr(ji,jj,jk,jpnh4,Kbb) )
zlimno3 = tr(ji,jj,jk,jpno3,Kbb) / ( zconc0n + tr(ji,jj,jk,jpno3,Kbb) )
znutlimtot = ( tr(ji,jj,jk,jpnh4,Kbb) + tr(ji,jj,jk,jpno3,Kbb) ) / ( zconc0n + tr(ji,jj,jk,jpnh4,Kbb) + tr(ji,jj,jk,jpno3,Kbb) )
xnanonh4(ji,jj,jk) = znutlimtot * 5.0 * zlimnh4 / ( zlimno3 + 5.0 * zlimnh4 + rtrn )
xnanono3(ji,jj,jk) = znutlimtot * zlimno3 / ( zlimno3 + 5.0 * zlimnh4 + rtrn )
!
zlim1 = xnanono3(ji,jj,jk) + xnanonh4(ji,jj,jk)
zlim2 = tr(ji,jj,jk,jppo4,Kbb) / ( tr(ji,jj,jk,jppo4,Kbb) + zconc0nnh4 )
zratio = tr(ji,jj,jk,jpnfe,Kbb) * z1_trbphy
! The minimum iron quota depends on the size of PSU, respiration
! and the reduction of nitrate following the parameterization
! proposed by Flynn and Hipkin (1999)
zironmin = xcoef1 * tr(ji,jj,jk,jpnch,Kbb) * z1_trbphy + xcoef2 * zlim1 + xcoef3 * xnanono3(ji,jj,jk)
xqfuncfecn(ji,jj,jk) = zironmin + qnfelim
zlim3 = MAX( 0.,( zratio - zironmin ) / qnfelim )
xnanopo4(ji,jj,jk) = zlim2
xlimnfe (ji,jj,jk) = MIN( 1., zlim3 )
xlimphy (ji,jj,jk) = MIN( zlim1, zlim2, zlim3 )
! Michaelis-Menten Limitation term by nutrients : Diatoms
! -------------------------------------------------------
! Limitation of Fe uptake (Quota formalism)
zfalim = (1.-fadiatf) / fadiatf
xdiatfer(ji,jj,jk) = (1. - fadiatf) * zbiron / ( zbiron + zfalim * concdfe(ji,jj,jk) )
! Limitation of diatoms growth
zlimnh4 = tr(ji,jj,jk,jpnh4,Kbb) / ( zconc1d + tr(ji,jj,jk,jpnh4,Kbb) )
zlimno3 = tr(ji,jj,jk,jpno3,Kbb) / ( zconc1d + tr(ji,jj,jk,jpno3,Kbb) )
znutlimtot = ( tr(ji,jj,jk,jpnh4,Kbb) + tr(ji,jj,jk,jpno3,Kbb) ) / ( zconc1d + tr(ji,jj,jk,jpnh4,Kbb) + tr(ji,jj,jk,jpno3,Kbb) )
xdiatnh4(ji,jj,jk) = znutlimtot * 5.0 * zlimnh4 / ( zlimno3 + 5.0 * zlimnh4 + rtrn )
xdiatno3(ji,jj,jk) = znutlimtot * zlimno3 / ( zlimno3 + 5.0 * zlimnh4 + rtrn )
!
zlim1 = xdiatno3(ji,jj,jk) + xdiatnh4(ji,jj,jk)
zlim2 = tr(ji,jj,jk,jppo4,Kbb) / ( tr(ji,jj,jk,jppo4,Kbb) + zconc1dnh4 )
zlim3 = tr(ji,jj,jk,jpsil,Kbb) / ( tr(ji,jj,jk,jpsil,Kbb) + xksi(ji,jj) + rtrn )
zratio = tr(ji,jj,jk,jpdfe,Kbb) * z1_trbdia
! The minimum iron quota depends on the size of PSU, respiration
! and the reduction of nitrate following the parameterization
! proposed by Flynn and Hipkin (1999)
zironmin = xcoef1 * tr(ji,jj,jk,jpdch,Kbb) * z1_trbdia + xcoef2 * zlim1 + xcoef3 * xdiatno3(ji,jj,jk)
xqfuncfecd(ji,jj,jk) = zironmin + qdfelim
zlim4 = MAX( 0., ( zratio - zironmin ) / qdfelim )
xdiatpo4(ji,jj,jk) = zlim2
xlimdfe (ji,jj,jk) = MIN( 1., zlim4 )
xlimdia (ji,jj,jk) = MIN( zlim1, zlim2, zlim3, zlim4 )
xlimsi (ji,jj,jk) = MIN( zlim1, zlim2, zlim4 )
END_3D
! Size estimation of phytoplankton based on total biomass
! Assumes that larger biomass implies addition of larger cells
! ------------------------------------------------------------
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1)
zcoef = tr(ji,jj,jk,jpphy,Kbb) - MIN(xsizephy, tr(ji,jj,jk,jpphy,Kbb) )
sizena(ji,jj,jk) = 1. + ( xsizern -1.0 ) * zcoef / ( xsizephy + zcoef )
zcoef = tr(ji,jj,jk,jpdia,Kbb) - MIN(xsizedia, tr(ji,jj,jk,jpdia,Kbb) )
sizeda(ji,jj,jk) = 1. + ( xsizerd - 1.0 ) * zcoef / ( xsizedia + zcoef )
END_3D
! Compute the fraction of nanophytoplankton that is made of calcifiers
! This is a purely adhoc formulation described in Aumont et al. (2015)
! This fraction depends on nutrient limitation, light, temperature
! --------------------------------------------------------------------
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1)
zlim1 = xnanonh4(ji,jj,jk) + xnanono3(ji,jj,jk)
zlim2 = tr(ji,jj,jk,jppo4,Kbb) / ( tr(ji,jj,jk,jppo4,Kbb) + concnnh4 )
zlim3 = tr(ji,jj,jk,jpfer,Kbb) / ( tr(ji,jj,jk,jpfer,Kbb) + 6.E-11 )
ztem1 = MAX( 0., ts(ji,jj,jk,jp_tem,Kmm) + 1.8)
ztem2 = ts(ji,jj,jk,jp_tem,Kmm) - 10.
zetot1 = MAX( 0., etot_ndcy(ji,jj,jk) - 1.) / ( 4. + etot_ndcy(ji,jj,jk) )
zetot2 = 30. / ( 30.0 + etot_ndcy(ji,jj,jk) )
xfracal(ji,jj,jk) = caco3r * MIN( zlim1, zlim2, zlim3 ) &
& * ztem1 / ( 0.1 + ztem1 ) &
& * MAX( 1., tr(ji,jj,jk,jpphy,Kbb) * 1.e6 / 2. ) &
& * zetot1 * zetot2 &
& * ( 1. + EXP(-ztem2 * ztem2 / 25. ) ) &
& * MIN( 1., 50. / ( hmld(ji,jj) + rtrn ) )
xfracal(ji,jj,jk) = MIN( 0.8 , xfracal(ji,jj,jk) )
xfracal(ji,jj,jk) = MAX( 0.02, xfracal(ji,jj,jk) )
END_3D
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1)
! denitrification factor computed from O2 levels
nitrfac(ji,jj,jk) = MAX( 0.e0, 0.4 * ( 6.e-6 - tr(ji,jj,jk,jpoxy,Kbb) ) &
& / ( oxymin + tr(ji,jj,jk,jpoxy,Kbb) ) )
nitrfac(ji,jj,jk) = MIN( 1., nitrfac(ji,jj,jk) )
!
! denitrification factor computed from NO3 levels
nitrfac2(ji,jj,jk) = MAX( 0.e0, ( 1.E-6 - tr(ji,jj,jk,jpno3,Kbb) ) &
& / ( 1.E-6 + tr(ji,jj,jk,jpno3,Kbb) ) )
nitrfac2(ji,jj,jk) = MIN( 1., nitrfac2(ji,jj,jk) )
END_3D
!
IF( lk_iomput .AND. knt == nrdttrc ) THEN ! save output diagnostics
CALL iom_put( "xfracal", xfracal(:,:,:) * tmask(:,:,:) ) ! euphotic layer deptht
CALL iom_put( "LNnut" , xlimphy(:,:,:) * tmask(:,:,:) ) ! Nutrient limitation term
CALL iom_put( "LDnut" , xlimdia(:,:,:) * tmask(:,:,:) ) ! Nutrient limitation term
CALL iom_put( "LNFe" , xlimnfe(:,:,:) * tmask(:,:,:) ) ! Iron limitation term
CALL iom_put( "LDFe" , xlimdfe(:,:,:) * tmask(:,:,:) ) ! Iron limitation term
CALL iom_put( "SIZEN" , sizen (:,:,:) * tmask(:,:,:) ) ! Iron limitation term
CALL iom_put( "SIZED" , sized (:,:,:) * tmask(:,:,:) ) ! Iron limitation term
ENDIF
!
IF( ln_timing ) CALL timing_stop('p4z_lim')
!
END SUBROUTINE p4z_lim
SUBROUTINE p4z_lim_init
!!----------------------------------------------------------------------
!! *** ROUTINE p4z_lim_init ***
!!
!! ** Purpose : Initialization of the nutrient limitation parameters
!!
!! ** Method : Read the namp4zlim namelist and check the parameters
!! called at the first timestep (nittrc000)
!!
!! ** input : Namelist namp4zlim
!!
!!----------------------------------------------------------------------
INTEGER :: ios ! Local integer
! Namelist block
NAMELIST/namp4zlim/ concnno3, concdno3, concnnh4, concdnh4, concnfer, concdfer, concbfe, &
& concbno3, concbnh4, xsizedia, xsizephy, xsizern, xsizerd, &
& xksi1, xksi2, xkdoc, qnfelim, qdfelim, caco3r, oxymin
!!----------------------------------------------------------------------
!
IF(lwp) THEN
WRITE(numout,*)
WRITE(numout,*) 'p4z_lim_init : initialization of nutrient limitations'
WRITE(numout,*) '~~~~~~~~~~~~'
ENDIF
!
READ ( numnatp_ref, namp4zlim, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namp4zlim in reference namelist' )
READ ( numnatp_cfg, namp4zlim, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namp4zlim in configuration namelist' )
IF(lwm) WRITE( numonp, namp4zlim )
!
IF(lwp) THEN ! control print
WRITE(numout,*) ' Namelist : namp4zlim'
WRITE(numout,*) ' mean rainratio caco3r = ', caco3r
WRITE(numout,*) ' NO3 half saturation of nanophyto concnno3 = ', concnno3
WRITE(numout,*) ' NO3 half saturation of diatoms concdno3 = ', concdno3
WRITE(numout,*) ' NH4 half saturation for phyto concnnh4 = ', concnnh4
WRITE(numout,*) ' NH4 half saturation for diatoms concdnh4 = ', concdnh4
WRITE(numout,*) ' half saturation constant for Si uptake xksi1 = ', xksi1
WRITE(numout,*) ' half saturation constant for Si/C xksi2 = ', xksi2
WRITE(numout,*) ' half-sat. of DOC remineralization xkdoc = ', xkdoc
WRITE(numout,*) ' Iron half saturation for nanophyto concnfer = ', concnfer
WRITE(numout,*) ' Iron half saturation for diatoms concdfer = ', concdfer
WRITE(numout,*) ' size ratio for nanophytoplankton xsizern = ', xsizern
WRITE(numout,*) ' size ratio for diatoms xsizerd = ', xsizerd
WRITE(numout,*) ' NO3 half saturation of bacteria concbno3 = ', concbno3
WRITE(numout,*) ' NH4 half saturation for bacteria concbnh4 = ', concbnh4
WRITE(numout,*) ' Minimum size criteria for diatoms xsizedia = ', xsizedia
WRITE(numout,*) ' Minimum size criteria for nanophyto xsizephy = ', xsizephy
WRITE(numout,*) ' Fe half saturation for bacteria concbfe = ', concbfe
WRITE(numout,*) ' halk saturation constant for anoxia oxymin =' , oxymin
WRITE(numout,*) ' optimal Fe quota for nano. qnfelim = ', qnfelim
WRITE(numout,*) ' Optimal Fe quota for diatoms qdfelim = ', qdfelim
ENDIF
!
nitrfac (:,:,jpk) = 0._wp
nitrfac2(:,:,jpk) = 0._wp
xfracal (:,:,jpk) = 0._wp
xlimphy (:,:,jpk) = 0._wp
xlimdia (:,:,jpk) = 0._wp
xlimnfe (:,:,jpk) = 0._wp
xlimdfe (:,:,jpk) = 0._wp
!
END SUBROUTINE p4z_lim_init
INTEGER FUNCTION p4z_lim_alloc()
!!----------------------------------------------------------------------
!! *** ROUTINE p5z_lim_alloc ***
!!
! Allocation of the arrays used in this module
!!----------------------------------------------------------------------
USE lib_mpp , ONLY: ctl_stop
!!----------------------------------------------------------------------
!* Biological arrays for phytoplankton growth
ALLOCATE( xnanono3(jpi,jpj,jpk), xdiatno3(jpi,jpj,jpk), &
& xnanonh4(jpi,jpj,jpk), xdiatnh4(jpi,jpj,jpk), &
& xnanopo4(jpi,jpj,jpk), xdiatpo4(jpi,jpj,jpk), &
& xnanofer(jpi,jpj,jpk), xdiatfer(jpi,jpj,jpk), &
& xlimphy (jpi,jpj,jpk), xlimdia (jpi,jpj,jpk), &
& xlimnfe (jpi,jpj,jpk), xlimdfe (jpi,jpj,jpk), &
& xlimbac (jpi,jpj,jpk), xlimbacl(jpi,jpj,jpk), &
& concnfe (jpi,jpj,jpk), concdfe (jpi,jpj,jpk), &
& xqfuncfecn(jpi,jpj,jpk), xqfuncfecd(jpi,jpj,jpk), &
& xlimsi (jpi,jpj,jpk), STAT=p4z_lim_alloc )
!
IF( p4z_lim_alloc /= 0 ) CALL ctl_stop( 'STOP', 'p4z_lim_alloc : failed to allocate arrays.' )
!
END FUNCTION p4z_lim_alloc
!!======================================================================
END MODULE p4zlim