Forked from
Consortium Members / UKMO / GOSI / GOSI
112 commits behind the upstream repository.
-
Sebastien Masson authored61f9a109
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
traadv_ubs_lf.F90 20.50 KiB
MODULE traadv_ubs_lf
!!==============================================================================
!! *** MODULE traadv_ubs ***
!! Ocean active tracers: horizontal & vertical advective trend
!!==============================================================================
!! History : 1.0 ! 2006-08 (L. Debreu, R. Benshila) Original code
!! 3.3 ! 2010-05 (C. Ethe, G. Madec) merge TRC-TRA + switch from velocity to transport
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! tra_adv_ubs : update the tracer trend with the horizontal
!! advection trends using a third order biaised scheme
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and active tracers
USE dom_oce ! ocean space and time domain
USE trc_oce ! share passive tracers/Ocean variables
USE trd_oce ! trends: ocean variables
USE traadv_fct ! acces to routine interp_4th_cpt
USE trdtra ! trends manager: tracers
USE diaptr ! poleward transport diagnostics
USE diaar5 ! AR5 diagnostics
!
USE iom ! I/O library
USE in_out_manager ! I/O manager
USE lib_mpp ! massively parallel library
USE lbclnk ! ocean lateral boundary condition (or mpp link)
USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
IMPLICIT NONE
PRIVATE
PUBLIC tra_adv_ubs_lf ! routine called by traadv module
LOGICAL :: l_trd ! flag to compute trends
LOGICAL :: l_ptr ! flag to compute poleward transport
LOGICAL :: l_hst ! flag to compute heat transport
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: traadv_ubs.F90 14776 2021-04-30 12:33:41Z mocavero $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE tra_adv_ubs_lf( kt, kit000, cdtype, p2dt, pU, pV, pW, &
& Kbb, Kmm, pt, kjpt, Krhs, kn_ubs_v )
!!----------------------------------------------------------------------
!! *** ROUTINE tra_adv_ubs ***
!!
!! ** Purpose : Compute the now trend due to the advection of tracers
!! and add it to the general trend of passive tracer equations.
!!
!! ** Method : The 3rd order Upstream Biased Scheme (UBS) is based on an
!! upstream-biased parabolic interpolation (Shchepetkin and McWilliams 2005)
!! It is only used in the horizontal direction.
!! For example the i-component of the advective fluxes are given by :
!! ! e2u e3u un ( mi(Tn) - zltu(i ) ) if un(i) >= 0
!! ztu = ! or
!! ! e2u e3u un ( mi(Tn) - zltu(i+1) ) if un(i) < 0
!! where zltu is the second derivative of the before temperature field:
!! zltu = 1/e3t di[ e2u e3u / e1u di[Tb] ]
!! This results in a dissipatively dominant (i.e. hyper-diffusive)
!! truncation error. The overall performance of the advection scheme
!! is similar to that reported in (Farrow and Stevens, 1995).
!! For stability reasons, the first term of the fluxes which corresponds
!! to a second order centered scheme is evaluated using the now velocity
!! (centered in time) while the second term which is the diffusive part
!! of the scheme, is evaluated using the before velocity (forward in time).
!! Note that UBS is not positive. Do not use it on passive tracers.
!! On the vertical, the advection is evaluated using a FCT scheme,
!! as the UBS have been found to be too diffusive.
!! kn_ubs_v argument controles whether the FCT is based on
!! a 2nd order centrered scheme (kn_ubs_v=2) or on a 4th order compact
!! scheme (kn_ubs_v=4).
!!
!! ** Action : - update pt(:,:,:,:,Krhs) with the now advective tracer trends
!! - send trends to trdtra module for further diagnostcs (l_trdtra=T)
!! - poleward advective heat and salt transport (ln_diaptr=T)
!!
!! Reference : Shchepetkin, A. F., J. C. McWilliams, 2005, Ocean Modelling, 9, 347-404.
!! Farrow, D.E., Stevens, D.P., 1995, J. Phys. Ocean. 25, 1731�1741.
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kbb, Kmm, Krhs ! ocean time level indices
INTEGER , INTENT(in ) :: kit000 ! first time step index
CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator)
INTEGER , INTENT(in ) :: kjpt ! number of tracers
INTEGER , INTENT(in ) :: kn_ubs_v ! number of tracers
REAL(wp) , INTENT(in ) :: p2dt ! tracer time-step
! TEMP: [tiling] This can be A2D(nn_hls) if using XIOS (subdomain support)
REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pU, pV, pW ! 3 ocean volume transport components
REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) :: pt ! tracers and RHS of tracer equation
!
INTEGER :: ji, jj, jk, jn ! dummy loop indices
REAL(wp) :: ztra, zbtr, zcoef, zcoef_ip1, zcoef_jp1 ! local scalars
REAL(wp) :: zfp_ui, zfm_ui, zcenut, ztak, zfp_wk, zfm_wk ! - -
REAL(wp) :: zfp_vj, zfm_vj, zcenvt, zeeu, zeev, z_hdivn ! - -
REAL(wp) :: zeeu_im1, zeeu_ip1, zeev_jm1, zeev_jp1
REAL(wp) :: zztu, zztu_im1, zztu_ip1
REAL(wp) :: zztv, zztv_jm1, zztv_jp1
REAL(wp) :: zzltu, zzltu_ip1, zzltv, zzltv_jp1
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: ztu, ztv, zltu, zltv, zti, ztw ! 3D workspace
!!----------------------------------------------------------------------
!
IF( ntile == 0 .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == kit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'tra_adv_ubs : horizontal UBS advection scheme on ', cdtype
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~'
ENDIF
!
l_trd = .FALSE.
l_hst = .FALSE.
l_ptr = .FALSE.
IF( ( cdtype == 'TRA' .AND. l_trdtra ) .OR. ( cdtype == 'TRC' .AND. l_trdtrc ) ) l_trd = .TRUE.
IF( cdtype == 'TRA' .AND. ( iom_use( 'sophtadv' ) .OR. iom_use( 'sophtadv' ) ) ) l_ptr = .TRUE.
IF( cdtype == 'TRA' .AND. ( iom_use("uadv_heattr") .OR. iom_use("vadv_heattr") .OR. &
& iom_use("uadv_salttr") .OR. iom_use("vadv_salttr") ) ) l_hst = .TRUE.
ENDIF
!
ztw (:,:, 1 ) = 0._wp ! surface & bottom value : set to zero for all tracers
zltu(:,:,jpk) = 0._wp ; zltv(:,:,jpk) = 0._wp
ztw (:,:,jpk) = 0._wp ; zti (:,:,jpk) = 0._wp
! ! ===========
DO jn = 1, kjpt ! tracer loop
! ! ===========
! !== horizontal laplacian of before tracer ==!
DO_3D( 1, 0, 1, 0, 1, jpkm1 ) ! Second derivative (divergence)
! First derivative (masked gradient)
zeeu_im1 = e2_e1u(ji-1,jj ) * e3u(ji-1,jj ,jk,Kmm) * umask(ji-1,jj ,jk)
zeeu = e2_e1u(ji ,jj ) * e3u(ji ,jj ,jk,Kmm) * umask(ji ,jj ,jk)
zeeu_ip1 = e2_e1u(ji+1,jj ) * e3u(ji+1,jj ,jk,Kmm) * umask(ji+1,jj ,jk)
zeev_jm1 = e1_e2v(ji ,jj-1) * e3v(ji ,jj-1,jk,Kmm) * vmask(ji ,jj-1,jk)
zeev = e1_e2v(ji ,jj ) * e3v(ji ,jj ,jk,Kmm) * vmask(ji ,jj ,jk)
zeev_jp1 = e1_e2v(ji ,jj+1) * e3v(ji ,jj+1,jk,Kmm) * vmask(ji ,jj+1,jk)
!
zztu_im1 = zeeu_im1 * ( pt(ji ,jj,jk,jn,Kbb) - pt(ji-1,jj,jk,jn,Kbb) )
zztu = zeeu * ( pt(ji+1,jj,jk,jn,Kbb) - pt(ji ,jj,jk,jn,Kbb) )
zztu_ip1 = zeeu_ip1 * ( pt(ji+2,jj,jk,jn,Kbb) - pt(ji+1,jj,jk,jn,Kbb) )
!
zztv_jm1 = zeev_jm1 * ( pt(ji,jj ,jk,jn,Kbb) - pt(ji,jj-1,jk,jn,Kbb) )
zztv = zeev * ( pt(ji,jj+1,jk,jn,Kbb) - pt(ji,jj ,jk,jn,Kbb) )
zztv_jp1 = zeev_jp1 * ( pt(ji,jj+2,jk,jn,Kbb) - pt(ji,jj+1,jk,jn,Kbb) )
! Second derivative (divergence)
zcoef = 1._wp / ( 6._wp * e3t(ji ,jj ,jk,Kmm) )
zcoef_ip1 = 1._wp / ( 6._wp * e3t(ji+1,jj ,jk,Kmm) )
zcoef_jp1 = 1._wp / ( 6._wp * e3t(ji ,jj+1,jk,Kmm) )
!
zzltu = ( zztu - zztu_im1 ) * zcoef
zzltu_ip1 = ( zztu_ip1 - zztu ) * zcoef_ip1
zzltv = ( zztv - zztv_jm1 ) * zcoef
zzltv_jp1 = ( zztv_jp1 - zztv ) * zcoef_jp1
!
! !== Horizontal advective fluxes ==! (UBS)
zfp_ui = pU(ji,jj,jk) + ABS( pU(ji,jj,jk) ) ! upstream transport (x2)
zfm_ui = pU(ji,jj,jk) - ABS( pU(ji,jj,jk) )
zfp_vj = pV(ji,jj,jk) + ABS( pV(ji,jj,jk) )
zfm_vj = pV(ji,jj,jk) - ABS( pV(ji,jj,jk) )
! ! 2nd order centered advective fluxes (x2)
zcenut = pU(ji,jj,jk) * ( pt(ji,jj,jk,jn,Kmm) + pt(ji+1,jj ,jk,jn,Kmm) )
zcenvt = pV(ji,jj,jk) * ( pt(ji,jj,jk,jn,Kmm) + pt(ji ,jj+1,jk,jn,Kmm) )
! ! UBS advective fluxes
ztu(ji,jj,jk) = 0.5 * ( zcenut - zfp_ui * zzltu - zfm_ui * zzltu_ip1 )
ztv(ji,jj,jk) = 0.5 * ( zcenvt - zfp_vj * zzltv - zfm_vj * zzltv_jp1 )
END_3D
!
DO_3D( 0, 0, 0, 0, 1, jpk )
zltu(ji,jj,jk) = pt(ji,jj,jk,jn,Krhs) ! store the initial trends before its update
END_3D
!
! !== add the horizontal advective trend ==!
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) &
& - ( ztu(ji,jj,jk) - ztu(ji-1,jj ,jk) &
& + ztv(ji,jj,jk) - ztv(ji ,jj-1,jk) ) &
& * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm)
END_3D
!
DO_3D( 0, 0, 0, 0, 1, jpk )
zltu(ji,jj,jk) = pt(ji,jj,jk,jn,Krhs) - zltu(ji,jj,jk) ! Horizontal advective trend used in vertical 2nd order FCT case
END_3D ! and/or in trend diagnostic (l_trd=T)
!
IF( l_trd ) THEN ! trend diagnostics
CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_xad, ztu, pU, pt(:,:,:,jn,Kmm) )
CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_yad, ztv, pV, pt(:,:,:,jn,Kmm) )
END IF
!
! ! "Poleward" heat and salt transports (contribution of upstream fluxes)
IF( l_ptr ) CALL dia_ptr_hst( jn, 'adv', ztv(:,:,:) )
! ! heati/salt transport
IF( l_hst ) CALL dia_ar5_hst( jn, 'adv', ztu(:,:,:), ztv(:,:,:) )
!
!
! !== vertical advective trend ==!
!
SELECT CASE( kn_ubs_v ) ! select the vertical advection scheme
!
CASE( 2 ) ! 2nd order FCT
!
IF( l_trd ) THEN
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
zltv(ji,jj,jk) = pt(ji,jj,jk,jn,Krhs) ! store pt(:,:,:,:,Krhs) if trend diag.
END_3D
ENDIF
!
! !* upstream advection with initial mass fluxes & intermediate update ==!
DO_3D( 1, 1, 1, 1, 2, jpkm1 )
zfp_wk = pW(ji,jj,jk) + ABS( pW(ji,jj,jk) )
zfm_wk = pW(ji,jj,jk) - ABS( pW(ji,jj,jk) )
ztw(ji,jj,jk) = 0.5_wp * ( zfp_wk * pt(ji,jj,jk,jn,Kbb) + zfm_wk * pt(ji,jj,jk-1,jn,Kbb) ) * wmask(ji,jj,jk)
END_3D
IF( ln_linssh ) THEN ! top ocean value (only in linear free surface as ztw has been w-masked)
IF( ln_isfcav ) THEN ! top of the ice-shelf cavities and at the ocean surface
DO_2D( 1, 1, 1, 1 )
ztw(ji,jj, mikt(ji,jj) ) = pW(ji,jj,mikt(ji,jj)) * pt(ji,jj,mikt(ji,jj),jn,Kbb) ! linear free surface
END_2D
ELSE ! no cavities: only at the ocean surface
DO_2D( 1, 1, 1, 1 )
ztw(ji,jj,1) = pW(ji,jj,1) * pt(ji,jj,1,jn,Kbb)
END_2D
ENDIF
ENDIF
!
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) !* trend and after field with monotonic scheme
ztak = - ( ztw(ji,jj,jk) - ztw(ji,jj,jk+1) ) &
& * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm)
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) + ztak
zti(ji,jj,jk) = ( pt(ji,jj,jk,jn,Kbb) + p2dt * ( ztak + zltu(ji,jj,jk) ) ) * tmask(ji,jj,jk)
END_3D
!
! !* anti-diffusive flux : high order minus low order
DO_3D( 1, 1, 1, 1, 2, jpkm1 )
ztw(ji,jj,jk) = ( 0.5_wp * pW(ji,jj,jk) * ( pt(ji,jj,jk,jn,Kmm) + pt(ji,jj,jk-1,jn,Kmm) ) &
& - ztw(ji,jj,jk) ) * wmask(ji,jj,jk)
END_3D
! ! top ocean value: high order == upstream ==>> zwz=0
IF( ln_linssh ) ztw(:,:, 1 ) = 0._wp ! only ocean surface as interior zwz values have been w-masked
!
CALL nonosc_z( Kmm, pt(:,:,:,jn,Kbb), ztw, zti, p2dt ) ! monotonicity algorithm
!
CASE( 4 ) ! 4th order COMPACT
CALL interp_4th_cpt( pt(:,:,:,jn,Kmm) , ztw ) ! 4th order compact interpolation of T at w-point
DO_3D( 0, 0, 0, 0, 2, jpkm1 )
ztw(ji,jj,jk) = pW(ji,jj,jk) * ztw(ji,jj,jk) * wmask(ji,jj,jk)
END_3D
IF( ln_linssh ) THEN
DO_2D( 1, 1, 1, 1 )
ztw(ji,jj,1) = pW(ji,jj,1) * pt(ji,jj,1,jn,Kmm) !!gm ISF & 4th COMPACT doesn't work
END_2D
ENDIF
!
END SELECT
!
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) ! final trend with corrected fluxes
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - ( ztw(ji,jj,jk) - ztw(ji,jj,jk+1) ) &
& * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm)
END_3D
!
IF( l_trd ) THEN ! vertical advective trend diagnostics
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) ! (compute -w.dk[ptn]= -dk[w.ptn] + ptn.dk[w])
zltv(ji,jj,jk) = pt(ji,jj,jk,jn,Krhs) - zltv(ji,jj,jk) &
& + pt(ji,jj,jk,jn,Kmm) * ( pW(ji,jj,jk) - pW(ji,jj,jk+1) ) &
& * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm)
END_3D
CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_zad, zltv )
ENDIF
!
END DO
!
END SUBROUTINE tra_adv_ubs_lf
SUBROUTINE nonosc_z( Kmm, pbef, pcc, paft, p2dt )
!!---------------------------------------------------------------------
!! *** ROUTINE nonosc_z ***
!!
!! ** Purpose : compute monotonic tracer fluxes from the upstream
!! scheme and the before field by a nonoscillatory algorithm
!!
!! ** Method : ... ???
!! warning : pbef and paft must be masked, but the boundaries
!! conditions on the fluxes are not necessary zalezak (1979)
!! drange (1995) multi-dimensional forward-in-time and upstream-
!! in-space based differencing for fluid
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: Kmm ! time level index
REAL(wp), INTENT(in ) :: p2dt ! tracer time-step
REAL(wp), DIMENSION(jpi,jpj,jpk) :: pbef ! before field
REAL(wp), INTENT(inout), DIMENSION(A2D(nn_hls) ,jpk) :: paft ! after field
REAL(wp), INTENT(inout), DIMENSION(A2D(nn_hls) ,jpk) :: pcc ! monotonic flux in the k direction
!
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: ikm1 ! local integer
REAL(wp) :: zpos, zneg, zbt, za, zb, zc, zbig, zrtrn ! local scalars
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zbetup, zbetdo ! 3D workspace
!!----------------------------------------------------------------------
!
zbig = 1.e+20_wp ! works ok with simple/double precison
zrtrn = 1.e-15_wp
zbetup(:,:,:) = 0._wp ; zbetdo(:,:,:) = 0._wp
!
! Search local extrema
! --------------------
! ! large negative value (-zbig) inside land
DO_3D( 0, 0, 0, 0, 1, jpk )
pbef(ji,jj,jk) = pbef(ji,jj,jk) * tmask(ji,jj,jk) - zbig * ( 1.e0 - tmask(ji,jj,jk) )
paft(ji,jj,jk) = paft(ji,jj,jk) * tmask(ji,jj,jk) - zbig * ( 1.e0 - tmask(ji,jj,jk) )
END_3D
!
DO jk = 1, jpkm1 ! search maximum in neighbourhood
ikm1 = MAX(jk-1,1)
DO_2D( 0, 0, 0, 0 )
zbetup(ji,jj,jk) = MAX( pbef(ji ,jj ,jk ), paft(ji ,jj ,jk ), &
& pbef(ji ,jj ,ikm1), pbef(ji ,jj ,jk+1), &
& paft(ji ,jj ,ikm1), paft(ji ,jj ,jk+1) )
END_2D
END DO
! ! large positive value (+zbig) inside land
DO_3D( 0, 0, 0, 0, 1, jpk )
pbef(ji,jj,jk) = pbef(ji,jj,jk) * tmask(ji,jj,jk) + zbig * ( 1.e0 - tmask(ji,jj,jk) )
paft(ji,jj,jk) = paft(ji,jj,jk) * tmask(ji,jj,jk) + zbig * ( 1.e0 - tmask(ji,jj,jk) )
END_3D
!
DO jk = 1, jpkm1 ! search minimum in neighbourhood
ikm1 = MAX(jk-1,1)
DO_2D( 0, 0, 0, 0 )
zbetdo(ji,jj,jk) = MIN( pbef(ji ,jj ,jk ), paft(ji ,jj ,jk ), &
& pbef(ji ,jj ,ikm1), pbef(ji ,jj ,jk+1), &
& paft(ji ,jj ,ikm1), paft(ji ,jj ,jk+1) )
END_2D
END DO
! ! restore masked values to zero
DO_3D( 0, 0, 0, 0, 1, jpk )
pbef(ji,jj,jk) = pbef(ji,jj,jk) * tmask(ji,jj,jk)
paft(ji,jj,jk) = paft(ji,jj,jk) * tmask(ji,jj,jk)
END_3D
!
! Positive and negative part of fluxes and beta terms
! ---------------------------------------------------
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
! positive & negative part of the flux
zpos = MAX( 0., pcc(ji ,jj ,jk+1) ) - MIN( 0., pcc(ji ,jj ,jk ) )
zneg = MAX( 0., pcc(ji ,jj ,jk ) ) - MIN( 0., pcc(ji ,jj ,jk+1) )
! up & down beta terms
zbt = e1e2t(ji,jj) * e3t(ji,jj,jk,Kmm) / p2dt
zbetup(ji,jj,jk) = ( zbetup(ji,jj,jk) - paft(ji,jj,jk) ) / (zpos+zrtrn) * zbt
zbetdo(ji,jj,jk) = ( paft(ji,jj,jk) - zbetdo(ji,jj,jk) ) / (zneg+zrtrn) * zbt
END_3D
!
! monotonic flux in the k direction, i.e. pcc
! -------------------------------------------
DO_3D( 0, 0, 0, 0, 2, jpkm1 )
za = MIN( 1., zbetdo(ji,jj,jk), zbetup(ji,jj,jk-1) )
zb = MIN( 1., zbetup(ji,jj,jk), zbetdo(ji,jj,jk-1) )
zc = 0.5 * ( 1.e0 + SIGN( 1.0_wp, pcc(ji,jj,jk) ) )
pcc(ji,jj,jk) = pcc(ji,jj,jk) * ( zc * za + ( 1.e0 - zc) * zb )
END_3D
!
END SUBROUTINE nonosc_z
!!======================================================================
END MODULE traadv_ubs_lf