Forked from
Consortium Members / UKMO / GOSI / GOSI
107 commits behind the upstream repository.
-
f79356c9
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
p4zrem.F90 17.22 KiB
MODULE p4zrem
!!======================================================================
!! *** MODULE p4zrem ***
!! TOP : PISCES Compute remineralization/dissolution of organic compounds
!! except for POC which is treated in p4zpoc.F90
!! This module is common to both PISCES and PISCES-QUOTA
!!=========================================================================
!! History : 1.0 ! 2004 (O. Aumont) Original code
!! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90
!! 3.4 ! 2011-06 (O. Aumont, C. Ethe) Quota model for iron
!!----------------------------------------------------------------------
!! p4z_rem : Compute remineralization/dissolution of organic compounds
!! p4z_rem_init : Initialisation of parameters for remineralisation
!! p4z_rem_alloc : Allocate remineralisation variables
!!----------------------------------------------------------------------
USE oce_trc ! shared variables between ocean and passive tracers
USE trc ! passive tracers common variables
USE sms_pisces ! PISCES Source Minus Sink variables
USE p4zche ! chemical model
USE p4zprod ! Growth rate of the 2 phyto groups
USE p4zlim ! Nutrient limitation terms
USE prtctl ! print control for debugging
USE iom ! I/O manager
IMPLICIT NONE
PRIVATE
PUBLIC p4z_rem ! called in p4zbio.F90
PUBLIC p4z_rem_init ! called in trcini_pisces.F90
PUBLIC p4z_rem_alloc ! called in trcini_pisces.F90
!! * Shared module variables
REAL(wp), PUBLIC :: xremikc !: remineralisation rate of DOC (p5z)
REAL(wp), PUBLIC :: xremikn !: remineralisation rate of DON (p5z)
REAL(wp), PUBLIC :: xremikp !: remineralisation rate of DOP (p5z)
REAL(wp), PUBLIC :: nitrif !: NH4 nitrification rate
REAL(wp), PUBLIC :: xsirem !: remineralisation rate of biogenic silica
REAL(wp), PUBLIC :: xsiremlab !: fast remineralisation rate of BSi
REAL(wp), PUBLIC :: xsilab !: fraction of labile biogenic silica
REAL(wp), PUBLIC :: feratb !: Fe/C quota in bacteria
REAL(wp), PUBLIC :: xkferb !: Half-saturation constant for bacterial Fe/C
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: denitr !: denitrification array
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/TOP 4.0 , NEMO Consortium (2018)
!! $Id: p4zrem.F90 15459 2021-10-29 08:19:18Z cetlod $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE p4z_rem( kt, knt, Kbb, Kmm, Krhs )
!!---------------------------------------------------------------------
!! *** ROUTINE p4z_rem ***
!!
!! ** Purpose : Compute remineralization/dissolution of organic compounds
!! Computes also nitrification of ammonium
!! The solubilization/remineralization of POC is treated
!! in p4zpoc.F90. The dissolution of calcite is processed
!! in p4zlys.F90.
!!
!! ** Method : - Bacterial biomass is computed implicitely based on a
!! parameterization developed from an explicit modeling
!! of PISCES in an alternative version
!!---------------------------------------------------------------------
INTEGER, INTENT(in) :: kt, knt ! ocean time step
INTEGER, INTENT(in) :: Kbb, Kmm, Krhs ! time level indices
!
INTEGER :: ji, jj, jk
REAL(wp) :: zremik, zremikc, zremikn, zremikp, zsiremin, zfact
REAL(wp) :: zsatur, zsatur2, znusil, znusil2, zdep, zdepmin, zfactdep
REAL(wp) :: zbactfer, zonitr, zrfact2
REAL(wp) :: zammonic, zoxyremc, zosil, ztem, zdenitnh4, zolimic
CHARACTER (len=25) :: charout
REAL(wp), DIMENSION(jpi,jpj,jpk) :: zdepbac, zolimi, zfacsi, zfacsib, zdepeff, zfebact
REAL(wp), DIMENSION(jpi,jpj ) :: ztempbac
!!---------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('p4z_rem')
!
! Initialisation of arrays
zdepeff (:,:,:) = 0.3_wp
zfacsib(:,:,:) = xsilab / ( 1.0 - xsilab )
zfebact(:,:,:) = 0._wp
zfacsi(:,:,:) = xsilab
! Computation of the mean bacterial concentration
! this parameterization has been deduced from a model version
! that was modeling explicitely bacteria. This is a very old param
! that will be very soon updated based on results from a much more
! recent version of PISCES with bacteria.
! ----------------------------------------------------------------
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1)
zdep = MAX( hmld(ji,jj), heup_01(ji,jj), gdept(ji,jj,1,Kmm) )
IF ( gdept(ji,jj,jk,Kmm) < zdep ) THEN
zdepbac(ji,jj,jk) = 0.6 * ( MAX(0.0, tr(ji,jj,jk,jpzoo,Kbb) + tr(ji,jj,jk,jpmes,Kbb) ) * 1.0E6 )**0.6 * 1.E-6
ztempbac(ji,jj) = zdepbac(ji,jj,jk)
ELSE
zdepmin = MIN( 1., zdep / gdept(ji,jj,jk,Kmm) )
zdepbac (ji,jj,jk) = zdepmin**0.683 * ztempbac(ji,jj)
zdepeff(ji,jj,jk) = zdepeff(ji,jj,jk) * zdepmin**0.6
ENDIF
END_3D
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1)
! DOC ammonification. Depends on depth, phytoplankton biomass
! and a limitation term which is supposed to be a parameterization of the bacterial activity.
! --------------------------------------------------------------------------
zremik = xstep / 1.e-6 * xlimbac(ji,jj,jk) * zdepbac(ji,jj,jk)
zremik = MAX( zremik, 2.74e-4 * xstep / xremikc )
zremikc = xremikc * zremik
! Ammonification in oxic waters with oxygen consumption
! -----------------------------------------------------
zolimic = zremikc * ( 1.- nitrfac(ji,jj,jk) ) * tr(ji,jj,jk,jpdoc,Kbb)
zolimic = MAX(0., MIN( ( tr(ji,jj,jk,jpoxy,Kbb) - rtrn ) / o2ut, zolimic ) )
zolimi(ji,jj,jk) = zolimic
! Ammonification in suboxic waters with denitrification
! -----------------------------------------------------
zammonic = zremikc * nitrfac(ji,jj,jk) * tr(ji,jj,jk,jpdoc,Kbb)
denitr(ji,jj,jk) = zammonic * ( 1. - nitrfac2(ji,jj,jk) )
denitr(ji,jj,jk) = MAX(0., MIN( ( tr(ji,jj,jk,jpno3,Kbb) - rtrn ) / rdenit, denitr(ji,jj,jk) ) )
! Ammonification in waters depleted in O2 and NO3 based on
! other redox processes
! --------------------------------------------------------
zoxyremc = MAX(0., zammonic - denitr(ji,jj,jk) )
! Update of the the trends arrays
tr(ji,jj,jk,jpno3,Krhs) = tr(ji,jj,jk,jpno3,Krhs) - denitr (ji,jj,jk) * rdenit
tr(ji,jj,jk,jpdoc,Krhs) = tr(ji,jj,jk,jpdoc,Krhs) - ( zolimic + denitr(ji,jj,jk) + zoxyremc )
tr(ji,jj,jk,jpoxy,Krhs) = tr(ji,jj,jk,jpoxy,Krhs) - zolimic * o2ut
tr(ji,jj,jk,jpdic,Krhs) = tr(ji,jj,jk,jpdic,Krhs) + zolimic + denitr(ji,jj,jk) + zoxyremc
IF( ln_p4z ) THEN ! PISCES-std
tr(ji,jj,jk,jppo4,Krhs) = tr(ji,jj,jk,jppo4,Krhs) + zolimic + denitr(ji,jj,jk) + zoxyremc
tr(ji,jj,jk,jpnh4,Krhs) = tr(ji,jj,jk,jpnh4,Krhs) + zolimic + denitr(ji,jj,jk) + zoxyremc
tr(ji,jj,jk,jptal,Krhs) = tr(ji,jj,jk,jptal,Krhs) + rno3 * ( zolimic + zoxyremc + ( rdenit + 1.) * denitr(ji,jj,jk) )
ELSE ! PISCES-QUOTA (p5z)
zremikn = xremikn / xremikc * tr(ji,jj,jk,jpdon,kbb) / ( tr(ji,jj,jk,jpdoc,Kbb) + rtrn )
zremikp = xremikp / xremikc * tr(ji,jj,jk,jpdop,Kbb) / ( tr(ji,jj,jk,jpdoc,Kbb) + rtrn )
tr(ji,jj,jk,jppo4,Krhs) = tr(ji,jj,jk,jppo4,Krhs) + zremikp * ( zolimic + denitr(ji,jj,jk) + zoxyremc )
tr(ji,jj,jk,jpnh4,Krhs) = tr(ji,jj,jk,jpnh4,Krhs) + zremikn * ( zolimic + denitr(ji,jj,jk) + zoxyremc )
tr(ji,jj,jk,jpdon,Krhs) = tr(ji,jj,jk,jpdon,Krhs) - zremikn * ( zolimic + denitr(ji,jj,jk) + zoxyremc )
tr(ji,jj,jk,jpdop,Krhs) = tr(ji,jj,jk,jpdop,Krhs) - zremikp * ( zolimic + denitr(ji,jj,jk) + zoxyremc )
tr(ji,jj,jk,jptal,Krhs) = tr(ji,jj,jk,jptal,Krhs) + rno3 * zremikn * ( zolimic + zoxyremc + ( rdenit + 1.) * denitr(ji,jj,jk) )
ENDIF
END_3D
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1)
! NH4 nitrification to NO3. Ceased for oxygen concentrations
! below 2 umol/L. Inhibited at strong light
! ----------------------------------------------------------
zonitr = nitrif * xstep * tr(ji,jj,jk,jpnh4,Kbb) * ( 1.- nitrfac(ji,jj,jk) ) &
& / ( 1.+ emoy(ji,jj,jk) ) * ( 1. + fr_i(ji,jj) * emoy(ji,jj,jk) )
zdenitnh4 = nitrif * xstep * tr(ji,jj,jk,jpnh4,Kbb) * nitrfac(ji,jj,jk)
zdenitnh4 = MAX(0., MIN( ( tr(ji,jj,jk,jpno3,Kbb) - rtrn ) / rdenita, zdenitnh4 ) )
! Update of the tracers trends
! ----------------------------
tr(ji,jj,jk,jpnh4,Krhs) = tr(ji,jj,jk,jpnh4,Krhs) - zonitr - zdenitnh4
tr(ji,jj,jk,jpno3,Krhs) = tr(ji,jj,jk,jpno3,Krhs) + zonitr - rdenita * zdenitnh4
tr(ji,jj,jk,jpoxy,Krhs) = tr(ji,jj,jk,jpoxy,Krhs) - o2nit * zonitr
tr(ji,jj,jk,jptal,Krhs) = tr(ji,jj,jk,jptal,Krhs) - 2 * rno3 * zonitr + rno3 * ( rdenita - 1. ) * zdenitnh4
END_3D
IF(sn_cfctl%l_prttrc) THEN ! print mean trends (used for debugging)
WRITE(charout, FMT="('rem1')")
CALL prt_ctl_info( charout, cdcomp = 'top' )
CALL prt_ctl(tab4d_1=tr(:,:,:,:,Krhs), mask1=tmask, clinfo=ctrcnm)
ENDIF
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1)
! Bacterial uptake of iron. No iron is available in DOC. So
! Bacteries are obliged to take up iron from the water. Some
! studies (especially at Papa) have shown this uptake to be significant
! ----------------------------------------------------------
zbactfer = feratb * 0.6_wp * xstep * tgfunc(ji,jj,jk) * xlimbacl(ji,jj,jk) * biron(ji,jj,jk) &
& / ( xkferb + biron(ji,jj,jk) ) * zdepeff(ji,jj,jk) * zdepbac(ji,jj,jk)
! Only the transfer of iron from its dissolved form to particles
! is treated here. The GGE of bacteria supposed to be equal to
! 0.33. This is hard-coded.
tr(ji,jj,jk,jpfer,Krhs) = tr(ji,jj,jk,jpfer,Krhs) - zbactfer*0.1
tr(ji,jj,jk,jpsfe,Krhs) = tr(ji,jj,jk,jpsfe,Krhs) + zbactfer*0.08
tr(ji,jj,jk,jpbfe,Krhs) = tr(ji,jj,jk,jpbfe,Krhs) + zbactfer*0.02
zfebact(ji,jj,jk) = zbactfer * 0.1
blim(ji,jj,jk) = xlimbacl(ji,jj,jk) * zdepbac(ji,jj,jk) / 1.e-6
END_3D
IF(sn_cfctl%l_prttrc) THEN ! print mean trends (used for debugging)
WRITE(charout, FMT="('rem2')")
CALL prt_ctl_info( charout, cdcomp = 'top' )
CALL prt_ctl(tab4d_1=tr(:,:,:,:,Krhs), mask1=tmask, clinfo=ctrcnm)
ENDIF
! Initialization of the array which contains the labile fraction
! of bSi. Set to a constant in the upper ocean
! ---------------------------------------------------------------
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1)
! Remineralization rate of BSi dependent on T and saturation
! The parameterization is taken from Ridgwell et al. (2002)
! ---------------------------------------------------------
zdep = MAX( hmld(ji,jj), heup_01(ji,jj) )
zsatur = MAX( rtrn, ( sio3eq(ji,jj,jk) - tr(ji,jj,jk,jpsil,Kbb) ) / ( sio3eq(ji,jj,jk) + rtrn ) )
zsatur2 = ( 1. + ts(ji,jj,jk,jp_tem,Kmm) / 400.)**37
znusil = 0.225 * ( 1. + ts(ji,jj,jk,jp_tem,Kmm) / 15.) * zsatur + 0.775 * zsatur2 * zsatur**9.25
! Two fractions of bSi are considered : a labile one and a more
! refractory one based on the commonly observed two step
! dissolution of bSi (initial rapid dissolution followed by
! more slowly dissolution).
! Computation of the vertical evolution of the labile fraction
! of bSi. This is computed assuming steady state.
! --------------------------------------------------------------
IF ( gdept(ji,jj,jk,Kmm) > zdep ) THEN
zfacsib(ji,jj,jk) = zfacsib(ji,jj,jk-1) * EXP( -0.5 * ( xsiremlab - xsirem ) &
& * znusil * e3t(ji,jj,jk,Kmm) / wsbio4(ji,jj,jk) )
zfacsi(ji,jj,jk) = zfacsib(ji,jj,jk) / ( 1.0 + zfacsib(ji,jj,jk) )
zfacsib(ji,jj,jk) = zfacsib(ji,jj,jk) * EXP( -0.5 * ( xsiremlab - xsirem ) &
& * znusil * e3t(ji,jj,jk,Kmm) / wsbio4(ji,jj,jk) )
ENDIF
zsiremin = ( xsiremlab * zfacsi(ji,jj,jk) + xsirem * ( 1. - zfacsi(ji,jj,jk) ) ) * xstep * znusil
zosil = zsiremin * tr(ji,jj,jk,jpgsi,Kbb)
!
tr(ji,jj,jk,jpgsi,Krhs) = tr(ji,jj,jk,jpgsi,Krhs) - zosil
tr(ji,jj,jk,jpsil,Krhs) = tr(ji,jj,jk,jpsil,Krhs) + zosil
END_3D
IF(sn_cfctl%l_prttrc) THEN ! print mean trends (used for debugging)
WRITE(charout, FMT="('rem3')")
CALL prt_ctl_info( charout, cdcomp = 'top' )
CALL prt_ctl(tab4d_1=tr(:,:,:,:,Krhs), mask1=tmask, clinfo=ctrcnm)
ENDIF
IF( knt == nrdttrc ) THEN
zrfact2 = 1.e+3 * rfact2r ! conversion from mol/l/kt to mol/m3/s
!
IF( iom_use( "REMIN" ) ) THEN ! Remineralisation rate
zolimi(:,:,jpk) = 0. ; CALL iom_put( "REMIN" , zolimi(:,:,:) * tmask(:,:,:) * zrfact2 )
ENDIF
CALL iom_put( "DENIT" , denitr(:,:,:) * rdenit * rno3 * tmask(:,:,:) * zrfact2 ) ! Denitrification
IF( iom_use( "BACT" ) ) THEN ! Bacterial biomass
zdepbac(:,:,jpk) = 0. ; CALL iom_put( "BACT", zdepbac(:,:,:) * 1.E6 * tmask(:,:,:) )
ENDIF
CALL iom_put( "FEBACT" , zfebact(:,:,:) * 1E9 * tmask(:,:,:) * zrfact2 )
ENDIF
!
IF( ln_timing ) CALL timing_stop('p4z_rem')
!
END SUBROUTINE p4z_rem
SUBROUTINE p4z_rem_init
!!----------------------------------------------------------------------
!! *** ROUTINE p4z_rem_init ***
!!
!! ** Purpose : Initialization of remineralization parameters
!!
!! ** Method : Read the nampisrem namelist and check the parameters
!! called at the first timestep
!!
!! ** input : Namelist nampisrem
!!
!!----------------------------------------------------------------------
NAMELIST/nampisrem/ nitrif, xsirem, xsiremlab, xsilab, feratb, xkferb, &
& xremikc, xremikn, xremikp
INTEGER :: ios ! Local integer output status for namelist read
!!----------------------------------------------------------------------
!
IF(lwp) THEN
WRITE(numout,*)
WRITE(numout,*) 'p4z_rem_init : Initialization of remineralization parameters'
WRITE(numout,*) '~~~~~~~~~~~~'
ENDIF
!
READ ( numnatp_ref, nampisrem, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisrem in reference namelist' )
READ ( numnatp_cfg, nampisrem, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nampisrem in configuration namelist' )
IF(lwm) WRITE( numonp, nampisrem )
IF(lwp) THEN ! control print
WRITE(numout,*) ' Namelist parameters for remineralization, nampisrem'
IF( ln_p4z ) THEN
WRITE(numout,*) ' remineralization rate of DOC xremikc =', xremikc
ELSE
WRITE(numout,*) ' remineralization rate of DOC xremikc =', xremikc
WRITE(numout,*) ' remineralization rate of DON xremikn =', xremikn
WRITE(numout,*) ' remineralization rate of DOP xremikp =', xremikp
ENDIF
WRITE(numout,*) ' remineralization rate of Si xsirem =', xsirem
WRITE(numout,*) ' fast remineralization rate of Si xsiremlab =', xsiremlab
WRITE(numout,*) ' fraction of labile biogenic silica xsilab =', xsilab
WRITE(numout,*) ' NH4 nitrification rate nitrif =', nitrif
WRITE(numout,*) ' Bacterial Fe/C ratio feratb =', feratb
WRITE(numout,*) ' Half-saturation constant for bact. Fe/C xkferb =', xkferb
ENDIF
!
denitr(:,:,:) = 0._wp
!
END SUBROUTINE p4z_rem_init
INTEGER FUNCTION p4z_rem_alloc()
!!----------------------------------------------------------------------
!! *** ROUTINE p4z_rem_alloc ***
!!----------------------------------------------------------------------
ALLOCATE( denitr(jpi,jpj,jpk), STAT=p4z_rem_alloc )
!
IF( p4z_rem_alloc /= 0 ) CALL ctl_stop( 'STOP', 'p4z_rem_alloc: failed to allocate arrays' )
!
END FUNCTION p4z_rem_alloc
!!======================================================================
END MODULE p4zrem