Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
G
GOSI9esm
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Consortium Members
UKMO
GOSI
GOSI9esm
Commits
ccc10c35
Commit
ccc10c35
authored
1 year ago
by
Guillaume Samson
Browse files
Options
Downloads
Patches
Plain Diff
Merge branch '71-wrong-automatic-definition-of-the-laplacian-coefficient-2' into 'branch_4.2'
parent
9f0c75ec
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/OCE/LDF/ldfdyn.F90
+7
-7
7 additions, 7 deletions
src/OCE/LDF/ldfdyn.F90
src/OCE/LDF/ldftra.F90
+4
-4
4 additions, 4 deletions
src/OCE/LDF/ldftra.F90
with
11 additions
and
11 deletions
src/OCE/LDF/ldfdyn.F90
+
7
−
7
View file @
ccc10c35
...
@@ -102,7 +102,7 @@ CONTAINS
...
@@ -102,7 +102,7 @@ CONTAINS
!! = 20 = F(i,j) = F(e1,e2) or F(e1^3,e2^3) (lap or bilap case)
!! = 20 = F(i,j) = F(e1,e2) or F(e1^3,e2^3) (lap or bilap case)
!! =-30 => = F(i,j,k) = shape read in 'eddy_viscosity_3D.nc' file
!! =-30 => = F(i,j,k) = shape read in 'eddy_viscosity_3D.nc' file
!! = 30 = F(i,j,k) = 2D (case 20) + decrease with depth (case 10)
!! = 30 = F(i,j,k) = 2D (case 20) + decrease with depth (case 10)
!! = 31 = F(i,j,k,t) = F(local velocity) ( |u|e /
1
2 laplacian operator
!! = 31 = F(i,j,k,t) = F(local velocity) ( |u|e /
2 laplacian operator
!! or |u|e^3/12 bilaplacian operator )
!! or |u|e^3/12 bilaplacian operator )
!! = 32 = F(i,j,k,t) = F(local deformation rate and gridscale) (D and L) (Smagorinsky)
!! = 32 = F(i,j,k,t) = F(local deformation rate and gridscale) (D and L) (Smagorinsky)
!! ( L^2|D| laplacian operator
!! ( L^2|D| laplacian operator
...
@@ -357,7 +357,7 @@ CONTAINS
...
@@ -357,7 +357,7 @@ CONTAINS
!! ** Method : time varying eddy viscosity coefficients:
!! ** Method : time varying eddy viscosity coefficients:
!!
!!
!! nn_ahm_ijk_t = 31 ahmt, ahmf = F(i,j,k,t) = F(local velocity)
!! nn_ahm_ijk_t = 31 ahmt, ahmf = F(i,j,k,t) = F(local velocity)
!! ( |u|e /
1
2 or |u|e^3/
1
2 for laplacian
or bilaplacian operator )
!! ( |u|e /
2 or |u|e^3/2 for laplacian
, u|e^3/12 f
or bilaplacian operator )
!!
!!
!! nn_ahm_ijk_t = 32 ahmt, ahmf = F(i,j,k,t) = F(local deformation rate and gridscale) (D and L) (Smagorinsky)
!! nn_ahm_ijk_t = 32 ahmt, ahmf = F(i,j,k,t) = F(local deformation rate and gridscale) (D and L) (Smagorinsky)
!! ( L^2|D| or L^4|D|/8 for laplacian or bilaplacian operator )
!! ( L^2|D| or L^4|D|/8 for laplacian or bilaplacian operator )
...
@@ -379,20 +379,20 @@ CONTAINS
...
@@ -379,20 +379,20 @@ CONTAINS
!
!
CASE
(
31
)
!== time varying 3D field ==! = F( local velocity )
CASE
(
31
)
!== time varying 3D field ==! = F( local velocity )
!
!
IF
(
ln_dynldf_lap
)
THEN
! laplacian operator : |u| e /
1
2 = |u/
14
4| e
IF
(
ln_dynldf_lap
)
THEN
! laplacian operator : |u| e /
2 = |u/
4| e
DO
jk
=
1
,
jpkm1
DO
jk
=
1
,
jpkm1
! r1_8 = 1 / (2*2 * 2)
DO_2D
(
0
,
0
,
0
,
0
)
DO_2D
(
0
,
0
,
0
,
0
)
zu2pv2_ij
=
uu
(
ji
,
jj
,
jk
,
Kbb
)
*
uu
(
ji
,
jj
,
jk
,
Kbb
)
+
vv
(
ji
,
jj
,
jk
,
Kbb
)
*
vv
(
ji
,
jj
,
jk
,
Kbb
)
zu2pv2_ij
=
uu
(
ji
,
jj
,
jk
,
Kbb
)
*
uu
(
ji
,
jj
,
jk
,
Kbb
)
+
vv
(
ji
,
jj
,
jk
,
Kbb
)
*
vv
(
ji
,
jj
,
jk
,
Kbb
)
zu2pv2_ij_m1
=
uu
(
ji
-1
,
jj
,
jk
,
Kbb
)
*
uu
(
ji
-1
,
jj
,
jk
,
Kbb
)
+
vv
(
ji
,
jj
-1
,
jk
,
Kbb
)
*
vv
(
ji
,
jj
-1
,
jk
,
Kbb
)
zu2pv2_ij_m1
=
uu
(
ji
-1
,
jj
,
jk
,
Kbb
)
*
uu
(
ji
-1
,
jj
,
jk
,
Kbb
)
+
vv
(
ji
,
jj
-1
,
jk
,
Kbb
)
*
vv
(
ji
,
jj
-1
,
jk
,
Kbb
)
zu2pv2_ij_p1
=
uu
(
ji
,
jj
+1
,
jk
,
Kbb
)
*
uu
(
ji
,
jj
+1
,
jk
,
Kbb
)
+
vv
(
ji
+1
,
jj
,
jk
,
Kbb
)
*
vv
(
ji
+1
,
jj
,
jk
,
Kbb
)
zu2pv2_ij_p1
=
uu
(
ji
,
jj
+1
,
jk
,
Kbb
)
*
uu
(
ji
,
jj
+1
,
jk
,
Kbb
)
+
vv
(
ji
+1
,
jj
,
jk
,
Kbb
)
*
vv
(
ji
+1
,
jj
,
jk
,
Kbb
)
zemax
=
MAX
(
e1t
(
ji
,
jj
)
,
e2t
(
ji
,
jj
)
)
zemax
=
MAX
(
e1t
(
ji
,
jj
)
,
e2t
(
ji
,
jj
)
)
ahmt
(
ji
,
jj
,
jk
)
=
SQRT
(
(
zu2pv2_ij
+
zu2pv2_ij_m1
)
*
r1_
28
8
)
*
zemax
*
tmask
(
ji
,
jj
,
jk
)
! 288= 12*12 * 2
ahmt
(
ji
,
jj
,
jk
)
=
SQRT
(
(
zu2pv2_ij
+
zu2pv2_ij_m1
)
*
r1_8
)
*
zemax
*
tmask
(
ji
,
jj
,
jk
)
zemax
=
MAX
(
e1f
(
ji
,
jj
)
,
e2f
(
ji
,
jj
)
)
zemax
=
MAX
(
e1f
(
ji
,
jj
)
,
e2f
(
ji
,
jj
)
)
ahmf
(
ji
,
jj
,
jk
)
=
SQRT
(
(
zu2pv2_ij
+
zu2pv2_ij_p1
)
*
r1_
28
8
)
*
zemax
*
fmask
(
ji
,
jj
,
jk
)
! 288= 12*12 * 2
ahmf
(
ji
,
jj
,
jk
)
=
SQRT
(
(
zu2pv2_ij
+
zu2pv2_ij_p1
)
*
r1_8
)
*
zemax
*
fmask
(
ji
,
jj
,
jk
)
END_2D
END_2D
END
DO
END
DO
ELSEIF
(
ln_dynldf_blp
)
THEN
! bilaplacian operator : sqrt( |u| e^3 /12 ) = sqrt( |u/144| e ) * e
ELSEIF
(
ln_dynldf_blp
)
THEN
! bilaplacian operator : sqrt( |u| e^3 /12 ) = sqrt( |u/144| e ) * e
DO
jk
=
1
,
jpkm1
DO
jk
=
1
,
jpkm1
! r1_288 = 1 / (12*12 * 2)
DO_2D
(
0
,
0
,
0
,
0
)
DO_2D
(
0
,
0
,
0
,
0
)
zu2pv2_ij
=
uu
(
ji
,
jj
,
jk
,
Kbb
)
*
uu
(
ji
,
jj
,
jk
,
Kbb
)
+
vv
(
ji
,
jj
,
jk
,
Kbb
)
*
vv
(
ji
,
jj
,
jk
,
Kbb
)
zu2pv2_ij
=
uu
(
ji
,
jj
,
jk
,
Kbb
)
*
uu
(
ji
,
jj
,
jk
,
Kbb
)
+
vv
(
ji
,
jj
,
jk
,
Kbb
)
*
vv
(
ji
,
jj
,
jk
,
Kbb
)
zu2pv2_ij_m1
=
uu
(
ji
-1
,
jj
,
jk
,
Kbb
)
*
uu
(
ji
-1
,
jj
,
jk
,
Kbb
)
+
vv
(
ji
,
jj
-1
,
jk
,
Kbb
)
*
vv
(
ji
,
jj
-1
,
jk
,
Kbb
)
zu2pv2_ij_m1
=
uu
(
ji
-1
,
jj
,
jk
,
Kbb
)
*
uu
(
ji
-1
,
jj
,
jk
,
Kbb
)
+
vv
(
ji
,
jj
-1
,
jk
,
Kbb
)
*
vv
(
ji
,
jj
-1
,
jk
,
Kbb
)
...
...
This diff is collapsed.
Click to expand it.
src/OCE/LDF/ldftra.F90
+
4
−
4
View file @
ccc10c35
...
@@ -389,7 +389,7 @@ CONTAINS
...
@@ -389,7 +389,7 @@ CONTAINS
!! with a reduction to 0 in vicinity of the Equator
!! with a reduction to 0 in vicinity of the Equator
!! nn_aht_ijk_t = 21 ahtu, ahtv = F(i,j, t) = F(growth rate of baroclinic instability)
!! nn_aht_ijk_t = 21 ahtu, ahtv = F(i,j, t) = F(growth rate of baroclinic instability)
!!
!!
!! = 31 ahtu, ahtv = F(i,j,k,t) = F(local velocity) ( |u|e /
1
2 laplacian operator
!! = 31 ahtu, ahtv = F(i,j,k,t) = F(local velocity) ( |u|e /
2 laplacian operator
!! or |u|e^3/12 bilaplacian operator )
!! or |u|e^3/12 bilaplacian operator )
!!
!!
!! * time varying EIV coefficients: call to ldf_eiv routine
!! * time varying EIV coefficients: call to ldf_eiv routine
...
@@ -440,10 +440,10 @@ CONTAINS
...
@@ -440,10 +440,10 @@ CONTAINS
END
DO
END
DO
!
!
CASE
(
31
)
!== time varying 3D field ==! = F( local velocity )
CASE
(
31
)
!== time varying 3D field ==! = F( local velocity )
IF
(
ln_traldf_lap
)
THEN
! laplacian operator |u| e /
1
2
IF
(
ln_traldf_lap
)
THEN
! laplacian operator |u| e /
2
DO
jk
=
1
,
jpkm1
DO
jk
=
1
,
jpkm1
ahtu
(:,:,
jk
)
=
ABS
(
uu
(:,:,
jk
,
Kbb
)
)
*
e1u
(:,:)
*
r1_
1
2
! n.b. uu,vv are masked
ahtu
(:,:,
jk
)
=
ABS
(
uu
(:,:,
jk
,
Kbb
)
)
*
e1u
(:,:)
*
r1_2
! n.b. uu,vv are masked
ahtv
(:,:,
jk
)
=
ABS
(
vv
(:,:,
jk
,
Kbb
)
)
*
e2v
(:,:)
*
r1_
1
2
ahtv
(:,:,
jk
)
=
ABS
(
vv
(:,:,
jk
,
Kbb
)
)
*
e2v
(:,:)
*
r1_2
END
DO
END
DO
ELSEIF
(
ln_traldf_blp
)
THEN
! bilaplacian operator sqrt( |u| e^3 /12 ) = sqrt( |u| e /12 ) * e
ELSEIF
(
ln_traldf_blp
)
THEN
! bilaplacian operator sqrt( |u| e^3 /12 ) = sqrt( |u| e /12 ) * e
DO
jk
=
1
,
jpkm1
DO
jk
=
1
,
jpkm1
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment