Newer
Older
MODULE lib_fortran
!!======================================================================
!! *** MODULE lib_fortran ***
!! Fortran utilities: includes some low levels fortran functionality
!!======================================================================
!! History : 3.2 ! 2010-05 (M. Dunphy, R. Benshila) Original code
!! 3.4 ! 2013-06 (C. Rousset) add glob_min, glob_max
!! + 3d dim. of input is fexible (jpk, jpl...)
!! 4.0 ! 2016-06 (T. Lovato) double precision global sum by default
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! glob_sum : generic interface for global masked summation over
!! the interior domain for 1 or 2 2D or 3D arrays
!! it works only for T points
!! SIGN : generic interface for SIGN to overwrite f95 behaviour
!! of intrinsinc sign function
!!----------------------------------------------------------------------
USE par_oce ! Ocean parameter
USE dom_oce ! ocean domain
USE in_out_manager ! I/O manager
USE lib_mpp ! distributed memory computing
USE lbclnk ! ocean lateral boundary conditions
IMPLICIT NONE
PRIVATE
PUBLIC glob_sum ! used in many places (masked with tmask_i = ssmask * (excludes halo+duplicated points (NP folding)) )
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
PUBLIC local_sum ! used in trcrad, local operation before glob_sum_delay
PUBLIC sum3x3 ! used in trcrad, do a sum over 3x3 boxes
PUBLIC DDPDD ! also used in closea module
PUBLIC glob_min, glob_max
PUBLIC glob_sum_vec
PUBLIC glob_min_vec, glob_max_vec
#if defined key_nosignedzero
PUBLIC SIGN
#endif
INTERFACE glob_sum
MODULE PROCEDURE glob_sum_1d, glob_sum_2d, glob_sum_3d
END INTERFACE
INTERFACE local_sum
MODULE PROCEDURE local_sum_2d, local_sum_3d
END INTERFACE
INTERFACE sum3x3
MODULE PROCEDURE sum3x3_2d, sum3x3_3d
END INTERFACE
INTERFACE glob_min
MODULE PROCEDURE glob_min_2d, glob_min_3d
END INTERFACE
INTERFACE glob_max
MODULE PROCEDURE glob_max_2d, glob_max_3d
END INTERFACE
INTERFACE glob_sum_vec
MODULE PROCEDURE glob_sum_vec_3d, glob_sum_vec_4d
END INTERFACE
INTERFACE glob_min_vec
MODULE PROCEDURE glob_min_vec_3d, glob_min_vec_4d
END INTERFACE
INTERFACE glob_max_vec
MODULE PROCEDURE glob_max_vec_3d, glob_max_vec_4d
END INTERFACE
#if defined key_nosignedzero
INTERFACE SIGN
MODULE PROCEDURE SIGN_SCALAR, SIGN_ARRAY_1D, SIGN_ARRAY_2D, SIGN_ARRAY_3D, &
& SIGN_ARRAY_1D_A, SIGN_ARRAY_2D_A, SIGN_ARRAY_3D_A, &
& SIGN_ARRAY_1D_B, SIGN_ARRAY_2D_B, SIGN_ARRAY_3D_B
END INTERFACE
#endif
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: lib_fortran.F90 15376 2021-10-14 20:41:23Z clem $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
# define GLOBSUM_CODE
# define DIM_1d
# define LOCALONLY
# define DIM_2d
# include "lib_fortran_generic.h90"
# undef DIM_2d
# define DIM_3d
# include "lib_fortran_generic.h90"
# undef DIM_3d
# undef LOCALONLY
# define VEC
# define DIM_3d
# include "lib_fortran_generic.h90"
# undef DIM_3d
# define DIM_4d
# include "lib_fortran_generic.h90"
# undef DIM_4d
# undef VEC
# undef GLOBSUM_CODE
# define GLOBMINMAX_CODE
# define DIM_2d
# define OPERATION_GLOBMIN
# include "lib_fortran_generic.h90"
# undef OPERATION_GLOBMIN
# define OPERATION_GLOBMAX
# include "lib_fortran_generic.h90"
# undef OPERATION_GLOBMAX
# define OPERATION_GLOBMIN
# include "lib_fortran_generic.h90"
# undef OPERATION_GLOBMIN
# define OPERATION_GLOBMAX
# include "lib_fortran_generic.h90"
# undef OPERATION_GLOBMAX
# undef DIM_3
# define VEC
# define DIM_3d
# define OPERATION_GLOBMIN
# include "lib_fortran_generic.h90"
# undef OPERATION_GLOBMIN
# define OPERATION_GLOBMAX
# include "lib_fortran_generic.h90"
# undef OPERATION_GLOBMAX
# undef DIM_3d
# define DIM_4d
# define OPERATION_GLOBMIN
# include "lib_fortran_generic.h90"
# undef OPERATION_GLOBMIN
# define OPERATION_GLOBMAX
# include "lib_fortran_generic.h90"
# undef OPERATION_GLOBMAX
# undef DIM_4d
# undef VEC
# undef GLOBMINMAX_CODE
! ! FUNCTION sum3x3 !
SUBROUTINE sum3x3_2d( p2d )
!!-----------------------------------------------------------------------
!! *** routine sum3x3_2d ***
!!
!! ** Purpose : sum over 3x3 boxes
!!----------------------------------------------------------------------
REAL(wp), DIMENSION (:,:), INTENT(inout) :: p2d
!
INTEGER :: ji, ji2, jj, jj2 ! dummy loop indices
!!----------------------------------------------------------------------
!
IF( SIZE(p2d,1) /= jpi ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_2d, the first dimension is not equal to jpi' )
IF( SIZE(p2d,2) /= jpj ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_2d, the second dimension is not equal to jpj' )
!
! work over the whole domain (guarantees all internal cells are set when nn_hls=2)
!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
IF( MOD(mig(ji,nn_hls), 3) == MOD(nn_hls, 3) .AND. & ! 1st bottom left corner always at (Nis0-1, Njs0-1)
& MOD(mjg(jj,nn_hls), 3) == MOD(nn_hls, 3) ) THEN ! bottom left corner of a 3x3 box
ji2 = MIN(mig(ji,nn_hls)+2, jpiglo) - nimpp + 1 ! right position of the box
jj2 = MIN(mjg(jj,nn_hls)+2, jpjglo) - njmpp + 1 ! upper position of the box
IF( ji2 <= jpi .AND. jj2 <= jpj ) THEN ! the box is fully included in the local mpi domain
p2d(ji:ji2,jj:jj2) = SUM(p2d(ji:ji2,jj:jj2))
ENDIF
ENDIF
END_2D
CALL lbc_lnk( 'lib_fortran', p2d, 'T', 1.0_wp )
! no need for 2nd exchange when nn_hls > 1
IF( nn_hls == 1 ) THEN
IF( mpiRnei(nn_hls,jpwe) > -1 ) THEN ! 1st column was changed during the previous call to lbc_lnk
IF( MOD(mig( 1,nn_hls), 3) == 1 ) & ! 1st box start at i=1 -> column 1 to 3 correctly computed locally
p2d( 1,:) = p2d( 2,:) ! previous lbc_lnk corrupted column 1 -> put it back using column 2
IF( MOD(mig( 1,nn_hls), 3) == 2 ) & ! 1st box start at i=3 -> column 1 and 2 correctly computed on w-neighbourh
p2d( 2,:) = p2d( 1,:) ! previous lbc_lnk fix column 1 -> copy it to column 2
IF( MOD(mig(jpi-2,nn_hls), 3) == 1 ) p2d( jpi,:) = p2d(jpi-1,:)
IF( MOD(mig(jpi-2,nn_hls), 3) == 0 ) p2d(jpi-1,:) = p2d( jpi,:)
IF( MOD(mjg( 1,nn_hls), 3) == 1 ) p2d(:, 1) = p2d(:, 2)
IF( MOD(mjg( 1,nn_hls), 3) == 2 ) p2d(:, 2) = p2d(:, 1)
IF( MOD(mjg(jpj-2,nn_hls), 3) == 1 ) p2d(:, jpj) = p2d(:,jpj-1)
IF( MOD(mjg(jpj-2,nn_hls), 3) == 0 ) p2d(:,jpj-1) = p2d(:, jpj)
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
ENDIF
CALL lbc_lnk( 'lib_fortran', p2d, 'T', 1.0_wp )
ENDIF
END SUBROUTINE sum3x3_2d
SUBROUTINE sum3x3_3d( p3d )
!!-----------------------------------------------------------------------
!! *** routine sum3x3_3d ***
!!
!! ** Purpose : sum over 3x3 boxes
!!----------------------------------------------------------------------
REAL(wp), DIMENSION (:,:,:), INTENT(inout) :: p3d
!
INTEGER :: ji, ji2, jj, jj2, jn ! dummy loop indices
INTEGER :: ipn ! Third dimension size
!!----------------------------------------------------------------------
!
IF( SIZE(p3d,1) /= jpi ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_3d, the first dimension is not equal to jpi' )
IF( SIZE(p3d,2) /= jpj ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_3d, the second dimension is not equal to jpj' )
ipn = SIZE(p3d,3)
!
DO jn = 1, ipn
!
! work over the whole domain (guarantees all internal cells are set when nn_hls=2)
!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
IF( MOD(mig(ji,nn_hls), 3) == MOD(nn_hls, 3) .AND. & ! 1st bottom left corner always at (Nis0-1, Njs0-1)
& MOD(mjg(jj,nn_hls), 3) == MOD(nn_hls, 3) ) THEN ! bottom left corner of a 3x3 box
ji2 = MIN(mig(ji,nn_hls)+2, jpiglo) - nimpp + 1 ! right position of the box
jj2 = MIN(mjg(jj,nn_hls)+2, jpjglo) - njmpp + 1 ! upper position of the box
IF( ji2 <= jpi .AND. jj2 <= jpj ) THEN ! the box is fully included in the local mpi domain
p3d(ji:ji2,jj:jj2,jn) = SUM(p3d(ji:ji2,jj:jj2,jn))
ENDIF
ENDIF
END_2D
END DO
CALL lbc_lnk( 'lib_fortran', p3d, 'T', 1.0_wp )
! no need for 2nd exchange when nn_hls > 1
IF( nn_hls == 1 ) THEN
IF( mpiRnei(nn_hls,jpwe) > -1 ) THEN ! 1st column was changed during the previous call to lbc_lnk
IF( MOD(mig( 1,nn_hls), 3) == 1 ) & ! 1st box start at i=1 -> column 1 to 3 correctly computed locally
p3d( 1,:,:) = p3d( 2,:,:) ! previous lbc_lnk corrupted column 1 -> put it back using column 2
IF( MOD(mig( 1,nn_hls), 3) == 2 ) & ! 1st box start at i=3 -> column 1 and 2 correctly computed on w-neighbourh
p3d( 2,:,:) = p3d( 1,:,:) ! previous lbc_lnk fix column 1 -> copy it to column 2
IF( MOD(mig(jpi-2,nn_hls), 3) == 1 ) p3d( jpi,:,:) = p3d(jpi-1,:,:)
IF( MOD(mig(jpi-2,nn_hls), 3) == 0 ) p3d(jpi-1,:,:) = p3d( jpi,:,:)
IF( MOD(mjg( 1,nn_hls), 3) == 1 ) p3d(:, 1,:) = p3d(:, 2,:)
IF( MOD(mjg( 1,nn_hls), 3) == 2 ) p3d(:, 2,:) = p3d(:, 1,:)
IF( MOD(mjg(jpj-2,nn_hls), 3) == 1 ) p3d(:, jpj,:) = p3d(:,jpj-1,:)
IF( MOD(mjg(jpj-2,nn_hls), 3) == 0 ) p3d(:,jpj-1,:) = p3d(:, jpj,:)
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
ENDIF
CALL lbc_lnk( 'lib_fortran', p3d, 'T', 1.0_wp )
ENDIF
END SUBROUTINE sum3x3_3d
SUBROUTINE DDPDD( ydda, yddb )
!!----------------------------------------------------------------------
!! *** ROUTINE DDPDD ***
!!
!! ** Purpose : Add a scalar element to a sum
!!
!!
!! ** Method : The code uses the compensated summation with doublet
!! (sum,error) emulated useing complex numbers. ydda is the
!! scalar to add to the summ yddb
!!
!! ** Action : This does only work for MPI.
!!
!! References : Using Acurate Arithmetics to Improve Numerical
!! Reproducibility and Sability in Parallel Applications
!! Yun HE and Chris H. Q. DING, Journal of Supercomputing 18, 259-277, 2001
!!----------------------------------------------------------------------
COMPLEX(dp), INTENT(in ) :: ydda
COMPLEX(dp), INTENT(inout) :: yddb
!
REAL(dp) :: zerr, zt1, zt2 ! local work variables
!!-----------------------------------------------------------------------
!
! Compute ydda + yddb using Knuth's trick.
zt1 = REAL(ydda) + REAL(yddb)
zerr = zt1 - REAL(ydda)
zt2 = ( (REAL(yddb) - zerr) + (REAL(ydda) - (zt1 - zerr)) ) &
& + AIMAG(ydda) + AIMAG(yddb)
!
! The result is t1 + t2, after normalization.
yddb = CMPLX( zt1 + zt2, zt2 - ((zt1 + zt2) - zt1), wp )
!
END SUBROUTINE DDPDD
#if defined key_nosignedzero
!!----------------------------------------------------------------------
!! 'key_nosignedzero' F90 SIGN
!!----------------------------------------------------------------------
FUNCTION SIGN_SCALAR( pa, pb )
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_SCALAR ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa,pb ! input
REAL(wp) :: SIGN_SCALAR ! result
!!-----------------------------------------------------------------------
IF ( pb >= 0.e0) THEN ; SIGN_SCALAR = ABS(pa)
ELSE ; SIGN_SCALAR =-ABS(pa)
ENDIF
END FUNCTION SIGN_SCALAR
FUNCTION SIGN_ARRAY_1D( pa, pb )
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_1D ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa,pb(:) ! input
REAL(wp) :: SIGN_ARRAY_1D(SIZE(pb,1)) ! result
!!-----------------------------------------------------------------------
WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_1D = ABS(pa)
ELSEWHERE ; SIGN_ARRAY_1D =-ABS(pa)
END WHERE
END FUNCTION SIGN_ARRAY_1D
FUNCTION SIGN_ARRAY_2D(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_2D ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa,pb(:,:) ! input
REAL(wp) :: SIGN_ARRAY_2D(SIZE(pb,1),SIZE(pb,2)) ! result
!!-----------------------------------------------------------------------
WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_2D = ABS(pa)
ELSEWHERE ; SIGN_ARRAY_2D =-ABS(pa)
END WHERE
END FUNCTION SIGN_ARRAY_2D
FUNCTION SIGN_ARRAY_3D(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_3D ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa,pb(:,:,:) ! input
REAL(wp) :: SIGN_ARRAY_3D(SIZE(pb,1),SIZE(pb,2),SIZE(pb,3)) ! result
!!-----------------------------------------------------------------------
WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_3D = ABS(pa)
ELSEWHERE ; SIGN_ARRAY_3D =-ABS(pa)
END WHERE
END FUNCTION SIGN_ARRAY_3D
FUNCTION SIGN_ARRAY_1D_A(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_1D_A ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa(:),pb(:) ! input
REAL(wp) :: SIGN_ARRAY_1D_A(SIZE(pb,1)) ! result
!!-----------------------------------------------------------------------
WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_1D_A = ABS(pa)
ELSEWHERE ; SIGN_ARRAY_1D_A =-ABS(pa)
END WHERE
END FUNCTION SIGN_ARRAY_1D_A
FUNCTION SIGN_ARRAY_2D_A(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_2D_A ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa(:,:),pb(:,:) ! input
REAL(wp) :: SIGN_ARRAY_2D_A(SIZE(pb,1),SIZE(pb,2)) ! result
!!-----------------------------------------------------------------------
WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_2D_A = ABS(pa)
ELSEWHERE ; SIGN_ARRAY_2D_A =-ABS(pa)
END WHERE
END FUNCTION SIGN_ARRAY_2D_A
FUNCTION SIGN_ARRAY_3D_A(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_3D_A ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa(:,:,:),pb(:,:,:) ! input
REAL(wp) :: SIGN_ARRAY_3D_A(SIZE(pb,1),SIZE(pb,2),SIZE(pb,3)) ! result
!!-----------------------------------------------------------------------
WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_3D_A = ABS(pa)
ELSEWHERE ; SIGN_ARRAY_3D_A =-ABS(pa)
END WHERE
END FUNCTION SIGN_ARRAY_3D_A
FUNCTION SIGN_ARRAY_1D_B(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_1D_B ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa(:),pb ! input
REAL(wp) :: SIGN_ARRAY_1D_B(SIZE(pa,1)) ! result
!!-----------------------------------------------------------------------
IF( pb >= 0.e0 ) THEN ; SIGN_ARRAY_1D_B = ABS(pa)
ELSE ; SIGN_ARRAY_1D_B =-ABS(pa)
ENDIF
END FUNCTION SIGN_ARRAY_1D_B
FUNCTION SIGN_ARRAY_2D_B(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_2D_B ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa(:,:),pb ! input
REAL(wp) :: SIGN_ARRAY_2D_B(SIZE(pa,1),SIZE(pa,2)) ! result
!!-----------------------------------------------------------------------
IF( pb >= 0.e0 ) THEN ; SIGN_ARRAY_2D_B = ABS(pa)
ELSE ; SIGN_ARRAY_2D_B =-ABS(pa)
ENDIF
END FUNCTION SIGN_ARRAY_2D_B
FUNCTION SIGN_ARRAY_3D_B(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_3D_B ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa(:,:,:),pb ! input
REAL(wp) :: SIGN_ARRAY_3D_B(SIZE(pa,1),SIZE(pa,2),SIZE(pa,3)) ! result
!!-----------------------------------------------------------------------
IF( pb >= 0.e0 ) THEN ; SIGN_ARRAY_3D_B = ABS(pa)
ELSE ; SIGN_ARRAY_3D_B =-ABS(pa)
ENDIF
END FUNCTION SIGN_ARRAY_3D_B
#endif
!!======================================================================
END MODULE lib_fortran