Skip to content
Snippets Groups Projects
dynzdf.F90 25.5 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
MODULE dynzdf
   !!==============================================================================
   !!                 ***  MODULE  dynzdf  ***
   !! Ocean dynamics :  vertical component of the momentum mixing trend
   !!==============================================================================
   !! History :  1.0  !  2005-11  (G. Madec)  Original code
   !!            3.3  !  2010-10  (C. Ethe, G. Madec) reorganisation of initialisation phase
   !!            4.0  !  2017-06  (G. Madec) remove the explicit time-stepping option + avm at t-point
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   dyn_zdf       : compute the after velocity through implicit calculation of vertical mixing
   !!----------------------------------------------------------------------
   USE oce            ! ocean dynamics and tracers variables
   USE phycst         ! physical constants
   USE dom_oce        ! ocean space and time domain variables 
   USE sbc_oce        ! surface boundary condition: ocean
   USE zdf_oce        ! ocean vertical physics variables
   USE zdfdrg         ! vertical physics: top/bottom drag coef.
   USE dynadv    ,ONLY: ln_dynadv_vec    ! dynamics: advection form
#if defined key_loop_fusion
   USE dynldf_iso_lf,ONLY: akzu, akzv       ! dynamics: vertical component of rotated lateral mixing 
#else
   USE dynldf_iso,ONLY: akzu, akzv       ! dynamics: vertical component of rotated lateral mixing 
#endif
   USE ldfdyn         ! lateral diffusion: eddy viscosity coef. and type of operator
   USE trd_oce        ! trends: ocean variables
   USE trddyn         ! trend manager: dynamics
   !
   USE in_out_manager ! I/O manager
   USE lib_mpp        ! MPP library
   USE prtctl         ! Print control
   USE timing         ! Timing

   IMPLICIT NONE
   PRIVATE

   PUBLIC   dyn_zdf   !  routine called by step.F90

   REAL(wp) ::  r_vvl     ! non-linear free surface indicator: =0 if ln_linssh=T, =1 otherwise 

   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: dynzdf.F90 14834 2021-05-11 09:24:44Z hadcv $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS
   
   SUBROUTINE dyn_zdf( kt, Kbb, Kmm, Krhs, puu, pvv, Kaa )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE dyn_zdf  ***
      !!
      !! ** Purpose :   compute the trend due to the vert. momentum diffusion
      !!              together with the Leap-Frog time stepping using an 
      !!              implicit scheme.
      !!
      !! ** Method  :  - Leap-Frog time stepping on all trends but the vertical mixing
      !!         u(after) =         u(before) + 2*dt *       u(rhs)                vector form or linear free surf.
      !!         u(after) = ( e3u_b*u(before) + 2*dt * e3u_n*u(rhs) ) / e3u_after   otherwise
      !!               - update the after velocity with the implicit vertical mixing.
      !!      This requires to solver the following system: 
      !!         u(after) = u(after) + 1/e3u_after  dk+1[ mi(avm) / e3uw_after dk[ua] ]
      !!      with the following surface/top/bottom boundary condition:
      !!      surface: wind stress input (averaged over kt-1/2 & kt+1/2)
      !!      top & bottom : top stress (iceshelf-ocean) & bottom stress (cf zdfdrg.F90)
      !!
      !! ** Action :   (puu(:,:,:,Kaa),pvv(:,:,:,Kaa))   after velocity 
      !!---------------------------------------------------------------------
      INTEGER                             , INTENT( in )  ::  kt                  ! ocean time-step index
      INTEGER                             , INTENT( in )  ::  Kbb, Kmm, Krhs, Kaa ! ocean time level indices
      REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) ::  puu, pvv            ! ocean velocities and RHS of momentum equation
      !
      INTEGER  ::   ji, jj, jk         ! dummy loop indices
      INTEGER  ::   iku, ikv           ! local integers
      REAL(wp) ::   zzwi, ze3ua, zdt   ! local scalars
      REAL(wp) ::   zzws, ze3va        !   -      -
      REAL(wp) ::   z1_e3ua, z1_e3va   !   -      -
      REAL(wp) ::   zWu , zWv          !   -      -
      REAL(wp) ::   zWui, zWvi         !   -      -
      REAL(wp) ::   zWus, zWvs         !   -      -
      REAL(wp), DIMENSION(A2D(nn_hls),jpk)        ::  zwi, zwd, zws   ! 3D workspace
      REAL(wp), DIMENSION(:,:,:), ALLOCATABLE ::   ztrdu, ztrdv   !  -      -
      !!---------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('dyn_zdf')
      !
      IF( .NOT. l_istiled .OR. ntile == 1 )  THEN                       ! Do only on the first tile
         IF( kt == nit000 ) THEN       !* initialization
            IF(lwp) WRITE(numout,*)
            IF(lwp) WRITE(numout,*) 'dyn_zdf_imp : vertical momentum diffusion implicit operator'
            IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ '
            !
            If( ln_linssh ) THEN   ;    r_vvl = 0._wp    ! non-linear free surface indicator
            ELSE                   ;    r_vvl = 1._wp
            ENDIF
         ENDIF
      ENDIF
      !                             !* explicit top/bottom drag case
      IF( .NOT.ln_drgimp )   CALL zdf_drg_exp( kt, Kmm, puu(:,:,:,Kbb), pvv(:,:,:,Kbb), puu(:,:,:,Krhs), pvv(:,:,:,Krhs) )  ! add top/bottom friction trend to (puu(Kaa),pvv(Kaa))
      !
      !
      IF( l_trddyn )   THEN         !* temporary save of ta and sa trends
         ALLOCATE( ztrdu(jpi,jpj,jpk), ztrdv(jpi,jpj,jpk) ) 
         ztrdu(:,:,:) = puu(:,:,:,Krhs)
         ztrdv(:,:,:) = pvv(:,:,:,Krhs)
      ENDIF
      !
      !              !==  RHS: Leap-Frog time stepping on all trends but the vertical mixing  ==!   (put in puu(:,:,:,Kaa),pvv(:,:,:,Kaa))
      !
      !                    ! time stepping except vertical diffusion
      IF( ln_dynadv_vec .OR. ln_linssh ) THEN   ! applied on velocity
         DO_3D( 0, 0, 0, 0, 1, jpkm1 )
            puu(ji,jj,jk,Kaa) = ( puu(ji,jj,jk,Kbb) + rDt * puu(ji,jj,jk,Krhs) ) * umask(ji,jj,jk)
            pvv(ji,jj,jk,Kaa) = ( pvv(ji,jj,jk,Kbb) + rDt * pvv(ji,jj,jk,Krhs) ) * vmask(ji,jj,jk)
         END_3D
      ELSE                                      ! applied on thickness weighted velocity
         DO_3D( 0, 0, 0, 0, 1, jpkm1 )
            puu(ji,jj,jk,Kaa) = (         e3u(ji,jj,jk,Kbb) * puu(ji,jj,jk,Kbb )  &
               &                  + rDt * e3u(ji,jj,jk,Kmm) * puu(ji,jj,jk,Krhs)  ) &
               &                        / e3u(ji,jj,jk,Kaa) * umask(ji,jj,jk)
            pvv(ji,jj,jk,Kaa) = (         e3v(ji,jj,jk,Kbb) * pvv(ji,jj,jk,Kbb )  &
               &                  + rDt * e3v(ji,jj,jk,Kmm) * pvv(ji,jj,jk,Krhs)  ) &
               &                        / e3v(ji,jj,jk,Kaa) * vmask(ji,jj,jk)
         END_3D
      ENDIF
      !                    ! add top/bottom friction 
      !     With split-explicit free surface, barotropic stress is treated explicitly Update velocities at the bottom.
      !     J. Chanut: The bottom stress is computed considering after barotropic velocities, which does 
      !                not lead to the effective stress seen over the whole barotropic loop. 
      !     G. Madec : in linear free surface, e3u(:,:,:,Kaa) = e3u(:,:,:,Kmm) = e3u_0, so systematic use of e3u(:,:,:,Kaa)
      IF( ln_drgimp .AND. ln_dynspg_ts ) THEN
         DO_3D( 0, 0, 0, 0, 1, jpkm1 )      ! remove barotropic velocities
            puu(ji,jj,jk,Kaa) = ( puu(ji,jj,jk,Kaa) - uu_b(ji,jj,Kaa) ) * umask(ji,jj,jk)
            pvv(ji,jj,jk,Kaa) = ( pvv(ji,jj,jk,Kaa) - vv_b(ji,jj,Kaa) ) * vmask(ji,jj,jk)
         END_3D
         DO_2D( 0, 0, 0, 0 )      ! Add bottom/top stress due to barotropic component only
            iku = mbku(ji,jj)         ! ocean bottom level at u- and v-points 
            ikv = mbkv(ji,jj)         ! (deepest ocean u- and v-points)
            ze3ua =  ( 1._wp - r_vvl ) * e3u(ji,jj,iku,Kmm)    &
               &             + r_vvl   * e3u(ji,jj,iku,Kaa)
            ze3va =  ( 1._wp - r_vvl ) * e3v(ji,jj,ikv,Kmm)    &
               &             + r_vvl   * e3v(ji,jj,ikv,Kaa)
            puu(ji,jj,iku,Kaa) = puu(ji,jj,iku,Kaa) + rDt * 0.5*( rCdU_bot(ji+1,jj)+rCdU_bot(ji,jj) ) * uu_b(ji,jj,Kaa) / ze3ua
            pvv(ji,jj,ikv,Kaa) = pvv(ji,jj,ikv,Kaa) + rDt * 0.5*( rCdU_bot(ji,jj+1)+rCdU_bot(ji,jj) ) * vv_b(ji,jj,Kaa) / ze3va
         END_2D
         IF( ln_isfcav.OR.ln_drgice_imp ) THEN    ! Ocean cavities (ISF)
            DO_2D( 0, 0, 0, 0 )
               iku = miku(ji,jj)         ! top ocean level at u- and v-points 
               ikv = mikv(ji,jj)         ! (first wet ocean u- and v-points)
               ze3ua =  ( 1._wp - r_vvl ) * e3u(ji,jj,iku,Kmm)    &
                  &             + r_vvl   * e3u(ji,jj,iku,Kaa)
               ze3va =  ( 1._wp - r_vvl ) * e3v(ji,jj,ikv,Kmm)    &
                  &             + r_vvl   * e3v(ji,jj,ikv,Kaa)
               puu(ji,jj,iku,Kaa) = puu(ji,jj,iku,Kaa) + rDt * 0.5*( rCdU_top(ji+1,jj)+rCdU_top(ji,jj) ) * uu_b(ji,jj,Kaa) / ze3ua
               pvv(ji,jj,ikv,Kaa) = pvv(ji,jj,ikv,Kaa) + rDt * 0.5*( rCdU_top(ji,jj+1)+rCdU_top(ji,jj) ) * vv_b(ji,jj,Kaa) / ze3va
            END_2D
         END IF
      ENDIF
      !
      !              !==  Vertical diffusion on u  ==!
      !
      !                    !* Matrix construction
      zdt = rDt * 0.5
      IF( ln_zad_Aimp ) THEN   !!
         SELECT CASE( nldf_dyn )
         CASE( np_lap_i )           ! rotated lateral mixing: add its vertical mixing (akzu)
            DO_3D( 0, 0, 0, 0, 1, jpkm1 )
               ze3ua =  ( 1._wp - r_vvl ) * e3u(ji,jj,jk,Kmm)    &
                  &             + r_vvl   * e3u(ji,jj,jk,Kaa)   ! after scale factor at U-point
               zzwi = - zdt * ( avm(ji+1,jj,jk  ) + avm(ji,jj,jk  ) + akzu(ji,jj,jk  ) )   &
                  &         / ( ze3ua * e3uw(ji,jj,jk  ,Kmm) ) * wumask(ji,jj,jk  )
               zzws = - zdt * ( avm(ji+1,jj,jk+1) + avm(ji,jj,jk+1) + akzu(ji,jj,jk+1) )   &
                  &         / ( ze3ua * e3uw(ji,jj,jk+1,Kmm) ) * wumask(ji,jj,jk+1)
               zWui = ( wi(ji,jj,jk  ) + wi(ji+1,jj,jk  ) ) / ze3ua
               zWus = ( wi(ji,jj,jk+1) + wi(ji+1,jj,jk+1) ) / ze3ua
               zwi(ji,jj,jk) = zzwi + zdt * MIN( zWui, 0._wp ) 
               zws(ji,jj,jk) = zzws - zdt * MAX( zWus, 0._wp )
               zwd(ji,jj,jk) = 1._wp - zzwi - zzws + zdt * ( MAX( zWui, 0._wp ) - MIN( zWus, 0._wp ) )
            END_3D
         CASE DEFAULT               ! iso-level lateral mixing
            DO_3D( 0, 0, 0, 0, 1, jpkm1 )
               ze3ua =  ( 1._wp - r_vvl ) * e3u(ji,jj,jk,Kmm)    &    ! after scale factor at U-point
                  &             + r_vvl   * e3u(ji,jj,jk,Kaa)
               zzwi = - zdt * ( avm(ji+1,jj,jk  ) + avm(ji,jj,jk  ) )   &
                  &         / ( ze3ua * e3uw(ji,jj,jk  ,Kmm) ) * wumask(ji,jj,jk  )
               zzws = - zdt * ( avm(ji+1,jj,jk+1) + avm(ji,jj,jk+1) )   &
                  &         / ( ze3ua * e3uw(ji,jj,jk+1,Kmm) ) * wumask(ji,jj,jk+1)
               zWui = ( wi(ji,jj,jk  ) + wi(ji+1,jj,jk  ) ) / ze3ua
               zWus = ( wi(ji,jj,jk+1) + wi(ji+1,jj,jk+1) ) / ze3ua
               zwi(ji,jj,jk) = zzwi + zdt * MIN( zWui, 0._wp )
               zws(ji,jj,jk) = zzws - zdt * MAX( zWus, 0._wp )
               zwd(ji,jj,jk) = 1._wp - zzwi - zzws + zdt * ( MAX( zWui, 0._wp ) - MIN( zWus, 0._wp ) )
            END_3D
         END SELECT
         DO_2D( 0, 0, 0, 0 )     !* Surface boundary conditions
            zwi(ji,jj,1) = 0._wp
            ze3ua =  ( 1._wp - r_vvl ) * e3u(ji,jj,1,Kmm)    &
               &             + r_vvl   * e3u(ji,jj,1,Kaa)
            zzws = - zdt * ( avm(ji+1,jj,2) + avm(ji  ,jj,2) )   &
               &         / ( ze3ua * e3uw(ji,jj,2,Kmm) ) * wumask(ji,jj,2)
            zWus = ( wi(ji  ,jj,2) +  wi(ji+1,jj,2) ) / ze3ua
            zws(ji,jj,1 ) = zzws - zdt * MAX( zWus, 0._wp )
            zwd(ji,jj,1 ) = 1._wp - zzws - zdt * ( MIN( zWus, 0._wp ) )
         END_2D
      ELSE
         SELECT CASE( nldf_dyn )
         CASE( np_lap_i )           ! rotated lateral mixing: add its vertical mixing (akzu)
            DO_3D( 0, 0, 0, 0, 1, jpkm1 )
               ze3ua =  ( 1._wp - r_vvl ) * e3u(ji,jj,jk,Kmm)    &
                  &             + r_vvl   * e3u(ji,jj,jk,Kaa)   ! after scale factor at U-point
               zzwi = - zdt * ( avm(ji+1,jj,jk  ) + avm(ji,jj,jk  ) + akzu(ji,jj,jk  ) )   &
                  &         / ( ze3ua * e3uw(ji,jj,jk  ,Kmm) ) * wumask(ji,jj,jk  )
               zzws = - zdt * ( avm(ji+1,jj,jk+1) + avm(ji,jj,jk+1) + akzu(ji,jj,jk+1) )   &
                  &         / ( ze3ua * e3uw(ji,jj,jk+1,Kmm) ) * wumask(ji,jj,jk+1)
               zwi(ji,jj,jk) = zzwi
               zws(ji,jj,jk) = zzws
               zwd(ji,jj,jk) = 1._wp - zzwi - zzws
            END_3D
         CASE DEFAULT               ! iso-level lateral mixing
            DO_3D( 0, 0, 0, 0, 1, jpkm1 )
               ze3ua =  ( 1._wp - r_vvl ) * e3u(ji,jj,jk,Kmm)    &
                  &             + r_vvl   * e3u(ji,jj,jk,Kaa)   ! after scale factor at U-point
               zzwi = - zdt * ( avm(ji+1,jj,jk  ) + avm(ji,jj,jk  ) )    &
                  &         / ( ze3ua * e3uw(ji,jj,jk  ,Kmm) ) * wumask(ji,jj,jk  )
               zzws = - zdt * ( avm(ji+1,jj,jk+1) + avm(ji,jj,jk+1) )    &
                  &         / ( ze3ua * e3uw(ji,jj,jk+1,Kmm) ) * wumask(ji,jj,jk+1)
               zwi(ji,jj,jk) = zzwi
               zws(ji,jj,jk) = zzws
               zwd(ji,jj,jk) = 1._wp - zzwi - zzws
            END_3D
         END SELECT
         DO_2D( 0, 0, 0, 0 )     !* Surface boundary conditions
            zwi(ji,jj,1) = 0._wp
            zwd(ji,jj,1) = 1._wp - zws(ji,jj,1)
         END_2D
      ENDIF
      !
      !
      !              !==  Apply semi-implicit bottom friction  ==!
      !
      !     Only needed for semi-implicit bottom friction setup. The explicit
      !     bottom friction has been included in "u(v)a" which act as the R.H.S
      !     column vector of the tri-diagonal matrix equation
      !
      IF ( ln_drgimp ) THEN      ! implicit bottom friction
         DO_2D( 0, 0, 0, 0 )
            iku = mbku(ji,jj)       ! ocean bottom level at u- and v-points
            ze3ua =  ( 1._wp - r_vvl ) * e3u(ji,jj,iku,Kmm)    &
               &             + r_vvl   * e3u(ji,jj,iku,Kaa)   ! after scale factor at T-point
            zwd(ji,jj,iku) = zwd(ji,jj,iku) - rDt * 0.5*( rCdU_bot(ji+1,jj)+rCdU_bot(ji,jj) ) / ze3ua
         END_2D
         IF ( ln_isfcav.OR.ln_drgice_imp ) THEN   ! top friction (always implicit)
            DO_2D( 0, 0, 0, 0 )
               !!gm   top Cd is masked (=0 outside cavities) no need of test on mik>=2  ==>> it has been suppressed
               iku = miku(ji,jj)       ! ocean top level at u- and v-points 
               ze3ua =  ( 1._wp - r_vvl ) * e3u(ji,jj,iku,Kmm)    &
                  &             + r_vvl   * e3u(ji,jj,iku,Kaa)   ! after scale factor at T-point
               zwd(ji,jj,iku) = zwd(ji,jj,iku) - rDt * 0.5*( rCdU_top(ji+1,jj)+rCdU_top(ji,jj) ) / ze3ua
            END_2D
         END IF
      ENDIF
      !
      ! Matrix inversion starting from the first level
      !-----------------------------------------------------------------------
      !   solve m.x = y  where m is a tri diagonal matrix ( jpk*jpk )
      !
      !        ( zwd1 zws1   0    0    0  )( zwx1 ) ( zwy1 )
      !        ( zwi2 zwd2 zws2   0    0  )( zwx2 ) ( zwy2 )
      !        (  0   zwi3 zwd3 zws3   0  )( zwx3 )=( zwy3 )
      !        (        ...               )( ...  ) ( ...  )
      !        (  0    0    0   zwik zwdk )( zwxk ) ( zwyk )
      !
      !   m is decomposed in the product of an upper and a lower triangular matrix
      !   The 3 diagonal terms are in 2d arrays: zwd, zws, zwi
      !   The solution (the after velocity) is in puu(:,:,:,Kaa)
      !-----------------------------------------------------------------------
      !
      DO_3D( 0, 0, 0, 0, 2, jpkm1 )   !==  First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1   (increasing k)  ==
         zwd(ji,jj,jk) = zwd(ji,jj,jk) - zwi(ji,jj,jk) * zws(ji,jj,jk-1) / zwd(ji,jj,jk-1)
      END_3D
      !
      DO_2D( 0, 0, 0, 0 )             !==  second recurrence:    SOLk = RHSk - Lk / Dk-1  Lk-1  ==!
         ze3ua =  ( 1._wp - r_vvl ) * e3u(ji,jj,1,Kmm)    &
            &             + r_vvl   * e3u(ji,jj,1,Kaa) 
         puu(ji,jj,1,Kaa) = puu(ji,jj,1,Kaa) + rDt * 0.5_wp * ( utau_b(ji,jj) + utau(ji,jj) )   &
            &                                      / ( ze3ua * rho0 ) * umask(ji,jj,1) 
      END_2D
      DO_3D( 0, 0, 0, 0, 2, jpkm1 )
         puu(ji,jj,jk,Kaa) = puu(ji,jj,jk,Kaa) - zwi(ji,jj,jk) / zwd(ji,jj,jk-1) * puu(ji,jj,jk-1,Kaa)
      END_3D
      !
      DO_2D( 0, 0, 0, 0 )             !==  thrid recurrence : SOLk = ( Lk - Uk * Ek+1 ) / Dk  ==!
         puu(ji,jj,jpkm1,Kaa) = puu(ji,jj,jpkm1,Kaa) / zwd(ji,jj,jpkm1)
      END_2D
      DO_3DS( 0, 0, 0, 0, jpk-2, 1, -1 )
         puu(ji,jj,jk,Kaa) = ( puu(ji,jj,jk,Kaa) - zws(ji,jj,jk) * puu(ji,jj,jk+1,Kaa) ) / zwd(ji,jj,jk)
      END_3D
      !
      !              !==  Vertical diffusion on v  ==!
      !
      !                       !* Matrix construction
      zdt = rDt * 0.5
      IF( ln_zad_Aimp ) THEN   !!
         SELECT CASE( nldf_dyn )
         CASE( np_lap_i )           ! rotated lateral mixing: add its vertical mixing (akzv)
            DO_3D( 0, 0, 0, 0, 1, jpkm1 )
               ze3va =  ( 1._wp - r_vvl ) * e3v(ji,jj,jk,Kmm)    &
                  &             + r_vvl   * e3v(ji,jj,jk,Kaa)   ! after scale factor at V-point
               zzwi = - zdt * ( avm(ji,jj+1,jk  ) + avm(ji,jj,jk  ) + akzv(ji,jj,jk  ) )   &
                  &         / ( ze3va * e3vw(ji,jj,jk  ,Kmm) ) * wvmask(ji,jj,jk  )
               zzws = - zdt * ( avm(ji,jj+1,jk+1) + avm(ji,jj,jk+1) + akzv(ji,jj,jk+1) )   &
                  &         / ( ze3va * e3vw(ji,jj,jk+1,Kmm) ) * wvmask(ji,jj,jk+1)
               zWvi = ( wi(ji,jj,jk  ) + wi(ji,jj+1,jk  ) ) / ze3va
               zWvs = ( wi(ji,jj,jk+1) + wi(ji,jj+1,jk+1) ) / ze3va
               zwi(ji,jj,jk) = zzwi + zdt * MIN( zWvi, 0._wp )
               zws(ji,jj,jk) = zzws - zdt * MAX( zWvs, 0._wp )
               zwd(ji,jj,jk) = 1._wp - zzwi - zzws - zdt * ( - MAX( zWvi, 0._wp ) + MIN( zWvs, 0._wp ) )
            END_3D
         CASE DEFAULT               ! iso-level lateral mixing
            DO_3D( 0, 0, 0, 0, 1, jpkm1 )
               ze3va =  ( 1._wp - r_vvl ) * e3v(ji,jj,jk,Kmm)    &
                  &             + r_vvl   * e3v(ji,jj,jk,Kaa)   ! after scale factor at V-point
               zzwi = - zdt * ( avm(ji,jj+1,jk  ) + avm(ji,jj,jk  ) )    &
                  &         / ( ze3va * e3vw(ji,jj,jk  ,Kmm) ) * wvmask(ji,jj,jk  )
               zzws = - zdt * ( avm(ji,jj+1,jk+1) + avm(ji,jj,jk+1) )    &
                  &         / ( ze3va * e3vw(ji,jj,jk+1,Kmm) ) * wvmask(ji,jj,jk+1)
               zWvi = ( wi(ji,jj,jk  ) + wi(ji,jj+1,jk  ) ) / ze3va
               zWvs = ( wi(ji,jj,jk+1) + wi(ji,jj+1,jk+1) ) / ze3va
               zwi(ji,jj,jk) = zzwi  + zdt * MIN( zWvi, 0._wp )
               zws(ji,jj,jk) = zzws  - zdt * MAX( zWvs, 0._wp )
               zwd(ji,jj,jk) = 1._wp - zzwi - zzws - zdt * ( - MAX( zWvi, 0._wp ) + MIN( zWvs, 0._wp ) )
            END_3D
         END SELECT
         DO_2D( 0, 0, 0, 0 )   !* Surface boundary conditions
            zwi(ji,jj,1) = 0._wp
            ze3va =  ( 1._wp - r_vvl ) * e3v(ji,jj,1,Kmm)    &
               &             + r_vvl   * e3v(ji,jj,1,Kaa)
            zzws = - zdt * ( avm(ji,jj+1,2) + avm(ji,jj,2) )    &
               &         / ( ze3va * e3vw(ji,jj,2,Kmm) ) * wvmask(ji,jj,2)
            zWvs = ( wi(ji,jj  ,2) +  wi(ji,jj+1,2) ) / ze3va
            zws(ji,jj,1 ) = zzws - zdt * MAX( zWvs, 0._wp )
            zwd(ji,jj,1 ) = 1._wp - zzws - zdt * ( MIN( zWvs, 0._wp ) )
         END_2D
      ELSE
         SELECT CASE( nldf_dyn )
         CASE( np_lap_i )           ! rotated lateral mixing: add its vertical mixing (akzu)
            DO_3D( 0, 0, 0, 0, 1, jpkm1 )
               ze3va =  ( 1._wp - r_vvl ) * e3v(ji,jj,jk,Kmm)    &
                  &             + r_vvl   * e3v(ji,jj,jk,Kaa)   ! after scale factor at V-point
               zzwi = - zdt * ( avm(ji,jj+1,jk  ) + avm(ji,jj,jk  ) + akzv(ji,jj,jk  ) )   &
                  &         / ( ze3va * e3vw(ji,jj,jk  ,Kmm) ) * wvmask(ji,jj,jk  )
               zzws = - zdt * ( avm(ji,jj+1,jk+1) + avm(ji,jj,jk+1) + akzv(ji,jj,jk+1) )   &
                  &         / ( ze3va * e3vw(ji,jj,jk+1,Kmm) ) * wvmask(ji,jj,jk+1)
               zwi(ji,jj,jk) = zzwi
               zws(ji,jj,jk) = zzws
               zwd(ji,jj,jk) = 1._wp - zzwi - zzws
            END_3D
         CASE DEFAULT               ! iso-level lateral mixing
            DO_3D( 0, 0, 0, 0, 1, jpkm1 )
               ze3va =  ( 1._wp - r_vvl ) * e3v(ji,jj,jk,Kmm)    &
                  &             + r_vvl   * e3v(ji,jj,jk,Kaa)   ! after scale factor at V-point
               zzwi = - zdt * ( avm(ji,jj+1,jk  ) + avm(ji,jj,jk  ) )    &
                  &         / ( ze3va * e3vw(ji,jj,jk  ,Kmm) ) * wvmask(ji,jj,jk  )
               zzws = - zdt * ( avm(ji,jj+1,jk+1) + avm(ji,jj,jk+1) )    &
                  &         / ( ze3va * e3vw(ji,jj,jk+1,Kmm) ) * wvmask(ji,jj,jk+1)
               zwi(ji,jj,jk) = zzwi
               zws(ji,jj,jk) = zzws
               zwd(ji,jj,jk) = 1._wp - zzwi - zzws
            END_3D
         END SELECT
         DO_2D( 0, 0, 0, 0 )        !* Surface boundary conditions
            zwi(ji,jj,1) = 0._wp
            zwd(ji,jj,1) = 1._wp - zws(ji,jj,1)
         END_2D
      ENDIF
      !
      !              !==  Apply semi-implicit top/bottom friction  ==!
      !
      !     Only needed for semi-implicit bottom friction setup. The explicit
      !     bottom friction has been included in "u(v)a" which act as the R.H.S
      !     column vector of the tri-diagonal matrix equation
      !
      IF( ln_drgimp ) THEN
         DO_2D( 0, 0, 0, 0 )
            ikv = mbkv(ji,jj)       ! (deepest ocean u- and v-points)
            ze3va =  ( 1._wp - r_vvl ) * e3v(ji,jj,ikv,Kmm)    &
               &             + r_vvl   * e3v(ji,jj,ikv,Kaa)   ! after scale factor at T-point
            zwd(ji,jj,ikv) = zwd(ji,jj,ikv) - rDt * 0.5*( rCdU_bot(ji,jj+1)+rCdU_bot(ji,jj) ) / ze3va           
         END_2D
         IF ( ln_isfcav.OR.ln_drgice_imp ) THEN
            DO_2D( 0, 0, 0, 0 )
               ikv = mikv(ji,jj)       ! (first wet ocean u- and v-points)
               ze3va =  ( 1._wp - r_vvl ) * e3v(ji,jj,ikv,Kmm)    &
                  &             + r_vvl   * e3v(ji,jj,ikv,Kaa)   ! after scale factor at T-point
               zwd(ji,jj,ikv) = zwd(ji,jj,ikv) - rDt * 0.5*( rCdU_top(ji,jj+1)+rCdU_top(ji,jj) ) / ze3va
            END_2D
         ENDIF
      ENDIF

      ! Matrix inversion
      !-----------------------------------------------------------------------
      !   solve m.x = y  where m is a tri diagonal matrix ( jpk*jpk )
      !
      !        ( zwd1 zws1   0    0    0  )( zwx1 ) ( zwy1 )
      !        ( zwi2 zwd2 zws2   0    0  )( zwx2 ) ( zwy2 )
      !        (  0   zwi3 zwd3 zws3   0  )( zwx3 )=( zwy3 )
      !        (        ...               )( ...  ) ( ...  )
      !        (  0    0    0   zwik zwdk )( zwxk ) ( zwyk )
      !
      !   m is decomposed in the product of an upper and lower triangular matrix
      !   The 3 diagonal terms are in 2d arrays: zwd, zws, zwi
      !   The solution (after velocity) is in 2d array va
      !-----------------------------------------------------------------------
      !
      DO_3D( 0, 0, 0, 0, 2, jpkm1 )   !==  First recurrence : Dk = Dk - Lk * Uk-1 / Dk-1   (increasing k)  ==
         zwd(ji,jj,jk) = zwd(ji,jj,jk) - zwi(ji,jj,jk) * zws(ji,jj,jk-1) / zwd(ji,jj,jk-1)
      END_3D
      !
      DO_2D( 0, 0, 0, 0 )             !==  second recurrence:    SOLk = RHSk - Lk / Dk-1  Lk-1  ==!
         ze3va =  ( 1._wp - r_vvl ) * e3v(ji,jj,1,Kmm)    &
            &             + r_vvl   * e3v(ji,jj,1,Kaa) 
         pvv(ji,jj,1,Kaa) = pvv(ji,jj,1,Kaa) + rDt * 0.5_wp * ( vtau_b(ji,jj) + vtau(ji,jj) )   &
            &                                      / ( ze3va * rho0 ) * vmask(ji,jj,1) 
      END_2D
      DO_3D( 0, 0, 0, 0, 2, jpkm1 )
         pvv(ji,jj,jk,Kaa) = pvv(ji,jj,jk,Kaa) - zwi(ji,jj,jk) / zwd(ji,jj,jk-1) * pvv(ji,jj,jk-1,Kaa)
      END_3D
      !
      DO_2D( 0, 0, 0, 0 )             !==  third recurrence : SOLk = ( Lk - Uk * SOLk+1 ) / Dk  ==!
         pvv(ji,jj,jpkm1,Kaa) = pvv(ji,jj,jpkm1,Kaa) / zwd(ji,jj,jpkm1)
      END_2D
      DO_3DS( 0, 0, 0, 0, jpk-2, 1, -1 )
         pvv(ji,jj,jk,Kaa) = ( pvv(ji,jj,jk,Kaa) - zws(ji,jj,jk) * pvv(ji,jj,jk+1,Kaa) ) / zwd(ji,jj,jk)
      END_3D
      !
      IF( l_trddyn )   THEN                      ! save the vertical diffusive trends for further diagnostics
         ztrdu(:,:,:) = ( puu(:,:,:,Kaa) - puu(:,:,:,Kbb) ) / rDt - ztrdu(:,:,:)
         ztrdv(:,:,:) = ( pvv(:,:,:,Kaa) - pvv(:,:,:,Kbb) ) / rDt - ztrdv(:,:,:)
         CALL trd_dyn( ztrdu, ztrdv, jpdyn_zdf, kt, Kmm )
         DEALLOCATE( ztrdu, ztrdv ) 
      ENDIF
      !                                          ! print mean trends (used for debugging)
      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab3d_1=puu(:,:,:,Kaa), clinfo1=' zdf  - Ua: ', mask1=umask,               &
         &                                  tab3d_2=pvv(:,:,:,Kaa), clinfo2=       ' Va: ', mask2=vmask, clinfo3='dyn' )
         !
      IF( ln_timing )   CALL timing_stop('dyn_zdf')
      !
   END SUBROUTINE dyn_zdf

   !!==============================================================================
END MODULE dynzdf