Newer
Older
MODULE traqsr
!!======================================================================
!! *** MODULE traqsr ***
!! Ocean physics: solar radiation penetration in the top ocean levels
!!======================================================================
!! History : OPA ! 1990-10 (B. Blanke) Original code
!! 7.0 ! 1991-11 (G. Madec)
!! ! 1996-01 (G. Madec) s-coordinates
!! NEMO 1.0 ! 2002-06 (G. Madec) F90: Free form and module
!! - ! 2005-11 (G. Madec) zco, zps, sco coordinate
!! 3.2 ! 2009-04 (G. Madec & NEMO team)
!! 3.6 ! 2012-05 (C. Rousset) store attenuation coef for use in ice model
!! 3.6 ! 2015-12 (O. Aumont, J. Jouanno, C. Ethe) use vertical profile of chlorophyll
!! 3.7 ! 2015-11 (G. Madec, A. Coward) remove optimisation for fix volume
!! 4.0 ! 2020-11 (A. Coward) optimisation
!! 4.5 ! 2021-03 (G. Madec) further optimisation + adaptation for RK3
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! tra_qsr : temperature trend due to the penetration of solar radiation
!! qsr_RGBc : IR + RGB light penetration with Chlorophyll data case
!! qsr_RGB : IR + RGB light penetration with constant Chlorophyll case
!! qsr_2BD : 2 bands (InfraRed + Visible light) case
!! qsr_ext_lev : level of extinction for each bands
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
!! tra_qsr_init : initialization of the qsr penetration
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and active tracers
USE phycst ! physical constants
USE dom_oce ! ocean space and time domain
USE domtile
USE sbc_oce ! surface boundary condition: ocean
USE trc_oce ! share SMS/Ocean variables
USE trd_oce ! trends: ocean variables
USE trdtra ! trends manager: tracers
!
USE in_out_manager ! I/O manager
USE prtctl ! Print control
USE iom ! I/O library
USE fldread ! read input fields
USE restart ! ocean restart
USE lib_mpp ! MPP library
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
USE timing ! Timing
IMPLICIT NONE
PRIVATE
PUBLIC tra_qsr ! routine called by step.F90 (ln_traqsr=T)
PUBLIC tra_qsr_init ! routine called by nemogcm.F90
! !!* Namelist namtra_qsr: penetrative solar radiation
LOGICAL , PUBLIC :: ln_traqsr !: light absorption (qsr) flag
LOGICAL , PUBLIC :: ln_qsr_rgb !: Red-Green-Blue light absorption flag
LOGICAL , PUBLIC :: ln_qsr_2bd !: 2 band light absorption flag
LOGICAL , PUBLIC :: ln_qsr_bio !: bio-model light absorption flag
INTEGER , PUBLIC :: nn_chldta !: use Chlorophyll data (=1) or not (=0)
REAL(wp), PUBLIC :: rn_abs !: fraction absorbed in the very near surface (RGB & 2 bands)
REAL(wp), PUBLIC :: rn_si0 !: very near surface depth of extinction (RGB & 2 bands)
REAL(wp), PUBLIC :: rn_si1 !: deepest depth of extinction (water type I) (2 bands)
!
INTEGER, PARAMETER :: np_RGB = 1 ! R-G-B light penetration with constant Chlorophyll
INTEGER, PARAMETER :: np_RGBc = 2 ! R-G-B light penetration with Chlorophyll data
INTEGER, PARAMETER :: np_2BD = 3 ! 2 bands light penetration
INTEGER, PARAMETER :: np_BIO = 4 ! bio-model light penetration
!
INTEGER :: nqsr ! user choice of the type of light penetration
INTEGER :: nc_rgb ! RGB with cst Chlorophyll: index associated with the chosen Chl value
!
! ! extinction level
INTEGER :: nk0 !: IR (depth larger ~12 m)
INTEGER :: nkV !: Visible light (depth larger than ~840 m)
INTEGER :: nkR, nkG, nkB !: RGB (depth larger than ~100 m, ~470 m, ~1700 m, resp.)
!
INTEGER, PUBLIC :: nksr !: =nkV, i.e. maximum level of light extinction (used in traatf(_qco).F90)
!
! ! inverse of attenuation length
REAL(wp) :: r1_si0 ! all schemes : infrared = 1/rn_si0
REAL(wp) :: r1_si1 ! 2 band : mean RGB = 1/rn_si1
REAL(wp) :: r1_LR, r1_LG, r1_LB ! RGB with constant Chl (np_RGB)
!
REAL(wp) , PUBLIC, DIMENSION(3,61) :: rkrgb ! tabulated attenuation coefficients for RGB absorption
TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_chl ! structure of input Chl (file informations, fields read)
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: traqsr.F90 15157 2021-07-29 08:28:32Z techene $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE tra_qsr( kt, Kmm, pts, Krhs )
!!----------------------------------------------------------------------
!! *** ROUTINE tra_qsr ***
!!
!! ** Purpose : Compute the temperature trend due to the solar radiation
!! penetration and add it to the general temperature trend.
!!
!! ** Method : The profile of the solar radiation within the ocean is defined
!! through 2 wavebands (rn_si0,rn_si1) or 3 wavebands (RGB) or computed by
!! the biogeochemical model
!! The computation is only done down to the level where
!! I(k) < 1.e-15 W/m2 (i.e. over the top nk levels) .
!! ** Action : - update ts(jp_tem) with the penetrative solar radiation trend
!! - send trend for further diagnostics (l_trdtra=T)
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: kt, Kmm, Krhs ! ocean time-step and time-level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! active tracers and RHS of tracer equation
REAL(wp) :: z1_2, ze3t ! local scalars
REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: ztrdt, zetot
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('tra_qsr')
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'tra_qsr : penetration of the surface solar radiation'
IF(lwp) WRITE(numout,*) '~~~~~~~'
ENDIF
ENDIF
!
IF( l_trdtra ) THEN ! trends diagnostic: save the input temperature trend
ALLOCATE( ztrdt(jpi,jpj,jpk) )
ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs)
ENDIF
!
#if ! defined key_RK3
! ! MLF only : heat content trend due to Qsr flux (qsr_hc)
!
! !-----------------------------------!
! ! before qsr induced heat content !
! !-----------------------------------!
IF( kt == nit000 ) THEN !== 1st time step ==!
IF( ln_rstart .AND. .NOT.l_1st_euler ) THEN ! read in restart
z1_2 = 0.5_wp
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF(lwp) WRITE(numout,*) ' nit000-1 qsr tracer content forcing field read in the restart file'
CALL iom_get( numror, jpdom_auto, 'qsr_hc_b', qsr_hc_b ) ! before heat content trend due to Qsr flux
ENDIF
ELSE ! No restart or Euler forward at 1st time step
z1_2 = 1._wp
qsr_hc_b(ji,jj,jk) = 0._wp
END_3D
ENDIF
ELSE !== Swap of qsr heat content ==!
z1_2 = 0.5_wp
qsr_hc_b(ji,jj,jk) = qsr_hc(ji,jj,jk)
END_3D
ENDIF
! !----------------------------!
SELECT CASE( nqsr ) ! qsr induced heat content !
! !----------------------------!
CASE( np_RGBc ) ; CALL qsr_RGBc( kt, Kmm, pts, Krhs ) !== R-G-B fluxes using chlorophyll data ==! with Morel &Berthon (1989) vertical profile
CASE( np_RGB ) ; CALL qsr_RGB ( kt, Kmm, pts, Krhs ) !== R-G-B fluxes with constant chlorophyll ==!
CASE( np_2BD ) ; CALL qsr_2BD ( Kmm, pts, Krhs ) !== 2-bands fluxes ==!
CASE( np_BIO ) !== bio-model fluxes ==!
DO_3D( 0, 0, 0, 0, 1, nkV )
#if defined key_RK3
! !- RK3 : temperature trend at jk t-level
ze3t = e3t(ji,jj,jk,Kmm)
pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( etot3(ji,jj,jk) - etot3(ji,jj,jk+1) ) / ze3t
#else
! !- MLF : heat content trend due to Qsr flux (qsr_hc)
qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( etot3(ji,jj,jk) - etot3(ji,jj,jk+1) )
#endif
! !- sea-ice : store the 1st level attenuation coefficient
WHERE( etot3(A2D(0),1) /= 0._wp ) ; fraqsr_1lev(A2D(0)) = 1._wp - etot3(A2D(0),2) / etot3(A2D(0),1)
ELSEWHERE ; fraqsr_1lev(A2D(0)) = 1._wp
END WHERE
#if defined key_RK3
! ! RK3 : diagnostics/output
IF( l_trdtra .OR. iom_use('qsr3d') ) THEN ! qsr diagnostics
ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs) - ztrdt(:,:,:)
! ! qsr tracers trends saved for diagnostics
IF( l_trdtra ) CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_tem, jptra_qsr, ztrdt )
IF( iom_use('qsr3d') ) THEN ! qsr distribution
DO jk = nkV, 1, -1
ztrdt(:,:,jk) = ztrdt(:,:,jk+1) + qsr_hc(:,:,jk) * rho0_rcp
END DO
CALL iom_put( 'qsr3d', ztrdt ) ! 3D distribution of shortwave Radiation
ENDIF
DEALLOCATE( ztrdt )
ENDIF
#else
! ! MLF : add the temperature trend
DO_3D( 0, 0, 0, 0, 1, nksr )
pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) &
& + z1_2 * ( qsr_hc_b(ji,jj,jk) + qsr_hc(ji,jj,jk) ) &
& / e3t(ji,jj,jk,Kmm)
END_3D
!
! sea-ice: store the 1st ocean level attenuation coefficient
IF( qsr(ji,jj) /= 0._wp ) THEN ; fraqsr_1lev(ji,jj) = qsr_hc(ji,jj,1) / ( r1_rho0_rcp * qsr(ji,jj) )
ELSE ; fraqsr_1lev(ji,jj) = 1._wp
ENDIF
END_2D
!
IF( iom_use('qsr3d') ) THEN ! output the shortwave Radiation distribution
ALLOCATE( zetot(A2D(nn_hls),jpk) )
zetot(:,:,nksr+1:jpk) = 0._wp ! below ~400m set to zero
DO_3DS(0, 0, 0, 0, nksr, 1, -1)
zetot(ji,jj,jk) = zetot(ji,jj,jk+1) + qsr_hc(ji,jj,jk) * rho0_rcp
END_3D
CALL iom_put( 'qsr3d', zetot ) ! 3D distribution of shortwave Radiation
DEALLOCATE( zetot )
ENDIF
!
IF( l_trdtra ) THEN ! qsr tracers trends saved for diagnostics
ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs) - ztrdt(:,:,:)
CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_tem, jptra_qsr, ztrdt )
DEALLOCATE( ztrdt )
ENDIF
#endif
!
IF( .NOT. l_istiled .OR. ntile == nijtile ) THEN ! Do only on the last tile
IF( lrst_oce ) THEN ! write in the ocean restart file
CALL iom_rstput( kt, nitrst, numrow, 'qsr_hc_b' , qsr_hc )
CALL iom_rstput( kt, nitrst, numrow, 'fraqsr_1lev', fraqsr_1lev )
ENDIF
ENDIF
!
! ! print mean trends (used for debugging)
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=pts(:,:,:,jp_tem,Krhs), clinfo1=' qsr - Ta: ', mask1=tmask, clinfo3='tra-ta' )
!
IF( ln_timing ) CALL timing_stop('tra_qsr')
!
END SUBROUTINE tra_qsr
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
SUBROUTINE qsr_RGBc( kt, Kmm, pts, Krhs )
!!----------------------------------------------------------------------
!! *** ROUTINE qsr_RGBc ***
!!
!! ** Purpose : Red-Green-Blue solar radiation using chlorophyll data
!!
!! ** Method : The profile of the solar radiation within the ocean is defined
!! through 2 wavebands (rn_si0,rn_si1) or 3 wavebands (RGB) and a ratio rn_abs
!! Considering the 2 wavebands case:
!! I(k) = Qsr*( rn_abs*EXP(z(k)/rn_si0) + (1.-rn_abs)*EXP(z(k)/rn_si1) )
!! The temperature trend associated with the solar radiation penetration
!! is given by : zta = 1/e3t dk[ I ] / (rho0*Cp)
!! At the bottom, boudary condition for the radiation is no flux :
!! all heat which has not been absorbed in the above levels is put
!! in the last ocean level.
!! The computation is only done down to the level where
!! I(k) < 1.e-15 W/m2 (i.e. over the top nk levels) .
!!
!! ** Action : - update ta with the penetrative solar radiation trend
!! - send trend for further diagnostics (l_trdtra=T)
!!
!! Reference : Lengaigne et al. 2007, Clim. Dyn., V28, 5, 503-516.
!! Morel, A. et Berthon, JF, 1989, Limnol Oceanogr 34(8), 1545-1562
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: kt, Kmm, Krhs ! ocean time-step and time-level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! active tracers and RHS of tracer equation
!!
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: irgb ! local integer
REAL(wp) :: zc1 , zc2 , zc3, zchl ! local scalars
REAL(wp) :: zze0, zzeR, zzeG, zzeB, zzeT ! - -
REAL(wp) :: zz0 , zz1 , ze3t ! - -
REAL(wp) :: zCb, zCmax, zpsi, zpsimax, zrdpsi, zCze ! - -
REAL(wp) :: zlogc, zlogze, zlogCtot, zlogCze ! - -
REAL(wp), DIMENSION(A2D(0) ) :: ze0, zeR, zeG, zeB, zeT
REAL(wp), DIMENSION(A2D(0),0:3) :: zc
!!----------------------------------------------------------------------
!
!
! !===========================================!
! !== R-G-B fluxes using chlorophyll data ==! with Morel &Berthon (1989) vertical profile
! !===================================****====!
!
! != Chlorophyll data =!
!
IF( ntile == 0 .OR. ntile == 1 ) THEN ! Do only for the full domain
IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = 0 ) ! Use full domain
CALL fld_read( kt, 1, sf_chl ) ! Read Chl data and provides it at the current time step
IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = 1 ) ! Revert to tile domain
ENDIF
!
DO_2D( 0, 0, 0, 0 ) ! pre-calculated expensive coefficient
zlogc = LOG( MAX( 0.03_wp, MIN( sf_chl(1)%fnow(ji,jj,1) ,10._wp ) ) ) ! zlogc = log(zchl) with 0.03 <= Chl >= 10.
zc1 = 0.113328685307 + 0.803 * zlogc ! zc1 : log(zCze) = log (1.12 * zchl**0.803)
zc2 = 3.703768066608 + 0.459 * zlogc ! zc2 : log(zCtot) = log(40.6 * zchl**0.459)
zc3 = 6.34247346942 - 0.746 * zc2 ! zc3 : log(zze) = log(568.2 * zCtot**(-0.746))
IF( zc3 > 4.62497281328 ) zc3 = 5.298317366548 - 0.293 * zc2 ! IF(log(zze)>log(102)) log(zze) = log(200*zCtot**(-0.293))
!
zc(ji,jj,0) = zlogc ! ze(0) = log(zchl)
zc(ji,jj,1) = EXP( zc1 ) ! ze(1) = zCze
zc(ji,jj,2) = 1._wp / ( 0.710 + zlogc * ( 0.159 + zlogc * 0.021 ) ) ! ze(2) = 1/zdelpsi
zc(ji,jj,3) = EXP( - zc3 ) ! ze(3) = 1/zze
END_2D
!
! != surface light =!
!
zz0 = rn_abs ! Infrared absorption
zz1 = ( 1._wp - rn_abs ) / 3._wp ! R-G-B equi-partition
!
DO_2D( 0, 0, 0, 0 ) ! surface light
ze0(ji,jj) = zz0 * qsr(ji,jj) ; zeR(ji,jj) = zz1 * qsr(ji,jj) ! IR ; Red
zeG(ji,jj) = zz1 * qsr(ji,jj) ; zeB(ji,jj) = zz1 * qsr(ji,jj) ! Green ; Blue
zeT(ji,jj) = qsr(ji,jj) ! Total
END_2D
!
! != interior light =!
!
DO jk = 1, nk0 !* near surface layers *! (< ~12 meters : IR + RGB )
DO_2D( 0, 0, 0, 0 )
! !- inverse of RGB attenuation lengths
zlogc = zc(ji,jj,0)
zCb = 0.768 + zlogc * ( 0.087 - zlogc * ( 0.179 + zlogc * 0.025 ) )
zCmax = 0.299 - zlogc * ( 0.289 - zlogc * 0.579 )
zpsimax = 0.6 - zlogc * ( 0.640 - zlogc * ( 0.021 + zlogc * 0.115 ) )
! zdelpsi = 0.710 + zlogc * ( 0.159 + zlogc * 0.021 )
zCze = zc(ji,jj,1)
zrdpsi = zc(ji,jj,2) ! 1/zdelpsi
!!st05 zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk,Kmm) ! gdepw/zze
zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk+1,Kmm) ! gdepw/zze
! ! make sure zchl value is such that: 0.03 < zchl < 10.
zchl = MAX( 0.03_wp , MIN( zCze * ( zCb + zCmax * EXP( -( (zpsi - zpsimax) * zrdpsi )**2 ) ) , 10._wp ) )
! ! Convert chlorophyll value to attenuation coefficient
irgb = NINT( 41 + 20.*LOG10(zchl) + 1.e-15 ) ! look-up table index
! Red ! Green ! Blue
r1_LR = rkrgb(3,irgb) ; r1_LG = rkrgb(2,irgb) ; r1_LB = rkrgb(1,irgb)
!
! !- fluxes at jk+1 w-level
ze3t = e3t(ji,jj,jk,Kmm)
zze0 = ze0(ji,jj) * EXP( - ze3t*r1_si0 ) ; zzeR = zeR(ji,jj) * EXP( - ze3t*r1_LR ) ! IR ; Red at jk+1 w-level
zzeG = zeG(ji,jj) * EXP( - ze3t*r1_LG ) ; zzeB = zeB(ji,jj) * EXP( - ze3t*r1_LB ) ! Green ; Blue - -
zzeT = ( zze0 + zzeB + zzeG + zzeR ) * wmask(ji,jj,jk+1) ! Total - -
!!st01 zzeT = ( zze0 + zzeR + zzeG + zzeB ) * wmask(ji,jj,jk+1) ! Total - -
!
#if defined key_RK3
! !- RK3 : temperature trend at jk t-level
pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t
#else
! !- MLF : heat content trend due to Qsr flux (qsr_hc)
qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT )
#endif
ze0(ji,jj) = zze0 ; zeR(ji,jj) = zzeR ! IR ; Red store at jk+1 w-level
zeG(ji,jj) = zzeG ; zeB(ji,jj) = zzeB ! Green ; Blue - - -
zeT(ji,jj) = zzeT ! total - - -
END_2D
!
END DO
!
DO jk = nk0+1, nkR !* down to Red extinction *! (< ~71 meters : RGB , IR removed from calculation)
DO_2D( 0, 0, 0, 0 )
! !- inverse of RGB attenuation lengths
zlogc = zc(ji,jj,0)
zCb = 0.768 + zlogc * ( 0.087 - zlogc * ( 0.179 + zlogc * 0.025 ) )
zCmax = 0.299 - zlogc * ( 0.289 - zlogc * 0.579 )
zpsimax = 0.6 - zlogc * ( 0.640 - zlogc * ( 0.021 + zlogc * 0.115 ) )
! zdelpsi = 0.710 + zlogc * ( 0.159 + zlogc * 0.021 )
zCze = zc(ji,jj,1)
zrdpsi = zc(ji,jj,2) ! 1/zdelpsi
zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk+1,Kmm) ! gdepw/zze
!!st05 zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk,Kmm) ! gdepw/zze
! ! make sure zchl value is such that: 0.03 < zchl < 10.
zchl = MAX( 0.03_wp , MIN( zCze * ( zCb + zCmax * EXP( -( (zpsi - zpsimax) * zrdpsi )**2 ) ) , 10._wp ) )
! ! Convert chlorophyll value to attenuation coefficient
irgb = NINT( 41 + 20.*LOG10(zchl) + 1.e-15 ) ! look-up table index
! Red ! Green ! Blue
r1_LR = rkrgb(3,irgb) ; r1_LG = rkrgb(2,irgb) ; r1_LB = rkrgb(1,irgb)
!
! !- fluxes at jk+1 w-level
ze3t = e3t(ji,jj,jk,Kmm)
zzeR = zeR(ji,jj) * EXP( - ze3t*r1_LR ) ! Red at jk+1 w-level
zzeG = zeG(ji,jj) * EXP( - ze3t*r1_LG ) ; zzeB = zeB(ji,jj) * EXP( - ze3t*r1_LB ) ! Green ; Blue - -
zzeT = ( zzeR + zzeG + zzeB ) * wmask(ji,jj,jk+1) ! Total - -
!
#if defined key_RK3
! !- RK3 : temperature trend at jk t-level
pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t
#else
! !- MLF : heat content trend due to Qsr flux (qsr_hc)
qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT )
#endif
zeR(ji,jj) = zzeR ! Red store at jk+1 w-level
zeG(ji,jj) = zzeG ; zeB(ji,jj) = zzeB ! Green ; Blue - - -
zeT(ji,jj) = zzeT ! total - - -
END_2D
END DO
!
DO jk = nkR+1, nkG !* down to Green extinction *! (< ~350 m : GB , IR+R removed from calculation)
DO_2D( 0, 0, 0, 0 )
! !- inverse of RGB attenuation lengths
zlogc = zc(ji,jj,0)
zCb = 0.768 + zlogc * ( 0.087 - zlogc * ( 0.179 + zlogc * 0.025 ) )
zCmax = 0.299 - zlogc * ( 0.289 - zlogc * 0.579 )
zpsimax = 0.6 - zlogc * ( 0.640 - zlogc * ( 0.021 + zlogc * 0.115 ) )
! zdelpsi = 0.710 + zlogc * ( 0.159 + zlogc * 0.021 )
zCze = zc(ji,jj,1)
zrdpsi = zc(ji,jj,2) ! 1/zdelpsi
zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk+1,Kmm) ! gdepw/zze
!!st05 zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk,Kmm) ! gdepw/zze
! ! make sure zchl value is such that: 0.03 < zchl < 10.
zchl = MAX( 0.03_wp , MIN( zCze * ( zCb + zCmax * EXP( -( (zpsi - zpsimax) * zrdpsi )**2 ) ) , 10._wp ) )
! ! Convert chlorophyll value to attenuation coefficient
irgb = NINT( 41 + 20.*LOG10(zchl) + 1.e-15 ) ! look-up table index
! Green ! Blue
r1_LG = rkrgb(2,irgb) ; r1_LB = rkrgb(1,irgb)
!
! !- fluxes at jk+1 w-level
ze3t = e3t(ji,jj,jk,Kmm)
zzeG = zeG(ji,jj) * EXP( - ze3t * r1_LG ) ; zzeB = zeB(ji,jj) * EXP( - ze3t * r1_LB ) ! Green ; Blue
zzeT = ( zzeG + zzeB ) * wmask(ji,jj,jk+1) ! Total - -
#if defined key_RK3
! !- RK3 : temperature trend at jk t-level
pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t
#else
! !- MLF : heat content trend due to Qsr flux (qsr_hc)
qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT )
#endif
zeG(ji,jj) = zzeG ; zeB(ji,jj) = zzeB ! Green ; Blue store at jk+1 w-level
zeT(ji,jj) = zzeT ! total - - -
END_2D
END DO
!
DO jk = nkG+1, nkB !* down to Blue extinction *! (< ~1300 m : B , IR+RG removed from calculation)
DO_2D( 0, 0, 0, 0 )
! !- inverse of RGB attenuation lengths
zlogc = zc(ji,jj,0)
zCb = 0.768 + zlogc * ( 0.087 - zlogc * ( 0.179 + zlogc * 0.025 ) )
zCmax = 0.299 - zlogc * ( 0.289 - zlogc * 0.579 )
zpsimax = 0.6 - zlogc * ( 0.640 - zlogc * ( 0.021 + zlogc * 0.115 ) )
! zdelpsi = 0.710 + zlogc * ( 0.159 + zlogc * 0.021 )
zCze = zc(ji,jj,1)
zrdpsi = zc(ji,jj,2) ! 1/zdelpsi
zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk+1,Kmm) ! gdepw/zze
!!st05 zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk,Kmm) ! gdepw/zze
! ! make sure zchl value is such that: 0.03 < zchl < 10.
zchl = MAX( 0.03_wp , MIN( zCze * ( zCb + zCmax * EXP( -( (zpsi - zpsimax) * zrdpsi )**2 ) ) , 10._wp ) )
! ! Convert chlorophyll value to attenuation coefficient
irgb = NINT( 41 + 20.*LOG10(zchl) + 1.e-15 ) ! look-up table index
r1_LB = rkrgb(1,irgb) ! Blue
!
! !- fluxes at jk+1 w-level
ze3t = e3t(ji,jj,jk,Kmm)
zzeB = zeB(ji,jj) * EXP( - ze3t * r1_LB ) ! Blue
zzeT = ( zzeB ) * wmask(ji,jj,jk+1) ! Total - -
#if defined key_RK3
! !- RK3 : temperature trend at jk t-level
pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t
#else
! !- MLF : heat content trend due to Qsr flux (qsr_hc)
qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT )
#endif
zeB(ji,jj) = zzeB ! Blue store at jk+1 w-level
zeT(ji,jj) = zzeT ! total - - -
END_2D
END DO
!
END SUBROUTINE qsr_RGBc
SUBROUTINE qsr_RGB( kt, Kmm, pts, Krhs )
!!----------------------------------------------------------------------
!! *** ROUTINE qsr_RGB ***
!!
!! ** Purpose : Red-Green-Blue solar radiation with constant chlorophyll
!!
!! ** Method : The profile of the solar radiation within the ocean is defined
!! through 2 wavebands (rn_si0,rn_si1) or 1 (rn_si0,rn_abs) + 3 wavebands (RGB)
!! At the bottom, boudary condition for the radiation is no flux :
!! all heat which has not been absorbed in the above levels is put
!! in the last ocean level.
!! For each band, the computation is only done down to the level where
!! I(k) < 1.e-15 W/m2 (i.e. over the top nk levels) .
!!
!! ** Action : - update ta with the penetrative solar radiation trend
!! - send trend for further diagnostics (l_trdtra=T)
!!
!! Reference : Lengaigne et al. 2007, Clim. Dyn., V28, 5, 503-516.
!! Morel, A. et Berthon, JF, 1989, Limnol Oceanogr 34(8), 1545-1562
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: kt, Kmm, Krhs ! ocean time-step and time-level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! active tracers and RHS of tracer equation
!!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zze0, zzeR, zzeG, zzeB, zzeT ! - -
REAL(wp) :: zz0 , zz1 , ze3t ! - -
REAL(wp), DIMENSION(A2D(0)) :: ze0, zeR, zeG, zeB, zeT
!!----------------------------------------------------------------------
!
!
! !==============================================!
! !== R-G-B fluxes with constant chlorophyll ==!
! !======================********================!
!
! != surface light =!
!
zz0 = rn_abs ! Infrared absorption
zz1 = ( 1._wp - rn_abs ) / 3._wp ! surface equi-partition in R-G-B
!
DO_2D( 0, 0, 0, 0 ) ! surface light
ze0(ji,jj) = zz0 * qsr(ji,jj) ; zeR(ji,jj) = zz1 * qsr(ji,jj) ! IR ; Red
zeG(ji,jj) = zz1 * qsr(ji,jj) ; zeB(ji,jj) = zz1 * qsr(ji,jj) ! Green ; Blue
zeT(ji,jj) = qsr(ji,jj) ! Total
END_2D
!
! != interior light =!
!
DO jk = 1, nk0 !* near surface layers *! (< ~12 meters : IR + RGB )
DO_2D( 0, 0, 0, 0 )
ze3t = e3t(ji,jj,jk,Kmm)
zze0 = ze0(ji,jj) * EXP( - ze3t * r1_si0 ) ; zzeR = zeR(ji,jj) * EXP( - ze3t * r1_LR ) ! IR ; Red at jk+1 w-level
zzeG = zeG(ji,jj) * EXP( - ze3t * r1_LG ) ; zzeB = zeB(ji,jj) * EXP( - ze3t * r1_LB ) ! Green ; Blue - -
zzeT = ( zze0 + zzeB + zzeG + zzeR ) * wmask(ji,jj,jk+1) ! Total - -
!!st7-9 zzeT = ( zze0 + zzeR + zzeG + zzeB ) * wmask(ji,jj,jk+1) ! Total - -
#if defined key_RK3
! ! RK3 : temperature trend at jk t-level
pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t
#else
! ! MLF : heat content trend due to Qsr flux (qsr_hc)
qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT )
#endif
ze0(ji,jj) = zze0 ; zeR(ji,jj) = zzeR ! IR ; Red store at jk+1 w-level
zeG(ji,jj) = zzeG ; zeB(ji,jj) = zzeB ! Green ; Blue - - -
zeT(ji,jj) = zzeT ! total - - -
END_2D
!!stbug IF( jk == 1 ) THEN !* sea-ice *! store the 1st level attenuation coeff.
!!stbug WHERE( qsr(A2D(0)) /= 0._wp ) ; fraqsr_1lev(A2D(0)) = 1._wp - zeT(A2D(0)) / qsr(A2D(0))
!!stbug ELSEWHERE ; fraqsr_1lev(A2D(0)) = 1._wp
!!stbug END WHERE
!!stbug ENDIF
END DO
!
DO jk = nk0+1, nkR !* down to Red extinction *! (< ~71 meters : RGB , IR removed from calculation)
DO_2D( 0, 0, 0, 0 )
ze3t = e3t(ji,jj,jk,Kmm)
zzeR = zeR(ji,jj) * EXP( - ze3t * r1_LR ) ! Red at jk+1 w-level
zzeG = zeG(ji,jj) * EXP( - ze3t * r1_LG ) ; zzeB = zeB(ji,jj) * EXP( - ze3t * r1_LB ) ! Green ; Blue - -
zzeT = ( zzeB + zzeG + zzeR ) * wmask(ji,jj,jk+1) ! Total - -
!!st7-11 zzeT = ( zzeR + zzeG + zzeB ) * wmask(ji,jj,jk+1) ! Total - -
#if defined key_RK3
! ! RK3 : temperature trend at jk t-level
pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t
#else
! ! MLF : heat content trend due to Qsr flux (qsr_hc)
qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT )
#endif
zeR(ji,jj) = zzeR ! Red store at jk+1 w-level
zeG(ji,jj) = zzeG ; zeB(ji,jj) = zzeB ! Green ; Blue - - -
zeT(ji,jj) = zzeT ! total - - -
END_2D
END DO
!
DO jk = nkR+1, nkG !* down to Green extinction *! (< ~350 m : GB , IR+R removed from calculation)
DO_2D( 0, 0, 0, 0 )
ze3t = e3t(ji,jj,jk,Kmm)
zzeG = zeG(ji,jj) * EXP( - ze3t * r1_LG ) ; zzeB = zeB(ji,jj) * EXP( - ze3t * r1_LB ) ! Green ; Blue at jk+1 w-level
zzeT = ( zzeG + zzeB ) * wmask(ji,jj,jk+1) ! Total - -
#if defined key_RK3
! ! RK3 : temperature trend at jk t-level
pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t
#else
! ! MLF : heat content trend due to Qsr flux (qsr_hc)
qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT )
#endif
zeG(ji,jj) = zzeG ; zeB(ji,jj) = zzeB ! Green ; Blue store at jk+1 w-level
zeT(ji,jj) = zzeT ! total - - -
END_2D
END DO
!
DO jk = nkG+1, nkB !* down to Blue extinction *! (< ~1300 m : B , IR+RG removed from calculation)
DO_2D( 0, 0, 0, 0 )
ze3t = e3t(ji,jj,jk,Kmm)
zzeB = zeB(ji,jj) * EXP( - ze3t * r1_LB ) ! Blue at jk+1 w-level
zzeT = ( zzeB ) * wmask(ji,jj,jk+1) ! Total - -
#if defined key_RK3
! ! RK3 : temperature trend at jk t-level
pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t
#else
! ! MLF : heat content trend due to Qsr flux (qsr_hc)
qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT )
#endif
zeB(ji,jj) = zzeB ! Blue store at jk+1 w-level
zeT(ji,jj) = zzeT ! total - - -
END_2D
END DO
!
END SUBROUTINE qsr_RGB
SUBROUTINE qsr_2BD( Kmm, pts, Krhs )
!!----------------------------------------------------------------------
!! *** ROUTINE qsr_2BD ***
!!
!! ** Purpose : 2 bands (IR+visible) solar radiation with constant chlorophyll
!!
!! ** Method : The profile of the solar radiation within the ocean is defined
!! through 2 wavebands (rn_si0,rn_si1) a ratio rn_abs for IR absorbtion.
!! Considering the 2 wavebands case:
!! I(k) = Qsr*( rn_abs*EXP(z(k)/rn_si0) + (1.-rn_abs)*EXP(z(k)/rn_si1) )
!! The temperature trend associated with the solar radiation penetration
!! is given by : zta = 1/e3t dk[ I ] / (rho0*Cp)
!! At the bottom, boudary condition for the radiation is no flux :
!! all heat which has not been absorbed in the above levels is put
!! in the last ocean level.
!! The computation is only done down to the level where
!! I(k) < 1.e-15 W/m2 (i.e. over the top nk levels) .
!!
!! ** Action : - update ta with the penetrative solar radiation trend
!! - send trend for further diagnostics (l_trdtra=T)
!!
!! Reference : Jerlov, N. G., 1968 Optical Oceanography, Elsevier, 194pp.
!! Lengaigne et al. 2007, Clim. Dyn., V28, 5, 503-516.
!! Morel, A. et Berthon, JF, 1989, Limnol Oceanogr 34(8), 1545-1562
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm, Krhs ! ocean time-step and time-level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! active tracers and RHS of tracer equation
!!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zzatt ! - -
REAL(wp) :: zz0 , zz1 , ze3t ! - -
REAL(wp), DIMENSION(A2D(0)) :: zatt
!!----------------------------------------------------------------------
!
! !======================!
! !== 2-bands fluxes ==!
! !======================!
!
zz0 = rn_abs * r1_rho0_rcp ! surface equi-partition in 2-bands
zz1 = ( 1._wp - rn_abs ) * r1_rho0_rcp
!
zatt(A2D(0)) = r1_rho0_rcp !* surface value *!
!
DO_2D( 0, 0, 0, 0 )
zatt(ji,jj) = ( zz0 * EXP( -gdepw(ji,jj,1,Kmm)*r1_si0 ) + zz1 * EXP( -gdepw(ji,jj,1,Kmm)*r1_si1 ) )
END_2D
!
!!st IF(lwp) WRITE(numout,*) 'level = ', 1, ' qsr max = ' , MAXVAL(zatt)*rho0_rcp, ' W/m2', ' qsr min = ' , MINVAL(zatt)*rho0_rcp, ' W/m2'
!
DO jk = 1, nk0 !* near surface layers *! (< ~14 meters : IR + visible light )
DO_2D( 0, 0, 0, 0 )
ze3t = e3t(ji,jj,jk,Kmm) ! light attenuation at jk+1 w-level (divided by rho0_rcp)
zzatt = ( zz0 * EXP( -gdepw(ji,jj,jk+1,Kmm)*r1_si0 ) &
& + zz1 * EXP( -gdepw(ji,jj,jk+1,Kmm)*r1_si1 ) ) * wmask(ji,jj,jk+1)
#if defined key_RK3
! ! RK3 : temperature trend at jk t-level
pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + qsr(ji,jj) * ( zatt(ji,jj) - zzatt ) / ze3t
#else
! ! MLF : heat content trend due to Qsr flux (qsr_hc)
qsr_hc(ji,jj,jk) = qsr(ji,jj) * ( zatt(ji,jj) - zzatt )
#endif
zatt(ji,jj) = zzatt ! save for the next level computation
END_2D
!!stbug ! !* sea-ice *! store the 1st level attenuation coeff.
!!stbug IF( jk == 1 ) fraqsr_1lev(A2D(0)) = 1._wp - zatt(A2D(0)) * rho0_rcp
END DO
!!st IF(lwp) WRITE(numout,*) 'nk0+1= ', nk0+1, ' qsr max = ' , MAXVAL(zatt*qsr)*rho0_rcp, ' W/m2' , MAXVAL(zatt*qsr/e3t(:,:,nk0+1,Kmm)), ' K/s'
!
DO jk = nk0+1, nkV !* deeper layers *! (visible light only)
DO_2D( 0, 0, 0, 0 )
ze3t = e3t(ji,jj,jk,Kmm) ! light attenuation at jk+1 w-level (divided by rho0_rcp)
zzatt = ( zz1 * EXP( -gdepw(ji,jj,jk+1,Kmm)*r1_si1 ) ) * wmask(ji,jj,jk+1)
#if defined key_RK3
! ! RK3 : temperature trend at jk t-level
pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + qsr(ji,jj) * ( zatt(ji,jj) - zzatt ) / ze3t
#else
! ! MLF : heat content trend due to Qsr flux (qsr_hc)
qsr_hc(ji,jj,jk) = qsr(ji,jj) * ( zatt(ji,jj) - zzatt )
#endif
zatt(ji,jj) = zzatt ! save for the next level computation
END_2D
END DO
!
!!st IF(lwp) WRITE(numout,*) 'nkV+1= ', nkV+1, ' qsr max = ' , MAXVAL(zatt*qsr)*rho0_rcp, ' W/m2' , MAXVAL(zatt*qsr/e3t(:,:,nkV+1,Kmm)), ' K/s'
END SUBROUTINE qsr_2bd
FUNCTION qsr_ext_lev( pL, pfr ) RESULT( klev )
!!----------------------------------------------------------------------
!! *** ROUTINE trc_oce_ext_lev ***
!!
!! ** Purpose : compute the maximum level of light penetration
!!
!! ** Method : the function provides the level at which irradiance, I,
!! has a negligible effect on temperature.
!! T(n+1)-T(n) = ∆t dk[I] / ( rho0 Cp e3t_k )
!! I(k) has a negligible effect on temperature at level k if:
!! ∆t I(k) / ( rho0*Cp*e3t_k ) <= 1.e-15 °C
!! with I(z) = Qsr*pfr*EXP(-z/L), therefore :
!! z >= L * LOG( 1.e-15 * rho0*Cp*e3t_k / ( ∆t*Qsr*pfr ) )
!! with Qsr being the maximum normal surface irradiance at sea
!! level (~1000 W/m2).
!! # pL is the longest depth of extinction:
!! - pL = 23.00 m (2 bands case)
!! - pL = 48.24 m (3 bands case: blue waveband & 0.03 mg/m2 for the chlorophyll)
!! # pfr is the fraction of solar radiation which penetrates,
!! considering Qsr=1000 W/m2 and rn_abs = 0.58:
!! - Qsr*pfr0 = Qsr * rn_abs = 580 W/m2 (top absorbtion)
!! - Qsr*pfr1 = Qsr * (1-rn_abs) = 420 W/m2 (2 bands case)
!! - Qsr*pfr1 = Qsr * (1-rn_abs)/3 = 140 W/m2 (3 bands case & equi-partition)
!!
!!----------------------------------------------------------------------
INTEGER :: klev ! result: maximum level of light penetration
REAL(wp), INTENT(in) :: pL ! depth of extinction
REAL(wp), INTENT(in) :: pfr ! frac. solar radiation which penetrates
!
INTEGER :: jk ! dummy loop index
REAL(wp) :: zcoef ! local scalar
REAL(wp) :: zhext ! deepest depth until which light penetrates
REAL(wp) :: ze3t , zdw ! max( e3t_k ) and min( w-depth_k+1 )
REAL(wp) :: zprec = 10.e-15_wp ! required precision
REAL(wp) :: zQmax= 1000._wp ! maximum normal surface irradiance at sea level (W/m2)
!!----------------------------------------------------------------------
!
zQmax = 1000._wp ! maximum normal surface irradiance at sea level (W/m2)
!
zcoef = zprec * rho0_rcp / ( rDt * zQmax * pfr)
!
IF( ln_zco .OR. ln_zps ) THEN ! z- or zps coordinate (use 1D ref vertcial coordinate)
klev = jpkm1 ! Level of light extinction zco / zps
DO jk = jpkm1, 1, -1
zdw = gdepw_1d(jk+1) ! max w-depth at jk+1 level
ze3t = e3t_1d(jk ) ! minimum e3t at jk level
zhext = - pL * LOG( zcoef * ze3t ) ! extinction depth
IF( zdw >= zhext ) klev = jk ! last T-level reached by Qsr
END DO
ELSE ! s- or s-z- coordinate (use 3D vertical coordinate)
klev = jpkm1 ! Level of light extinction
DO jk = jpkm1, 1, -1 !
IF( SUM( tmask(:,:,jk) ) > 0 ) THEN ! ocean point at that level
zdw = MAXVAL( gdepw_0(:,:,jk+1) * wmask(:,:,jk) ) ! max w-depth at jk+1 level
ze3t = MINVAL( e3t_0(:,:,jk ) , mask=(wmask(:,:,jk+1)==1) ) ! minimum e3t at jk level
zhext = - pL * LOG( zcoef * ze3t ) ! extinction depth
IF( zdw >= zhext ) klev = jk ! last T-level reached by Qsr
ELSE ! only land point at level jk
klev = jk ! local domain sea-bed level
ENDIF
END DO
CALL mpp_max('tra_qsr', klev) ! needed for reproducibility !!st may be modified to avoid this comm.
! !!st use ssmask to remove the comm ?
ENDIF
!
!!st IF(lwp) WRITE(numout,*) ' level of e3t light extinction = ', klev, ' ref depth = ', gdepw_1d(klev+1), ' m'
END FUNCTION qsr_ext_lev
SUBROUTINE tra_qsr_init
!!----------------------------------------------------------------------
!! *** ROUTINE tra_qsr_init ***
!!
!! ** Purpose : Initialization for the penetrative solar radiation
!!
!! ** Method : The profile of solar radiation within the ocean is set
!! from two length scale of penetration (rn_si0,rn_si1) and a ratio
!! (rn_abs). These parameters are read in the namtra_qsr namelist. The
!! default values correspond to clear water (type I in Jerlov'
!! (1968) classification.
!! called by tra_qsr at the first timestep (nit000)
!!
!! ** Action : - initialize rn_si0, rn_si1 and rn_abs
!!
!! Reference : Jerlov, N. G., 1968 Optical Oceanography, Elsevier, 194pp.
!!----------------------------------------------------------------------
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: ios, ierror, ioptio ! local integer
REAL(wp) :: zLB, zLG, zLR ! local scalar
REAL(wp) :: zVlp, zchl ! - -
!
CHARACTER(len=100) :: cn_dir ! Root directory for location of ssr files
TYPE(FLD_N) :: sn_chl ! informations about the chlorofyl field to be read
!!
NAMELIST/namtra_qsr/ sn_chl, cn_dir, ln_qsr_rgb, ln_qsr_2bd, ln_qsr_bio, &
& nn_chldta, rn_abs, rn_si0, rn_si1
!!----------------------------------------------------------------------
!
READ ( numnam_ref, namtra_qsr, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namtra_qsr in reference namelist' )
READ ( numnam_cfg, namtra_qsr, IOSTAT = ios, ERR = 902)
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namtra_qsr in configuration namelist' )
IF(lwm) WRITE ( numond, namtra_qsr )
!
WRITE(numout,*)
WRITE(numout,*) 'tra_qsr_init : penetration of the surface solar radiation'
WRITE(numout,*) '~~~~~~~~~~~~'
WRITE(numout,*) ' Namelist namtra_qsr : set the parameter of penetration'
WRITE(numout,*) ' RGB (Red-Green-Blue) light penetration ln_qsr_rgb = ', ln_qsr_rgb
WRITE(numout,*) ' 2 band light penetration ln_qsr_2bd = ', ln_qsr_2bd
WRITE(numout,*) ' bio-model light penetration ln_qsr_bio = ', ln_qsr_bio
WRITE(numout,*) ' RGB : Chl data (=1) or cst value (=0) nn_chldta = ', nn_chldta
WRITE(numout,*) ' RGB & 2 bands: fraction of light (rn_si1) rn_abs = ', rn_abs
WRITE(numout,*) ' RGB & 2 bands: shortess attenuation depth rn_si0 = ', rn_si0
WRITE(numout,*) ' 2 bands: longest attenuation depth rn_si1 = ', rn_si1
IF( ln_qsr_rgb ) ioptio = ioptio + 1
IF( ln_qsr_2bd ) ioptio = ioptio + 1
IF( ln_qsr_bio ) ioptio = ioptio + 1
!
IF( ioptio /= 1 ) CALL ctl_stop( 'Choose ONE type of light penetration in namelist namtra_qsr', &
& ' 2 bands, 3 RGB bands or bio-model light penetration' )
!
IF( ln_qsr_rgb .AND. nn_chldta == 0 ) nqsr = np_RGB
IF( ln_qsr_rgb .AND. nn_chldta == 1 ) nqsr = np_RGBc
IF( ln_qsr_2bd ) nqsr = np_2BD
IF( ln_qsr_bio ) nqsr = np_BIO
!
! !** Initialisation **!
!
! !== Infrared attenuation ==! (all schemes)
! !============================!
!
r1_si0 = 1._wp / rn_si0 ! inverse of infrared attenuation length
!
nk0 = qsr_ext_lev( rn_si0, rn_abs ) ! level of light extinction
!
IF(lwp) WRITE(numout,*) ' ==>>> Infrared light attenuation'
IF(lwp) WRITE(numout,*) ' level of infrared extinction = ', nk0, ' ref depth = ', gdepw_1d(nk0+1), ' m'
IF(lwp) WRITE(numout,*)
CASE( np_RGBc, np_RGB ) !== Red-Green-Blue light attenuation ==! (Chl data or constant)
! !========================================!
IF( nqsr == np_RGB ) THEN ; zchl = 0.05 ! constant Chl value
ELSE ; zchl = 0.03 ! minimum Chl value
ENDIF
zchl = MAX( 0.03_wp , MIN( zchl , 10._wp) ) ! NB. make sure that chosen value verifies: 0.03 < zchl < 10
nc_rgb = NINT( 41 + 20.*LOG10(zchl) + 1.e-15 ) ! Convert Chl value to attenuation coefficient look-up table index
!
CALL trc_oce_rgb( rkrgb ) ! tabulated attenuation coef.
!
zVlp = ( 1._wp - rn_abs ) / 3._wp ! visible light equi-partition
!
! 1 / length ! attenuation length ! attenuation level
r1_LR = rkrgb(3,nc_rgb) ; zLR = 1._wp / r1_LR ; nkR = qsr_ext_lev( zLR, zVlp ) ! Red
r1_LG = rkrgb(2,nc_rgb) ; zLG = 1._wp / r1_LG ; nkG = qsr_ext_lev( zLG, zVlp ) ! Green
r1_LB = rkrgb(1,nc_rgb) ; zLB = 1._wp / r1_LB ; nkB = qsr_ext_lev( zLB, zVlp ) ! Blue
!
nkV = nkB ! maximum level of light penetration
IF( nqsr == np_RGB ) THEN
IF(lwp) WRITE(numout,*) ' ==>>> RGB: light attenuation with a constant Chlorophyll = ', zchl
ELSE
IF(lwp) WRITE(numout,*) ' ==>>> RGB: light attenuation using Chlorophyll data with min(Chl) = ', zchl
ENDIF
IF(lwp) WRITE(numout,*) ' level of Red extinction = ', nkR, ' ref depth = ', gdepw_1d(nkR+1), ' m'
IF(lwp) WRITE(numout,*) ' level of Green extinction = ', nkG, ' ref depth = ', gdepw_1d(nkG+1), ' m'
IF(lwp) WRITE(numout,*) ' level of Blue extinction = ', nkB, ' ref depth = ', gdepw_1d(nkB+1), ' m'
IF(lwp) WRITE(numout,*)
!
IF( nqsr == np_RGBc ) THEN ! Chl data : set sf_chl structure
IF(lwp) WRITE(numout,*) ' ==>>> Chlorophyll read in a file'
ALLOCATE( sf_chl(1), STAT=ierror )
IF( ierror > 0 ) THEN
CALL ctl_stop( 'tra_qsr_init: unable to allocate sf_chl structure' ) ; RETURN
ENDIF
IF( sn_chl%ln_tint ) ALLOCATE( sf_chl(1)%fdta(jpi,jpj,1,2) )
! ! fill sf_chl with sn_chl and control print
CALL fld_fill( sf_chl, (/ sn_chl /), cn_dir, 'tra_qsr_init', &
& 'Solar penetration function of read chlorophyll', 'namtra_qsr' , no_print )
ENDIF
!
CASE( np_2BD ) !== 2 bands light attenuation (IR+ visible light) ==!
!
IF( lk_top ) CALL trc_oce_rgb( rkrgb ) ! tabulated attenuation coef.
!
r1_si1 = 1._wp / rn_si1 ! inverse of visible light attenuation
zVlp = ( 1._wp - rn_abs ) ! visible light partition
nkV = qsr_ext_lev( rn_si1, zVlp ) ! level of visible light extinction
IF(lwp) WRITE(numout,*) ' ==>>> 2 bands attenuation (Infrared + Visible light) '
IF(lwp) WRITE(numout,*) ' level of visible light extinction = ', nkV, ' ref depth = ', gdepw_1d(nkV+1), ' m'
IF(lwp) WRITE(numout,*)
!
CASE( np_BIO ) !== BIO light penetration ==!
!
IF(lwp) WRITE(numout,*) ' ==>>> bio-model light penetration'
IF( .NOT.lk_top ) CALL ctl_stop( 'No bio model : ln_qsr_bio = true impossible ' )
!
CALL trc_oce_rgb( rkrgb ) ! tabulated attenuation coef.
!
nkV = trc_oce_ext_lev( r_si2, 33._wp ) ! maximum level of light extinction
IF(lwp) WRITE(numout,*) ' level of light extinction = ', nkV, ' ref depth = ', gdepw_1d(nkV+1), ' m'
nksr = nkV ! name of max level of light extinction used in traatf(_qco).F90
!
#if ! defined key_RK3
qsr_hc(:,:,:) = 0._wp ! MLF : now qsr heat content set to zero where it will not be computed
#endif
! ! Sea-ice : 1st ocean level attenuation coefficient (used in sbcssm)
IF( iom_varid( numror, 'fraqsr_1lev', ldstop = .FALSE. ) > 0 ) THEN
CALL iom_get( numror, jpdom_auto, 'fraqsr_1lev' , fraqsr_1lev )
ELSE
fraqsr_1lev(:,:) = 1._wp ! default : no penetration
ENDIF
!
END SUBROUTINE tra_qsr_init
!!======================================================================
END MODULE traqsr