Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
MODULE icethd_zdf_BL99
!!======================================================================
!! *** MODULE icethd_zdf_BL99 ***
!! sea-ice: vertical heat diffusion in sea ice (computation of temperatures)
!!======================================================================
!! History : ! 2003-02 (M. Vancoppenolle) original 1D code
!! ! 2005-06 (M. Vancoppenolle) 3d version
!! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube]
!!----------------------------------------------------------------------
#if defined key_si3
!!----------------------------------------------------------------------
!! 'key_si3' SI3 sea-ice model
!!----------------------------------------------------------------------
!! ice_thd_zdf_BL99 : vertical diffusion computation
!!----------------------------------------------------------------------
USE dom_oce ! ocean space and time domain
USE phycst ! physical constants (ocean directory)
USE ice ! sea-ice: variables
USE ice1D ! sea-ice: thermodynamics variables
USE icevar ! sea-ice: operations
!
USE in_out_manager ! I/O manager
USE lib_mpp ! MPP library
USE lib_fortran ! fortran utilities (glob_sum + no signed zero)
IMPLICIT NONE
PRIVATE
PUBLIC ice_thd_zdf_BL99 ! called by icethd_zdf
!!----------------------------------------------------------------------
!! NEMO/ICE 4.0 , NEMO Consortium (2018)
!! $Id: icethd_zdf_bl99.F90 14072 2020-12-04 07:48:38Z laurent $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE ice_thd_zdf_BL99( k_cnd )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_thd_zdf_BL99 ***
!!
!! ** Purpose : computes the time evolution of snow and sea-ice temperature
!! profiles, using the original Bitz and Lipscomb (1999) algorithm
!!
!! ** Method : solves the heat equation diffusion with a Neumann boundary
!! condition at the surface and a Dirichlet one at the bottom.
!! Solar radiation is partially absorbed into the ice.
!! The specific heat and thermal conductivities depend on ice
!! salinity and temperature to take into account brine pocket
!! melting. The numerical scheme is an iterative Crank-Nicolson
!! on a non-uniform multilayer grid in the ice and snow system.
!!
!! The successive steps of this routine are
!! 1. initialization of ice-snow layers thicknesses
!! 2. Internal absorbed and transmitted radiation
!! Then iterative procedure begins
!! 3. Thermal conductivity
!! 4. Kappa factors
!! 5. specific heat in the ice
!! 6. eta factors
!! 7. surface flux computation
!! 8. tridiagonal system terms
!! 9. solving the tridiagonal system with Gauss elimination
!! Iterative procedure ends according to a criterion on evolution
!! of temperature
!! 10. Fluxes at the interfaces
!!
!! ** Inputs / Ouputs : (global commons)
!! surface temperature : t_su_1d
!! ice/snow temperatures : t_i_1d, t_s_1d
!! ice salinities : sz_i_1d
!! number of layers in the ice/snow : nlay_i, nlay_s
!! total ice/snow thickness : h_i_1d, h_s_1d
!!-------------------------------------------------------------------
INTEGER, INTENT(in) :: k_cnd ! conduction flux (off, on, emulated)
!
INTEGER :: ji, jk ! spatial loop index
INTEGER :: jm ! current reference number of equation
INTEGER :: iconv ! number of iterations in iterative procedure
INTEGER :: iconv_max = 50 ! max number of iterations in iterative procedure
!
LOGICAL, DIMENSION(jpij) :: l_T_converged ! true when T converges (per grid point)
!
REAL(wp) :: zg1s = 2._wp ! for the tridiagonal system
REAL(wp) :: zg1 = 2._wp !
REAL(wp) :: zgamma = 18009._wp ! for specific heat
REAL(wp) :: zbeta = 0.117_wp ! for thermal conductivity (could be 0.13)
REAL(wp) :: zkimin = 0.10_wp ! minimum ice thermal conductivity
REAL(wp) :: ztsu_err = 1.e-5_wp ! range around which t_su is considered at 0C
REAL(wp) :: zdti_bnd = 1.e-4_wp ! maximal authorized error on temperature
REAL(wp) :: zhs_ssl = 0.03_wp ! surface scattering layer in the snow
REAL(wp) :: zhi_ssl = 0.10_wp ! surface scattering layer in the ice
REAL(wp) :: zh_min = 1.e-3_wp ! minimum ice/snow thickness for conduction
REAL(wp) :: ztmelts ! ice melting temperature
REAL(wp) :: zdti_max ! current maximal error on temperature
REAL(wp) :: zcpi ! Ice specific heat
REAL(wp) :: zhfx_err, zdq ! diag errors on heat
!
REAL(wp), DIMENSION(jpij) :: zraext_s ! extinction coefficient of radiation in the snow
REAL(wp), DIMENSION(jpij) :: ztsub ! surface temperature at previous iteration
REAL(wp), DIMENSION(jpij) :: zh_i, z1_h_i ! ice layer thickness
REAL(wp), DIMENSION(jpij) :: zh_s, z1_h_s ! snow layer thickness
REAL(wp), DIMENSION(jpij) :: zqns_ice_b ! solar radiation absorbed at the surface
REAL(wp), DIMENSION(jpij) :: zdqns_ice_b ! derivative of the surface flux function
REAL(wp), DIMENSION(jpij,0:nlay_s) :: zradtr_s ! Radiation transmited through the snow
REAL(wp), DIMENSION(jpij,0:nlay_s) :: zradab_s ! Radiation absorbed in the snow
REAL(wp), DIMENSION(jpij,0:nlay_i) :: zradtr_i ! Radiation transmitted through the ice
REAL(wp), DIMENSION(jpij,0:nlay_i) :: zradab_i ! Radiation absorbed in the ice
REAL(wp), DIMENSION(jpij,0:nlay_i) :: ztcond_i ! Ice thermal conductivity
REAL(wp), DIMENSION(jpij,0:nlay_i) :: ztcond_i_cp ! copy
REAL(wp), DIMENSION(jpij,nlay_i) :: ztiold ! Old temperature in the ice
REAL(wp), DIMENSION(jpij,nlay_s) :: ztsold ! Old temperature in the snow
REAL(wp), DIMENSION(jpij,0:nlay_i) :: zkappa_i ! Kappa factor in the ice
REAL(wp), DIMENSION(jpij,0:nlay_i) :: zeta_i ! Eta factor in the ice
REAL(wp), DIMENSION(jpij,0:nlay_s) :: zkappa_s ! Kappa factor in the snow
REAL(wp), DIMENSION(jpij,0:nlay_s) :: zeta_s ! Eta factor in the snow
REAL(wp), DIMENSION(jpij) :: zkappa_comb ! Combined snow and ice surface conductivity
REAL(wp), DIMENSION(jpij) :: zq_ini ! diag errors on heat
REAL(wp), DIMENSION(jpij) :: zghe ! G(he), th. conduct enhancement factor, mono-cat
REAL(wp), DIMENSION(jpij) :: za_s_fra ! ice fraction covered by snow
REAL(wp), DIMENSION(jpij) :: isnow ! snow presence (1) or not (0)
REAL(wp), DIMENSION(jpij) :: isnow_comb ! snow presence for met-office
!
INTEGER :: jm_min ! reference number of top equation
INTEGER :: jm_max ! reference number of bottom equation
REAL(wp) :: zfnet ! surface flux function
REAL(wp), DIMENSION(nlay_i) :: ztib ! Temporary temperature in the ice to check the convergence
REAL(wp), DIMENSION(nlay_s) :: ztsb ! Temporary temperature in the snow to check the convergence
REAL(wp), DIMENSION(nlay_i+nlay_s+1) :: zindterm ! 'Ind'ependent term
REAL(wp), DIMENSION(nlay_i+nlay_s+1) :: zindtbis ! Temporary 'ind'ependent term
REAL(wp), DIMENSION(nlay_i+nlay_s+1) :: zdiagbis ! Temporary 'dia'gonal term
REAL(wp), DIMENSION(nlay_i+nlay_s+1,3) :: ztrid ! Tridiagonal system terms
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
!
! Mono-category
REAL(wp) :: zepsilon ! determines thres. above which computation of G(h) is done
REAL(wp) :: zhe ! dummy factor
REAL(wp) :: zcnd_i ! mean sea ice thermal conductivity
!!------------------------------------------------------------------
! --- diag error on heat diffusion - PART 1 --- !
DO ji = 1, npti
zq_ini(ji) = ( SUM( e_i_1d(ji,1:nlay_i) ) * h_i_1d(ji) * r1_nlay_i + &
& SUM( e_s_1d(ji,1:nlay_s) ) * h_s_1d(ji) * r1_nlay_s )
END DO
! calculate ice fraction covered by snow for radiation
CALL ice_var_snwfra( h_s_1d(1:npti), za_s_fra(1:npti) )
!------------------
! 1) Initialization
!------------------
!
! extinction radiation in the snow
IF ( nn_qtrice == 0 ) THEN ! constant
zraext_s(1:npti) = rn_kappa_s
ELSEIF( nn_qtrice == 1 ) THEN ! depends on melting/freezing conditions
WHERE( t_su_1d(1:npti) < rt0 ) ; zraext_s(1:npti) = rn_kappa_sdry ! no surface melting
ELSEWHERE ; zraext_s(1:npti) = rn_kappa_smlt ! surface melting
END WHERE
ENDIF
!
! thicknesses
DO ji = 1, npti
! ice thickness
IF( h_i_1d(ji) > 0._wp ) THEN
zh_i (ji) = MAX( zh_min , h_i_1d(ji) ) * r1_nlay_i ! set a minimum thickness for conduction
z1_h_i(ji) = 1._wp / zh_i(ji) ! it must be very small
ELSE
zh_i (ji) = 0._wp
z1_h_i(ji) = 0._wp
ENDIF
! snow thickness
IF( h_s_1d(ji) > 0._wp ) THEN
zh_s (ji) = MAX( zh_min , h_s_1d(ji) ) * r1_nlay_s ! set a minimum thickness for conduction
z1_h_s(ji) = 1._wp / zh_s(ji) ! it must be very small
isnow (ji) = 1._wp
ELSE
zh_s (ji) = 0._wp
z1_h_s(ji) = 0._wp
isnow (ji) = 0._wp
ENDIF
! for Met-Office
IF( h_s_1d(ji) < zh_min ) THEN
isnow_comb(ji) = h_s_1d(ji) / zh_min
ELSE
isnow_comb(ji) = 1._wp
ENDIF
END DO
! clem: we should apply correction on snow thickness to take into account snow fraction
! it must be a distribution, so it is a bit complicated
!
! Store initial temperatures and non solar heat fluxes
IF( k_cnd == np_cnd_OFF .OR. k_cnd == np_cnd_EMU ) THEN
ztsub (1:npti) = t_su_1d(1:npti) ! surface temperature at iteration n-1
t_su_1d (1:npti) = MIN( t_su_1d(1:npti), rt0 - ztsu_err ) ! required to leave the choice between melting or not
zdqns_ice_b(1:npti) = dqns_ice_1d(1:npti) ! derivative of incoming nonsolar flux
zqns_ice_b (1:npti) = qns_ice_1d(1:npti) ! store previous qns_ice_1d value
!
ENDIF
!
ztsold (1:npti,:) = t_s_1d(1:npti,:) ! Old snow temperature
ztiold (1:npti,:) = t_i_1d(1:npti,:) ! Old ice temperature
!-------------
! 2) Radiation
!-------------
! --- Transmission/absorption of solar radiation in the ice --- !
DO ji = 1, npti
!
zradtr_s(ji,0) = qtr_ice_top_1d(ji)
DO jk = 1, nlay_s
! ! radiation transmitted below the layer-th snow layer
zradtr_s(ji,jk) = zradtr_s(ji,0) * EXP( - zraext_s(ji) * MAX( 0._wp, zh_s(ji) * REAL(jk) - zhs_ssl ) )
! ! radiation absorbed by the layer-th snow layer
zradab_s(ji,jk) = zradtr_s(ji,jk-1) - zradtr_s(ji,jk)
END DO
!
zradtr_i(ji,0) = zradtr_s(ji,nlay_s) * za_s_fra(ji) + qtr_ice_top_1d(ji) * ( 1._wp - za_s_fra(ji) )
DO jk = 1, nlay_i
! ! radiation transmitted below the layer-th ice layer
zradtr_i(ji,jk) = za_s_fra(ji) * zradtr_s(ji,nlay_s) & ! part covered by snow
& * EXP( - rn_kappa_i * MAX( 0._wp, zh_i(ji) * REAL(jk) - zh_min ) ) &
& + ( 1._wp - za_s_fra(ji) ) * qtr_ice_top_1d(ji) & ! part snow free
& * EXP( - rn_kappa_i * MAX( 0._wp, zh_i(ji) * REAL(jk) - zhi_ssl ) )
! ! radiation absorbed by the layer-th ice layer
zradab_i(ji,jk) = zradtr_i(ji,jk-1) - zradtr_i(ji,jk)
END DO
!
qtr_ice_bot_1d(ji) = zradtr_i(ji,nlay_i) ! record radiation transmitted below the ice
!
END DO
!
!
iconv = 0 ! number of iterations
!
l_T_converged(:) = .FALSE.
! Convergence calculated until all sub-domain grid points have converged
! Calculations keep going for all grid points until sub-domain convergence (vectorisation optimisation)
! but values are not taken into account (results independant of MPI partitioning)
!
! !============================!
DO WHILE ( ( .NOT. ALL (l_T_converged(1:npti)) ) .AND. iconv < iconv_max ) ! Iterative procedure begins !
! !============================!
iconv = iconv + 1
!
!--------------------------------
! 3) Sea ice thermal conductivity
!--------------------------------
IF( ln_cndi_U64 ) THEN !-- Untersteiner (1964) formula: k = k0 + beta.S/T
!
DO ji = 1, npti
ztcond_i_cp(ji,0) = rcnd_i + zbeta * sz_i_1d(ji,1) / MIN( -epsi10, t_i_1d(ji,1) - rt0 )
ztcond_i_cp(ji,nlay_i) = rcnd_i + zbeta * sz_i_1d(ji,nlay_i) / MIN( -epsi10, t_bo_1d(ji) - rt0 )
DO jk = 1, nlay_i-1
ztcond_i_cp(ji,jk) = rcnd_i + zbeta * 0.5_wp * ( sz_i_1d(ji,jk) + sz_i_1d(ji,jk+1) ) / &
& MIN( -epsi10, 0.5_wp * ( t_i_1d(ji,jk) + t_i_1d(ji,jk+1) ) - rt0 )
END DO
END DO
!
ELSEIF( ln_cndi_P07 ) THEN !-- Pringle et al formula: k = k0 + beta1.S/T - beta2.T
!
DO ji = 1, npti
ztcond_i_cp(ji,0) = rcnd_i + 0.09_wp * sz_i_1d(ji,1) / MIN( -epsi10, t_i_1d(ji,1) - rt0 ) &
& - 0.011_wp * ( t_i_1d(ji,1) - rt0 )
ztcond_i_cp(ji,nlay_i) = rcnd_i + 0.09_wp * sz_i_1d(ji,nlay_i) / MIN( -epsi10, t_bo_1d(ji) - rt0 ) &
& - 0.011_wp * ( t_bo_1d(ji) - rt0 )
DO jk = 1, nlay_i-1
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
ztcond_i_cp(ji,jk) = rcnd_i + 0.09_wp * 0.5_wp * ( sz_i_1d(ji,jk) + sz_i_1d(ji,jk+1) ) / &
& MIN( -epsi10, 0.5_wp * ( t_i_1d(ji,jk) + t_i_1d(ji,jk+1) ) - rt0 ) &
& - 0.011_wp * ( 0.5_wp * ( t_i_1d(ji,jk) + t_i_1d(ji,jk+1) ) - rt0 )
END DO
END DO
!
ENDIF
! Variable used after iterations
! Value must be frozen after convergence for MPP independance reason
DO ji = 1, npti
IF ( .NOT. l_T_converged(ji) ) &
ztcond_i(ji,:) = MAX( zkimin, ztcond_i_cp(ji,:) )
END DO
!
!--- G(he) : enhancement of thermal conductivity in mono-category case
! Computation of effective thermal conductivity G(h)
! Used in mono-category case only to simulate an ITD implicitly
! Fichefet and Morales Maqueda, JGR 1997
zghe(1:npti) = 1._wp
!
IF( ln_virtual_itd ) THEN
!
zepsilon = 0.1_wp
DO ji = 1, npti
zcnd_i = SUM( ztcond_i(ji,:) ) / REAL( nlay_i+1, wp ) ! Mean sea ice thermal conductivity
zhe = ( rn_cnd_s * h_i_1d(ji) + zcnd_i * h_s_1d(ji) ) / ( rn_cnd_s + zcnd_i ) ! Effective thickness he (zhe)
IF( zhe >= zepsilon * 0.5_wp * EXP(1._wp) ) &
& zghe(ji) = MIN( 2._wp, 0.5_wp * ( 1._wp + LOG( 2._wp * zhe / zepsilon ) ) ) ! G(he)
END DO
!
ENDIF
!
DO ji = 1, npti
!-----------------
! 4) kappa factors
!-----------------
IF ( .NOT. l_T_converged(ji) ) THEN
!--- Snow
! Variable used after iterations
! Value must be frozen after convergence for MPP independance reason
DO jk = 0, nlay_s-1
END DO
zkappa_s(ji,nlay_s) = isnow(ji) * zghe(ji) * rn_cnd_s * ztcond_i(ji,0) & ! Snow-ice interface
& / ( 0.5_wp * ( ztcond_i(ji,0) * zh_s(ji) + rn_cnd_s * zh_i(ji) ) )
!
!--- Ice
! Variable used after iterations
! Value must be frozen after convergence for MPP independance reason
DO jk = 0, nlay_i
zkappa_i(ji,jk) = zghe(ji) * ztcond_i(ji,jk) * z1_h_i(ji)
END DO
! Calculate combined surface snow and ice conductivity to pass through the coupler (met-office)
zkappa_comb(ji) = isnow_comb(ji) * zkappa_s(ji,0) + ( 1._wp - isnow_comb(ji) ) * zkappa_i(ji,0)
! If there is snow then use the same snow-ice interface conductivity for the top layer of ice
IF( h_s_1d(ji) > 0._wp ) zkappa_i(ji,0) = zkappa_s(ji,nlay_s) ! Snow-ice interface
ENDIF
!
!--------------------------------------
! 5) Sea ice specific heat, eta factors
!--------------------------------------
DO jk = 1, nlay_i
zcpi = rcpi + zgamma * sz_i_1d(ji,jk) / MAX( ( t_i_1d(ji,jk) - rt0 ) * ( ztiold(ji,jk) - rt0 ), epsi10 )
zeta_i(ji,jk) = rDt_ice * r1_rhoi * z1_h_i(ji) / zcpi
END DO
DO jk = 1, nlay_s
zeta_s(ji,jk) = rDt_ice * r1_rhos * r1_rcpi * z1_h_s(ji)
END DO
END DO
!
!
IF( k_cnd == np_cnd_OFF .OR. k_cnd == np_cnd_EMU ) THEN
!----------------------------------------!
! !
! Conduction flux is off or emulated !
! !
!----------------------------------------!
!
! ==> The original BL99 temperature computation is used
! (with qsr_ice, qns_ice and dqns_ice as inputs)
!
DO ji = 1, npti
!----------------------------
! 6) surface flux computation
!----------------------------
! update of the non solar flux according to the update in T_su
! Variable used after iterations
! Value must be frozen after convergence for MPP independance reason
IF ( .NOT. l_T_converged(ji) ) &
qns_ice_1d(ji) = qns_ice_1d(ji) + dqns_ice_1d(ji) * ( t_su_1d(ji) - ztsub(ji) )
zfnet = qsr_ice_1d(ji) - qtr_ice_top_1d(ji) + qns_ice_1d(ji) ! net heat flux = net - transmitted solar + non solar
!
!
! before temperatures
DO jk = 1, nlay_i
ztib(jk) = t_i_1d(ji,jk)
ENDDO
DO jk = 1, nlay_s
ztsb(jk) = t_s_1d(ji,jk)
ENDDO
!
!----------------------------
! 7) tridiagonal system terms
!----------------------------
! layer denotes the number of the layer in the snow or in the ice
! jm denotes the reference number of the equation in the tridiagonal
! system, terms of tridiagonal system are indexed as following :
! 1 is subdiagonal term, 2 is diagonal and 3 is superdiagonal one
! ice interior terms (top equation has the same form as the others)
ztrid (:,:) = 0._wp
zindterm(:) = 0._wp
zindtbis(:) = 0._wp
zdiagbis(:) = 0._wp
DO jm = nlay_s + 2, nlay_s + nlay_i
ztrid (jm,1) = - zeta_i(ji,jk) * zkappa_i(ji,jk-1)
ztrid (jm,2) = 1._wp + zeta_i(ji,jk) * ( zkappa_i(ji,jk-1) + zkappa_i(ji,jk) )
ztrid (jm,3) = - zeta_i(ji,jk) * zkappa_i(ji,jk)
zindterm(jm) = ztiold(ji,jk) + zeta_i(ji,jk) * zradab_i(ji,jk)
jm = nlay_s + nlay_i + 1
ztrid (jm,1) = - zeta_i(ji,nlay_i) * zkappa_i(ji,nlay_i-1)
ztrid (jm,2) = 1._wp + zeta_i(ji,nlay_i) * ( zkappa_i(ji,nlay_i-1) + zkappa_i(ji,nlay_i) * zg1 )
ztrid (jm,3) = 0._wp
zindterm(jm) = ztiold(ji,nlay_i) + zeta_i(ji,nlay_i) * &
& ( zradab_i(ji,nlay_i) + zkappa_i(ji,nlay_i) * zg1 * t_bo_1d(ji) )
! !---------------------!
IF( h_s_1d(ji) > 0._wp ) THEN ! snow-covered cells !
! !---------------------!
! snow interior terms (bottom equation has the same form as the others)
DO jm = 3, nlay_s + 1
jk = jm - 1
ztrid (jm,1) = - zeta_s(ji,jk) * zkappa_s(ji,jk-1)
ztrid (jm,2) = 1._wp + zeta_s(ji,jk) * ( zkappa_s(ji,jk-1) + zkappa_s(ji,jk) )
ztrid (jm,3) = - zeta_s(ji,jk) * zkappa_s(ji,jk)
zindterm(jm) = ztsold(ji,jk) + zeta_s(ji,jk) * zradab_s(ji,jk)
END DO
! case of only one layer in the ice (ice equation is altered)
IF( nlay_i == 1 ) THEN
ztrid (nlay_s+2,3) = 0._wp
zindterm(nlay_s+2) = zindterm(nlay_s+2) + zeta_i(ji,1) * zkappa_i(ji,1) * t_bo_1d(ji)
ENDIF
IF( t_su_1d(ji) < rt0 ) THEN !-- case 1 : no surface melting
jm_min = 1
jm_max = nlay_i + nlay_s + 1
ztrid (1,1) = 0._wp
ztrid (1,2) = zdqns_ice_b(ji) - zg1s * zkappa_s(ji,0)
ztrid (1,3) = zg1s * zkappa_s(ji,0)
zindterm(1) = zdqns_ice_b(ji) * t_su_1d(ji) - zfnet
ztrid (2,1) = - zeta_s(ji,1) * zkappa_s(ji,0) * zg1s
ztrid (2,2) = 1._wp + zeta_s(ji,1) * ( zkappa_s(ji,1) + zkappa_s(ji,0) * zg1s )
ztrid (2,3) = - zeta_s(ji,1) * zkappa_s(ji,1)
zindterm(2) = ztsold(ji,1) + zeta_s(ji,1) * zradab_s(ji,1)
jm_min = 2
jm_max = nlay_i + nlay_s + 1
ztrid (2,1) = 0._wp
ztrid (2,2) = 1._wp + zeta_s(ji,1) * ( zkappa_s(ji,1) + zkappa_s(ji,0) * zg1s )
ztrid (2,3) = - zeta_s(ji,1) * zkappa_s(ji,1)
zindterm(2) = ztsold(ji,1) + zeta_s(ji,1) * ( zradab_s(ji,1) + zkappa_s(ji,0) * zg1s * t_su_1d(ji) )
ENDIF
! !---------------------!
ELSE ! cells without snow !
! !---------------------!
!
IF( t_su_1d(ji) < rt0 ) THEN !-- case 1 : no surface melting
!
jm_min = nlay_s + 1
jm_max = nlay_i + nlay_s + 1
ztrid (jm_min,1) = 0._wp
ztrid (jm_min,2) = zdqns_ice_b(ji) - zkappa_i(ji,0) * zg1
ztrid (jm_min,3) = zkappa_i(ji,0) * zg1
zindterm(jm_min) = zdqns_ice_b(ji) * t_su_1d(ji) - zfnet
ztrid (jm_min+1,1) = - zeta_i(ji,1) * zkappa_i(ji,0) * zg1
ztrid (jm_min+1,2) = 1._wp + zeta_i(ji,1) * ( zkappa_i(ji,1) + zkappa_i(ji,0) * zg1 )
ztrid (jm_min+1,3) = - zeta_i(ji,1) * zkappa_i(ji,1)
zindterm(jm_min+1) = ztiold(ji,1) + zeta_i(ji,1) * zradab_i(ji,1)
! case of only one layer in the ice (surface & ice equations are altered)
IF( nlay_i == 1 ) THEN
ztrid (jm_min,1) = 0._wp
ztrid (jm_min,2) = zdqns_ice_b(ji) - zkappa_i(ji,0) * 2._wp
ztrid (jm_min,3) = zkappa_i(ji,0) * 2._wp
ztrid (jm_min+1,1) = - zeta_i(ji,1) * zkappa_i(ji,0) * 2._wp
ztrid (jm_min+1,2) = 1._wp + zeta_i(ji,1) * ( zkappa_i(ji,0) * 2._wp + zkappa_i(ji,1) )
ztrid (jm_min+1,3) = 0._wp
zindterm(jm_min+1) = ztiold(ji,1) + zeta_i(ji,1) * (zradab_i(ji,1) + zkappa_i(ji,1) * t_bo_1d(ji))
ENDIF
ELSE !-- case 2 : surface is melting
jm_min = nlay_s + 2
jm_max = nlay_i + nlay_s + 1
ztrid (jm_min,1) = 0._wp
ztrid (jm_min,2) = 1._wp + zeta_i(ji,1) * ( zkappa_i(ji,1) + zkappa_i(ji,0) * zg1 )
ztrid (jm_min,3) = - zeta_i(ji,1) * zkappa_i(ji,1)
zindterm(jm_min) = ztiold(ji,1) + zeta_i(ji,1) * (zradab_i(ji,1) + zkappa_i(ji,0) * zg1 * t_su_1d(ji))
! case of only one layer in the ice (surface & ice equations are altered)
IF( nlay_i == 1 ) THEN
ztrid (jm_min,1) = 0._wp
ztrid (jm_min,2) = 1._wp + zeta_i(ji,1) * ( zkappa_i(ji,0) * 2._wp + zkappa_i(ji,1) )
ztrid (jm_min,3) = 0._wp
zindterm(jm_min) = ztiold(ji,1) + zeta_i(ji,1) * ( zradab_i(ji,1) + zkappa_i(ji,1) * t_bo_1d(ji) ) &
& + t_su_1d(ji) * zeta_i(ji,1) * zkappa_i(ji,0) * 2._wp
zindtbis(jm_min) = zindterm(jm_min)
zdiagbis(jm_min) = ztrid (jm_min,2)
!
!------------------------------
! 8) tridiagonal system solving
!------------------------------
! Solve the tridiagonal system with Gauss elimination method.
! Thomas algorithm, from Computational fluid Dynamics, J.D. ANDERSON, McGraw-Hill 1984
!!$ jm_maxt = 0
!!$ jm_mint = nlay_i+5
!!$ DO ji = 1, npti
!!$ jm_mint = MIN(jm_min,jm_mint)
!!$ jm_maxt = MAX(jm_max,jm_maxt)
!!$ END DO
!!$ !!clem SNWLAY => check why LIM1D does not get this loop. Is nlay_i+5 correct?
!!$
!!$ DO jk = jm_mint+1, jm_maxt
!!$ DO ji = 1, npti
!!$ jm = MIN(MAX(jm_min+1,jk),jm_max)
!!$ zdiagbis(ji,jm) = ztrid (ji,jm,2) - ztrid(ji,jm,1) * ztrid (ji,jm-1,3) / zdiagbis(ji,jm-1)
!!$ zindtbis(ji,jm) = zindterm(ji,jm ) - ztrid(ji,jm,1) * zindtbis(ji,jm-1 ) / zdiagbis(ji,jm-1)
!!$ END DO
!!$ END DO
DO jm = jm_min+1, jm_max
zdiagbis(jm) = ztrid (jm,2) - ztrid(jm,1) * ztrid (jm-1,3) / zdiagbis(jm-1)
zindtbis(jm) = zindterm(jm ) - ztrid(jm,1) * zindtbis(jm-1 ) / zdiagbis(jm-1)
! ice temperatures
! Variable used after iterations
! Value must be frozen after convergence for MPP independance reason
IF ( .NOT. l_T_converged(ji) ) &
t_i_1d(ji,nlay_i) = zindtbis(jm_max) / zdiagbis(jm_max)
DO jm = nlay_i + nlay_s, nlay_s + 2, -1
jk = jm - nlay_s - 1
IF ( .NOT. l_T_converged(ji) ) &
t_i_1d(ji,jk) = ( zindtbis(jm) - ztrid(jm,3) * t_i_1d(ji,jk+1) ) / zdiagbis(jm)
! snow temperatures
! Variables used after iterations
! Value must be frozen after convergence for MPP independance reason
IF ( .NOT. l_T_converged(ji) .AND. h_s_1d(ji) > 0._wp ) &
& t_s_1d(ji,nlay_s) = ( zindtbis(nlay_s+1) - ztrid(nlay_s+1,3) * t_i_1d(ji,1) ) / zdiagbis(nlay_s+1)
!!clem SNWLAY
DO jm = nlay_s, 2, -1
jk = jm - 1
IF ( .NOT. l_T_converged(ji) .AND. h_s_1d(ji) > 0._wp ) &
& t_s_1d(ji,jk) = ( zindtbis(jm) - ztrid(jm,3) * t_s_1d(ji,jk+1) ) / zdiagbis(jm)
! surface temperature
IF( .NOT. l_T_converged(ji) ) THEN
ztsub(ji) = t_su_1d(ji)
IF( t_su_1d(ji) < rt0 ) THEN
t_su_1d(ji) = ( zindtbis(jm_min) - ztrid(jm_min,3) * &
& ( isnow(ji) * t_s_1d(ji,1) + ( 1._wp - isnow(ji) ) * t_i_1d(ji,1) ) ) / zdiagbis(jm_min)
!
!--------------------------------------------------------------
! 9) Has the scheme converged?, end of the iterative procedure
!--------------------------------------------------------------
! check that nowhere it has started to melt
! zdti_max is a measure of error, it has to be under zdti_bnd
zdti_max = 0._wp
IF ( .NOT. l_T_converged(ji) ) THEN
t_su_1d(ji) = MAX( MIN( t_su_1d(ji) , rt0 ) , rt0 - 100._wp )
zdti_max = MAX( zdti_max, ABS( t_su_1d(ji) - ztsub(ji) ) )
IF( h_s_1d(ji) > 0._wp ) THEN
DO jk = 1, nlay_s
t_s_1d(ji,jk) = MAX( MIN( t_s_1d(ji,jk), rt0 ), rt0 - 100._wp )
zdti_max = MAX ( zdti_max , ABS( t_s_1d(ji,jk) - ztsb(jk) ) )
END DO
ENDIF
DO jk = 1, nlay_i
ztmelts = -rTmlt * sz_i_1d(ji,jk) + rt0
t_i_1d(ji,jk) = MAX( MIN( t_i_1d(ji,jk), ztmelts ), rt0 - 100._wp )
zdti_max = MAX( zdti_max, ABS( t_i_1d(ji,jk) - ztib(jk) ) )
END DO
! convergence test
IF( ln_zdf_chkcvg ) THEN
tice_cvgerr_1d(ji) = zdti_max
tice_cvgstp_1d(ji) = REAL(iconv)
ENDIF
END DO
!
!----------------------------------------!
! !
! Conduction flux is on !
! !
!----------------------------------------!
!
! ==> we use a modified BL99 solver with conduction flux (qcn_ice) as forcing term
!
DO ji = 1, npti
!
! before temperatures
DO jk = 1, nlay_i
ztib(jk) = t_i_1d(ji,jk)
ENDDO
DO jk = 1, nlay_s
ztsb(jk) = t_s_1d(ji,jk)
ENDDO
!
!----------------------------
! 7) tridiagonal system terms
!----------------------------
! layer denotes the number of the layer in the snow or in the ice
! jm denotes the reference number of the equation in the tridiagonal
! system, terms of tridiagonal system are indexed as following :
! 1 is subdiagonal term, 2 is diagonal and 3 is superdiagonal one
! ice interior terms (top equation has the same form as the others)
ztrid (:,:) = 0._wp
zindterm(:) = 0._wp
zindtbis(:) = 0._wp
zdiagbis(:) = 0._wp
DO jm = nlay_s + 2, nlay_s + nlay_i
ztrid (jm,1) = - zeta_i(ji,jk) * zkappa_i(ji,jk-1)
ztrid (jm,2) = 1._wp + zeta_i(ji,jk) * ( zkappa_i(ji,jk-1) + zkappa_i(ji,jk) )
ztrid (jm,3) = - zeta_i(ji,jk) * zkappa_i(ji,jk)
zindterm(jm) = ztiold(ji,jk) + zeta_i(ji,jk) * zradab_i(ji,jk)
jm = nlay_s + nlay_i + 1
ztrid (jm,1) = - zeta_i(ji,nlay_i) * zkappa_i(ji,nlay_i-1)
ztrid (jm,2) = 1._wp + zeta_i(ji,nlay_i) * ( zkappa_i(ji,nlay_i-1) + zkappa_i(ji,nlay_i) * zg1 )
ztrid (jm,3) = 0._wp
zindterm(jm) = ztiold(ji,nlay_i) + zeta_i(ji,nlay_i) * &
& ( zradab_i(ji,nlay_i) + zkappa_i(ji,nlay_i) * zg1 * t_bo_1d(ji) )
! !---------------------!
IF( h_s_1d(ji) > 0._wp ) THEN ! snow-covered cells !
! !---------------------!
! snow interior terms (bottom equation has the same form as the others)
DO jm = 3, nlay_s + 1
jk = jm - 1
ztrid (jm,1) = - zeta_s(ji,jk) * zkappa_s(ji,jk-1)
ztrid (jm,2) = 1._wp + zeta_s(ji,jk) * ( zkappa_s(ji,jk-1) + zkappa_s(ji,jk) )
ztrid (jm,3) = - zeta_s(ji,jk) * zkappa_s(ji,jk)
zindterm(jm) = ztsold(ji,jk) + zeta_s(ji,jk) * zradab_s(ji,jk)
END DO
! case of only one layer in the ice (ice equation is altered)
IF ( nlay_i == 1 ) THEN
ztrid (nlay_s+2,3) = 0._wp
zindterm(nlay_s+2) = zindterm(nlay_s+2) + zeta_i(ji,1) * zkappa_i(ji,1) * t_bo_1d(ji)
jm_min = 2
jm_max = nlay_i + nlay_s + 1
ztrid (2,1) = 0._wp
ztrid (2,2) = 1._wp + zeta_s(ji,1) * zkappa_s(ji,1)
ztrid (2,3) = - zeta_s(ji,1) * zkappa_s(ji,1)
zindterm(2) = ztsold(ji,1) + zeta_s(ji,1) * ( zradab_s(ji,1) + qcn_ice_1d(ji) )
! !---------------------!
ELSE ! cells without snow !
! !---------------------!
jm_min = nlay_s + 2
jm_max = nlay_i + nlay_s + 1
ztrid (jm_min,1) = 0._wp
ztrid (jm_min,2) = 1._wp + zeta_i(ji,1) * zkappa_i(ji,1)
ztrid (jm_min,3) = - zeta_i(ji,1) * zkappa_i(ji,1)
zindterm(jm_min) = ztiold(ji,1) + zeta_i(ji,1) * ( zradab_i(ji,1) + qcn_ice_1d(ji) )
! case of only one layer in the ice (surface & ice equations are altered)
IF( nlay_i == 1 ) THEN
ztrid (jm_min,1) = 0._wp
ztrid (jm_min,2) = 1._wp + zeta_i(ji,1) * zkappa_i(ji,1)
ztrid (jm_min,3) = 0._wp
zindterm(jm_min) = ztiold(ji,1) + zeta_i(ji,1) * &
& ( zradab_i(ji,1) + zkappa_i(ji,1) * t_bo_1d(ji) + qcn_ice_1d(ji) )
ENDIF
ENDIF
!
zindtbis(jm_min) = zindterm(jm_min)
zdiagbis(jm_min) = ztrid (jm_min,2)
!
!------------------------------
! 8) tridiagonal system solving
!------------------------------
! Solve the tridiagonal system with Gauss elimination method.
! Thomas algorithm, from Computational fluid Dynamics, J.D. ANDERSON, McGraw-Hill 1984
!!$ jm_maxt = 0
!!$ jm_mint = nlay_i+5
!!$ DO ji = 1, npti
!!$ jm_mint = MIN(jm_min,jm_mint)
!!$ jm_maxt = MAX(jm_max,jm_maxt)
!!$ END DO
!!$
!!$ DO jk = jm_mint+1, jm_maxt
!!$ DO ji = 1, npti
!!$ jm = MIN(MAX(jm_min+1,jk),jm_max)
!!$ zdiagbis(ji,jm) = ztrid (ji,jm,2) - ztrid(ji,jm,1) * ztrid (ji,jm-1,3) / zdiagbis(ji,jm-1)
!!$ zindtbis(ji,jm) = zindterm(ji,jm) - ztrid(ji,jm,1) * zindtbis(ji,jm-1) / zdiagbis(ji,jm-1)
!!$ END DO
!!$ END DO
DO jm = jm_min+1, jm_max
zdiagbis(jm) = ztrid (jm,2) - ztrid(jm,1) * ztrid (jm-1,3) / zdiagbis(jm-1)
zindtbis(jm) = zindterm(jm ) - ztrid(jm,1) * zindtbis(jm-1 ) / zdiagbis(jm-1)
! ice temperatures
! Variable used after iterations
! Value must be frozen after convergence for MPP independance reason
IF ( .NOT. l_T_converged(ji) ) &
t_i_1d(ji,nlay_i) = zindtbis(jm_max) / zdiagbis(jm_max)
DO jm = nlay_i + nlay_s, nlay_s + 2, -1
IF ( .NOT. l_T_converged(ji) ) THEN
jk = jm - nlay_s - 1
t_i_1d(ji,jk) = ( zindtbis(jm) - ztrid(jm,3) * t_i_1d(ji,jk+1) ) / zdiagbis(jm)
! snow temperatures
! Variables used after iterations
! Value must be frozen after convergence for MPP independance reason
IF ( .NOT. l_T_converged(ji) .AND. h_s_1d(ji) > 0._wp ) &
& t_s_1d(ji,nlay_s) = ( zindtbis(nlay_s+1) - ztrid(nlay_s+1,3) * t_i_1d(ji,1) ) / zdiagbis(nlay_s+1)
!!clem SNWLAY
DO jm = nlay_s, 2, -1
jk = jm - 1
IF ( .NOT. l_T_converged(ji) .AND. h_s_1d(ji) > 0._wp ) &
& t_s_1d(ji,jk) = ( zindtbis(jm) - ztrid(jm,3) * t_s_1d(ji,jk+1) ) / zdiagbis(jm)
!
!--------------------------------------------------------------
! 9) Has the scheme converged?, end of the iterative procedure
!--------------------------------------------------------------
! check that nowhere it has started to melt
! zdti_max is a measure of error, it has to be under zdti_bnd
IF( h_s_1d(ji) > 0._wp ) THEN
DO jk = 1, nlay_s
t_s_1d(ji,jk) = MAX( MIN( t_s_1d(ji,jk), rt0 ), rt0 - 100._wp )
zdti_max = MAX ( zdti_max , ABS( t_s_1d(ji,jk) - ztsb(jk) ) )
END DO
ENDIF
DO jk = 1, nlay_i
ztmelts = -rTmlt * sz_i_1d(ji,jk) + rt0
t_i_1d(ji,jk) = MAX( MIN( t_i_1d(ji,jk), ztmelts ), rt0 - 100._wp )
zdti_max = MAX ( zdti_max, ABS( t_i_1d(ji,jk) - ztib(jk) ) )
END DO
! convergence test
IF( ln_zdf_chkcvg ) THEN
tice_cvgerr_1d(ji) = zdti_max
tice_cvgstp_1d(ji) = REAL(iconv)
ENDIF
IF( zdti_max < zdti_bnd ) l_T_converged(ji) = .TRUE.
ENDIF
END DO
ENDIF ! k_cnd
END DO ! End of the do while iterative procedure
!
!-----------------------------
! 10) Fluxes at the interfaces
!-----------------------------
!
IF( k_cnd == np_cnd_OFF .OR. k_cnd == np_cnd_EMU ) THEN
!
DO ji = 1, npti
! --- ice conduction fluxes (positive downward)
qcn_ice_bot_1d(ji) = - zkappa_i(ji,nlay_i) * zg1 * ( t_bo_1d(ji ) - t_i_1d (ji,nlay_i) ) ! bottom
qcn_ice_top_1d(ji) = - isnow(ji) * zkappa_s(ji,0) * zg1s * ( t_s_1d(ji,1) - t_su_1d(ji) ) & ! surface
& - ( 1._wp - isnow(ji) ) * zkappa_i(ji,0) * zg1 * ( t_i_1d(ji,1) - t_su_1d(ji) )
! --- Diagnose the heat loss due to changing non-solar / conduction flux
hfx_err_dif_1d(ji) = hfx_err_dif_1d(ji) - ( qns_ice_1d(ji) - zqns_ice_b(ji) ) * a_i_1d(ji)
END DO
!
ELSEIF( k_cnd == np_cnd_ON ) THEN
!
DO ji = 1, npti
! --- ice conduction fluxes (positive downward)
qcn_ice_bot_1d(ji) = - zkappa_i(ji,nlay_i) * zg1 * ( t_bo_1d(ji ) - t_i_1d (ji,nlay_i) ) ! bottom
qcn_ice_top_1d(ji) = qcn_ice_1d(ji) ! surface
! --- surface ice temperature
IF( ln_cndemulate ) THEN
DO ji = 1, npti
t_su_1d(ji) = ( qcn_ice_top_1d(ji) + isnow(ji) * zkappa_s(ji,0) * zg1s * t_s_1d(ji,1) + &
& ( 1._wp - isnow(ji) ) * zkappa_i(ji,0) * zg1 * t_i_1d(ji,1) ) &
& / MAX( epsi10, isnow(ji) * zkappa_s(ji,0) * zg1s + ( 1._wp - isnow(ji) ) * zkappa_i(ji,0) * zg1 )
t_su_1d(ji) = MAX( MIN( t_su_1d(ji), rt0 ), rt0 - 100._wp ) ! cap t_su
END DO
ENDIF
! --- Diagnose the heat loss due to non-fully converged temperature solution (should not be larger than 10-4 W-m2)
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
!
IF( k_cnd == np_cnd_OFF .OR. k_cnd == np_cnd_ON ) THEN
CALL ice_var_enthalpy
! zhfx_err = correction on the diagnosed heat flux due to non-convergence of the algorithm used to solve heat equation
DO ji = 1, npti
zdq = - zq_ini(ji) + ( SUM( e_i_1d(ji,1:nlay_i) ) * h_i_1d(ji) * r1_nlay_i + &
& SUM( e_s_1d(ji,1:nlay_s) ) * h_s_1d(ji) * r1_nlay_s )
IF( k_cnd == np_cnd_OFF ) THEN
IF( t_su_1d(ji) < rt0 ) THEN ! case T_su < 0degC
zhfx_err = ( qns_ice_1d(ji) + qsr_ice_1d(ji) - zradtr_i(ji,nlay_i) - qcn_ice_bot_1d(ji) &
& + zdq * r1_Dt_ice ) * a_i_1d(ji)
ELSE ! case T_su = 0degC
zhfx_err = ( qcn_ice_top_1d(ji) + qtr_ice_top_1d(ji) - zradtr_i(ji,nlay_i) - qcn_ice_bot_1d(ji) &
& + zdq * r1_Dt_ice ) * a_i_1d(ji)
ENDIF
ELSEIF( k_cnd == np_cnd_ON ) THEN
zhfx_err = ( qcn_ice_top_1d(ji) + qtr_ice_top_1d(ji) - zradtr_i(ji,nlay_i) - qcn_ice_bot_1d(ji) &
& + zdq * r1_Dt_ice ) * a_i_1d(ji)
ENDIF
!
! total heat sink to be sent to the ocean
hfx_err_dif_1d(ji) = hfx_err_dif_1d(ji) + zhfx_err
!
! hfx_dif = Heat flux diagnostic of sensible heat used to warm/cool ice in W.m-2
hfx_dif_1d(ji) = hfx_dif_1d(ji) - zdq * r1_Dt_ice * a_i_1d(ji)
!
END DO
!
ENDIF
!
!--------------------------------------------------------------------
! 11) reset inner snow and ice temperatures, update conduction fluxes
!--------------------------------------------------------------------
! effective conductivity and 1st layer temperature (needed by Met Office)
! this is a conductivity at mid-layer, hence the factor 2
DO ji = 1, npti
IF( h_i_1d(ji) >= zhi_ssl ) THEN
cnd_ice_1d(ji) = 2._wp * zkappa_comb(ji)
!!cnd_ice_1d(ji) = 2._wp * zkappa_i(ji,0)
ELSE
cnd_ice_1d(ji) = 2._wp * ztcond_i(ji,0) / zhi_ssl ! cnd_ice is capped by: cond_i/zhi_ssl
ENDIF
t1_ice_1d(ji) = isnow(ji) * t_s_1d(ji,1) + ( 1._wp - isnow(ji) ) * t_i_1d(ji,1)
END DO
!
IF( k_cnd == np_cnd_EMU ) THEN
! Restore temperatures to their initial values
t_s_1d (1:npti,:) = ztsold (1:npti,:)
t_i_1d (1:npti,:) = ztiold (1:npti,:)
qcn_ice_1d(1:npti) = qcn_ice_top_1d(1:npti)
ENDIF
!
! --- SIMIP diagnostics (Snow-ice interfacial temperature)
DO ji = 1, npti
IF( h_s_1d(ji) >= zhs_ssl ) THEN
t_si_1d(ji) = ( rn_cnd_s * h_i_1d(ji) * r1_nlay_i * t_s_1d(ji,nlay_s) &
& + ztcond_i(ji,1) * h_s_1d(ji) * r1_nlay_s * t_i_1d(ji,1) ) &
& / ( rn_cnd_s * h_i_1d(ji) * r1_nlay_i &
& + ztcond_i(ji,1) * h_s_1d(ji) * r1_nlay_s )
ELSE
t_si_1d(ji) = t_su_1d(ji)
ENDIF
END DO
!
END SUBROUTINE ice_thd_zdf_BL99
#else
!!----------------------------------------------------------------------
!! Default option Dummy Module No SI3 sea-ice model
!!----------------------------------------------------------------------
#endif
!!======================================================================
END MODULE icethd_zdf_BL99