Skip to content
Snippets Groups Projects
icevar.F90 64.2 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
MODULE icevar
   !!======================================================================
   !!                       ***  MODULE icevar ***
   !!   sea-ice:  series of functions to transform or compute ice variables
   !!======================================================================
   !! History :   -   !  2006-01  (M. Vancoppenolle) Original code
   !!            4.0  !  2018     (many people)      SI3 [aka Sea Ice cube]
   !!----------------------------------------------------------------------
#if defined key_si3
   !!----------------------------------------------------------------------
   !!   'key_si3'                                       SI3 sea-ice model
   !!----------------------------------------------------------------------
   !!
   !!                 There are three sets of variables
   !!                 VGLO : global variables of the model
   !!                        - v_i (jpi,jpj,jpl)
   !!                        - v_s (jpi,jpj,jpl)
   !!                        - a_i (jpi,jpj,jpl)
   !!                        - t_s (jpi,jpj,jpl)
   !!                        - e_i (jpi,jpj,nlay_i,jpl)
   !!                        - e_s (jpi,jpj,nlay_s,jpl)
   !!                        - sv_i(jpi,jpj,jpl)
   !!                        - oa_i(jpi,jpj,jpl)
   !!                 VEQV : equivalent variables sometimes used in the model
   !!                        - h_i(jpi,jpj,jpl)
   !!                        - h_s(jpi,jpj,jpl)
   !!                        - t_i(jpi,jpj,nlay_i,jpl)
   !!                        ...
   !!                 VAGG : aggregate variables, averaged/summed over all
   !!                        thickness categories
   !!                        - vt_i(jpi,jpj)
   !!                        - vt_s(jpi,jpj)
   !!                        - at_i(jpi,jpj)
   !!                        - st_i(jpi,jpj)
   !!                        - et_s(jpi,jpj)  total snow heat content
   !!                        - et_i(jpi,jpj)  total ice thermal content
   !!                        - sm_i(jpi,jpj)  mean ice salinity
   !!                        - tm_i(jpi,jpj)  mean ice temperature
   !!                        - tm_s(jpi,jpj)  mean snw temperature
   !!----------------------------------------------------------------------
   !!   ice_var_agg       : integrate variables over layers and categories
   !!   ice_var_glo2eqv   : transform from VGLO to VEQV
   !!   ice_var_eqv2glo   : transform from VEQV to VGLO
   !!   ice_var_salprof   : salinity profile in the ice
   !!   ice_var_salprof1d : salinity profile in the ice 1D
   !!   ice_var_zapsmall  : remove very small area and volume
   !!   ice_var_zapneg    : remove negative ice fields
   !!   ice_var_roundoff  : remove negative values arising from roundoff erros
   !!   ice_var_bv        : brine volume
   !!   ice_var_enthalpy  : compute ice and snow enthalpies from temperature
   !!   ice_var_sshdyn    : compute equivalent ssh in lead
   !!   ice_var_itd       : convert N-cat to M-cat
   !!   ice_var_snwfra    : fraction of ice covered by snow
   !!   ice_var_snwblow   : distribute snow fall between ice and ocean
   !!----------------------------------------------------------------------
   USE dom_oce        ! ocean space and time domain
   USE phycst         ! physical constants (ocean directory)
   USE sbc_oce , ONLY : sss_m, ln_ice_embd, nn_fsbc
   USE ice            ! sea-ice: variables
   USE ice1D          ! sea-ice: thermodynamics variables
   !
   USE in_out_manager ! I/O manager
   USE lib_mpp        ! MPP library
   USE lib_fortran    ! fortran utilities (glob_sum + no signed zero)

   IMPLICIT NONE
   PRIVATE

   PUBLIC   ice_var_agg
   PUBLIC   ice_var_glo2eqv
   PUBLIC   ice_var_eqv2glo
   PUBLIC   ice_var_salprof
   PUBLIC   ice_var_salprof1d
   PUBLIC   ice_var_zapsmall
   PUBLIC   ice_var_zapneg
   PUBLIC   ice_var_roundoff
   PUBLIC   ice_var_bv
   PUBLIC   ice_var_enthalpy
   PUBLIC   ice_var_sshdyn
   PUBLIC   ice_var_itd
   PUBLIC   ice_var_snwfra
   PUBLIC   ice_var_snwblow

   INTERFACE ice_var_itd
      MODULE PROCEDURE ice_var_itd_1c1c, ice_var_itd_Nc1c, ice_var_itd_1cMc, ice_var_itd_NcMc
   END INTERFACE

   !! * Substitutions
#  include "do_loop_substitute.h90"

   INTERFACE ice_var_snwfra
      MODULE PROCEDURE ice_var_snwfra_1d, ice_var_snwfra_2d, ice_var_snwfra_3d
   END INTERFACE

   INTERFACE ice_var_snwblow
      MODULE PROCEDURE ice_var_snwblow_1d, ice_var_snwblow_2d
   END INTERFACE

   !!----------------------------------------------------------------------
   !! NEMO/ICE 4.0 , NEMO Consortium (2018)
   !! $Id: icevar.F90 15385 2021-10-15 13:52:48Z clem $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE ice_var_agg( kn )
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_agg  ***
      !!
      !! ** Purpose :   aggregates ice-thickness-category variables to
      !!              all-ice variables, i.e. it turns VGLO into VAGG
      !!-------------------------------------------------------------------
      INTEGER, INTENT( in ) ::   kn     ! =1 state variables only
      !                                 ! >1 state variables + others
      !
      INTEGER  ::   ji, jj, jk, jl   ! dummy loop indices
      REAL(wp) ::   z1_vt_i, z1_vt_s
      REAL(wp), DIMENSION(A2D(0)) ::   z1_at_i
Guillaume Samson's avatar
Guillaume Samson committed
      !!-------------------------------------------------------------------
      !
      ! full    arrays: vt_i, vt_s, at_i, vt_ip, vt_il, at_ip
      ! reduced arrays: the rest
Guillaume Samson's avatar
Guillaume Samson committed
      !
      ! --- integrated values
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         vt_i(ji,jj)  = SUM( v_i (ji,jj,:) )
         vt_s(ji,jj)  = SUM( v_s (ji,jj,:) )
         at_i(ji,jj)  = SUM( a_i (ji,jj,:) )
         !
         at_ip(ji,jj) = SUM( a_ip(ji,jj,:) ) ! melt ponds
         vt_ip(ji,jj) = SUM( v_ip(ji,jj,:) )
         vt_il(ji,jj) = SUM( v_il(ji,jj,:) )
         !
         ato_i(ji,jj) = 1._wp - at_i(ji,jj)  ! open water fraction
      DO_2D( 0, 0, 0, 0 )
         st_i(ji,jj) =       SUM( sv_i(ji,jj,:)     )
         et_s(ji,jj)  = SUM( SUM( e_s (ji,jj,:,:), dim=2 ) )
         et_i(ji,jj)  = SUM( SUM( e_i (ji,jj,:,:), dim=2 ) )
Clement Rousset's avatar
Clement Rousset committed
         !
         !!GS: tm_su always needed by ABL over sea-ice
         IF( at_i(ji,jj) <= epsi20 ) THEN
            z1_at_i(ji,jj) = 0._wp
            tm_su  (ji,jj) = rt0
            z1_at_i(ji,jj) = 1._wp / at_i(ji,jj)
            tm_su  (ji,jj) = SUM( t_su(ji,jj,:) * a_i(ji,jj,:) ) * z1_at_i(ji,jj)
Guillaume Samson's avatar
Guillaume Samson committed
      !
      ! The following fields are calculated for diagnostics and outputs only
      ! ==> Do not use them for other purposes
      IF( kn > 1 ) THEN
         !
         DO_2D( 0, 0, 0, 0 )
            IF( vt_i(ji,jj) > epsi20 ) THEN   ;   z1_vt_i = 1._wp / vt_i(ji,jj)
            ELSE                              ;   z1_vt_i = 0._wp
            ENDIF
            IF( vt_s(ji,jj) > epsi20 ) THEN   ;   z1_vt_s = 1._wp / vt_s(ji,jj)
            ELSE                              ;   z1_vt_s = 0._wp
            ENDIF

            ! mean ice/snow thickness
            hm_i(ji,jj) = vt_i(ji,jj) * z1_at_i(ji,jj)
            hm_s(ji,jj) = vt_s(ji,jj) * z1_at_i(ji,jj)
            !
            ! mean temperature (K), salinity and age
            tm_si(ji,jj) = SUM( t_si(ji,jj,:) * a_i(ji,jj,:)  ) * z1_at_i(ji,jj)
            om_i (ji,jj) = SUM( oa_i(ji,jj,:)                 ) * z1_at_i(ji,jj)
            sm_i (ji,jj) =      st_i(ji,jj)                     * z1_vt_i
            !
            tm_i(ji,jj) = 0._wp
            tm_s(ji,jj) = 0._wp
            DO jl = 1, jpl
               DO jk = 1, nlay_i
                  tm_i(ji,jj) = tm_i(ji,jj) + r1_nlay_i * t_i (ji,jj,jk,jl) * v_i(ji,jj,jl) * z1_vt_i
               END DO
               DO jk = 1, nlay_s
                  tm_s(ji,jj) = tm_s(ji,jj) + r1_nlay_s * t_s (ji,jj,jk,jl) * v_s(ji,jj,jl) * z1_vt_s
Guillaume Samson's avatar
Guillaume Samson committed
            END DO
         ! put rt0 where there is no ice
         WHERE( at_i(A2D(0)) <= epsi20 )
Guillaume Samson's avatar
Guillaume Samson committed
            tm_si(:,:) = rt0
            tm_i (:,:) = rt0
            tm_s (:,:) = rt0
         END WHERE
         !
         ! mean melt pond depth
         WHERE( at_ip(A2D(0)) > epsi20 )
            hm_ip(:,:) = vt_ip(A2D(0)) / at_ip(A2D(0))
            hm_il(:,:) = vt_il(A2D(0)) / at_ip(A2D(0))
         ELSEWHERE
            hm_ip(:,:) = 0._wp
            hm_il(:,:) = 0._wp
Guillaume Samson's avatar
Guillaume Samson committed
         END WHERE
         !
Guillaume Samson's avatar
Guillaume Samson committed
      ENDIF
      !
   END SUBROUTINE ice_var_agg


   SUBROUTINE ice_var_glo2eqv
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_glo2eqv ***
      !!
      !! ** Purpose :   computes equivalent variables as function of
      !!              global variables, i.e. it turns VGLO into VEQV
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jk, jl   ! dummy loop indices
      REAL(wp) ::   ze_i             ! local scalars
      REAL(wp) ::   ze_s, ztmelts, zbbb, zccc       !   -      -
      REAL(wp) ::   zhmax, z1_zhmax                 !   -      -
      REAL(wp) ::   zlay_i, zlay_s                  !   -      -
      REAL(wp), PARAMETER ::   zhl_max =  0.015_wp  ! pond lid thickness above which the ponds disappear from the albedo calculation
      REAL(wp), PARAMETER ::   zhl_min =  0.005_wp  ! pond lid thickness below which the full pond area is used in the albedo calculation
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   z1_a_i, z1_v_i, z1_a_ip
      REAL(wp), DIMENSION(A2D(0),jpl)  ::   za_s_fra
Guillaume Samson's avatar
Guillaume Samson committed
      !!-------------------------------------------------------------------

!!gm Question 2:  It is possible to define existence of sea-ice in a common way between
!!                ice area and ice volume ?
!!                the idea is to be able to define one for all at the begining of this routine
!!                a criteria for icy area (i.e. a_i > epsi20 and v_i > epsi20 )

      !---------------------------------------------------------------
      ! Ice thickness, snow thickness, ice salinity, ice age and ponds
      !---------------------------------------------------------------
      !                                            !--- inverse of the ice area
      WHERE( a_i(:,:,:) > epsi20 )   ;   z1_a_i(:,:,:) = 1._wp / a_i(:,:,:)
      ELSEWHERE                      ;   z1_a_i(:,:,:) = 0._wp
      END WHERE
      !
      WHERE( v_i(:,:,:) > epsi20 )   ;   z1_v_i(:,:,:) = 1._wp / v_i(:,:,:)
      ELSEWHERE                      ;   z1_v_i(:,:,:) = 0._wp
      END WHERE
      !
      WHERE( a_ip(:,:,:) > epsi20 )  ;   z1_a_ip(:,:,:) = 1._wp / a_ip(:,:,:)
      ELSEWHERE                      ;   z1_a_ip(:,:,:) = 0._wp
      END WHERE
      !                                           !--- ice thickness
      h_i(:,:,:) = v_i (:,:,:) * z1_a_i(:,:,:)

      zhmax    =          hi_max(jpl)
      z1_zhmax =  1._wp / hi_max(jpl)
      WHERE( h_i(:,:,jpl) > zhmax )   ! bound h_i by hi_max (i.e. 99 m) with associated update of ice area
         h_i   (:,:,jpl) = zhmax
         a_i   (:,:,jpl) = v_i(:,:,jpl) * z1_zhmax
         z1_a_i(:,:,jpl) = zhmax * z1_v_i(:,:,jpl)
      END WHERE
      !                                           !--- snow thickness
      h_s(:,:,:) = v_s (:,:,:) * z1_a_i(:,:,:)
      !                                           !--- ice age
      o_i(:,:,:) = oa_i(:,:,:) * z1_a_i(:,:,:)
      !                                           !--- pond and lid thickness
      h_ip(:,:,:) = v_ip(:,:,:) * z1_a_ip(:,:,:)
      h_il(:,:,:) = v_il(:,:,:) * z1_a_ip(:,:,:)
      !                                           !--- melt pond effective area (used for albedo)
      a_ip_frac(:,:,:) = a_ip(A2D(0),:) * z1_a_i(A2D(0),:)
      WHERE    ( h_il(A2D(0),:) <= zhl_min )  ;   a_ip_eff(:,:,:) = a_ip_frac(:,:,:)       ! lid is very thin.  Expose all the pond
      ELSEWHERE( h_il(A2D(0),:) >= zhl_max )  ;   a_ip_eff(:,:,:) = 0._wp                  ! lid is very thick. Cover all the pond up with ice and snow
      ELSEWHERE                               ;   a_ip_eff(:,:,:) = a_ip_frac(:,:,:) * &   ! lid is in between. Expose part of the pond
         &                                                       ( zhl_max - h_il(A2D(0),:) ) / ( zhl_max - zhl_min )
Guillaume Samson's avatar
Guillaume Samson committed
      END WHERE
      !
      CALL ice_var_snwfra( h_s(A2D(0),:), za_s_fra(:,:,:) )           ! calculate ice fraction covered by snow
      a_ip_eff(:,:,:) = MIN( a_ip_eff(:,:,:), 1._wp - za_s_fra(:,:,:) )   ! make sure (a_ip_eff + a_s_fra) <= 1
Guillaume Samson's avatar
Guillaume Samson committed
      !
      !                                           !---  salinity (with a minimum value imposed everywhere)
      IF( nn_icesal == 2 ) THEN
         WHERE( v_i(:,:,:) > epsi20 )   ;   s_i(:,:,:) = MAX( rn_simin , MIN( rn_simax, sv_i(:,:,:) * z1_v_i(:,:,:) ) )
         ELSEWHERE                      ;   s_i(:,:,:) = rn_simin
         END WHERE
      ENDIF
      CALL ice_var_salprof   ! salinity profile

      !-------------------
      ! Ice temperature   [K]   (with a minimum value (rt0 - 100.))
      !-------------------
      zlay_i   = REAL( nlay_i , wp )    ! number of layers
      DO jl = 1, jpl
Clement Rousset's avatar
Clement Rousset committed
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
Guillaume Samson's avatar
Guillaume Samson committed
            IF ( v_i(ji,jj,jl) > epsi20 ) THEN     !--- icy area
Clement Rousset's avatar
Clement Rousset committed
               DO jk = 1, nlay_i
                  !
                  ze_i             =   e_i (ji,jj,jk,jl) * z1_v_i(ji,jj,jl) * zlay_i             ! Energy of melting e(S,T) [J.m-3]
                  ztmelts          = - sz_i(ji,jj,jk,jl) * rTmlt                                 ! Ice layer melt temperature [C]
                  ! Conversion q(S,T) -> T (second order equation)
                  zbbb             = ( rcp - rcpi ) * ztmelts + ze_i * r1_rhoi - rLfus
                  zccc             = SQRT( MAX( zbbb * zbbb - 4._wp * rcpi * rLfus * ztmelts , 0._wp) )
                  t_i(ji,jj,jk,jl) = MAX( -100._wp , MIN( -( zbbb + zccc ) * 0.5_wp * r1_rcpi , ztmelts ) ) + rt0   ! [K] with bounds: -100 < t_i < ztmelts
                  !
               END DO
Guillaume Samson's avatar
Guillaume Samson committed
            ELSE                                   !--- no ice
Clement Rousset's avatar
Clement Rousset committed
               DO jk = 1, nlay_i
                  t_i(ji,jj,jk,jl) = rt0
               END DO
Guillaume Samson's avatar
Guillaume Samson committed
            ENDIF
Clement Rousset's avatar
Clement Rousset committed
         END_2D
Guillaume Samson's avatar
Guillaume Samson committed
      END DO

      !--------------------
      ! Snow temperature   [K]   (with a minimum value (rt0 - 100.))
      !--------------------
      zlay_s = REAL( nlay_s , wp )
      DO jk = 1, nlay_s
         WHERE( v_s(:,:,:) > epsi20 )        !--- icy area
            t_s(:,:,jk,:) = rt0 + MAX( -100._wp ,  &
                 &                MIN( r1_rcpi * ( -r1_rhos * ( e_s(:,:,jk,:) / v_s(:,:,:) * zlay_s ) + rLfus ) , 0._wp ) )
         ELSEWHERE                           !--- no ice
            t_s(:,:,jk,:) = rt0
         END WHERE
      END DO
      !
      ! integrated values
      vt_i (:,:) = SUM( v_i, dim=3 )
      vt_s (:,:) = SUM( v_s, dim=3 )
      at_i (:,:) = SUM( a_i, dim=3 )
Guillaume Samson's avatar
Guillaume Samson committed
      !
   END SUBROUTINE ice_var_glo2eqv


   SUBROUTINE ice_var_eqv2glo
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_eqv2glo ***
      !!
      !! ** Purpose :   computes global variables as function of
      !!              equivalent variables,  i.e. it turns VEQV into VGLO
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jl   ! dummy loop indices
      !!-------------------------------------------------------------------
Guillaume Samson's avatar
Guillaume Samson committed
      !
      DO jl = 1, jpl
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            v_i (ji,jj,jl) = h_i (ji,jj,jl) * a_i (ji,jj,jl)
            v_s (ji,jj,jl) = h_s (ji,jj,jl) * a_i (ji,jj,jl)
            sv_i(ji,jj,jl) = s_i (ji,jj,jl) * v_i (ji,jj,jl)
            v_ip(ji,jj,jl) = h_ip(ji,jj,jl) * a_ip(ji,jj,jl)
            v_il(ji,jj,jl) = h_il(ji,jj,jl) * a_ip(ji,jj,jl)
         END_2D
      ENDDO
Guillaume Samson's avatar
Guillaume Samson committed
      !
   END SUBROUTINE ice_var_eqv2glo


   SUBROUTINE ice_var_salprof
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_salprof ***
      !!
      !! ** Purpose :   computes salinity profile in function of bulk salinity
      !!
      !! ** Method  : If bulk salinity greater than zsi1,
      !!              the profile is assumed to be constant (S_inf)
      !!              If bulk salinity lower than zsi0,
      !!              the profile is linear with 0 at the surface (S_zero)
      !!              If it is between zsi0 and zsi1, it is a
      !!              alpha-weighted linear combination of s_inf and s_zero
      !!
      !! ** References : Vancoppenolle et al., 2007
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jk, jl   ! dummy loop index
      REAL(wp) ::   z1_dS
      REAL(wp) ::   ztmp1, ztmp2, zs0, zs
      REAL(wp) ::   z_slope_s, zalpha    ! case 2 only
Guillaume Samson's avatar
Guillaume Samson committed
      REAL(wp), PARAMETER :: zsi0 = 3.5_wp
      REAL(wp), PARAMETER :: zsi1 = 4.5_wp
      !!-------------------------------------------------------------------

!!gm Question: Remove the option 3 ?  How many years since it last use ?

      SELECT CASE ( nn_icesal )
      !
      !               !---------------------------------------!
      CASE( 1 )       !  constant salinity in time and space  !
         !            !---------------------------------------!
         sz_i(:,:,:,:) = rn_icesal
         s_i (:,:,:)   = rn_icesal
         !
         !            !---------------------------------------------!
      CASE( 2 )       !  time varying salinity with linear profile  !
         !            !---------------------------------------------!
         z1_dS = 1._wp / ( zsi1 - zsi0 )
         !
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            DO jl = 1, jpl
Guillaume Samson's avatar
Guillaume Samson committed
               !                                      ! Slope of the linear profile
               IF( h_i(ji,jj,jl) > epsi20 ) THEN   ;   z_slope_s = 2._wp * s_i(ji,jj,jl) / h_i(ji,jj,jl)
               ELSE                                ;   z_slope_s = 0._wp
Guillaume Samson's avatar
Guillaume Samson committed
               ENDIF
               !
               zalpha = MAX(  0._wp , MIN( ( zsi1 - s_i(ji,jj,jl) ) * z1_dS , 1._wp )  )
Guillaume Samson's avatar
Guillaume Samson committed
               !                             ! force a constant profile when SSS too low (Baltic Sea)
               IF( 2._wp * s_i(ji,jj,jl) >= sss_m(ji,jj) )   zalpha = 0._wp
               !
               ! Computation of the profile
               DO jk = 1, nlay_i
                  !                          ! linear profile with 0 surface value
                  zs0 = z_slope_s * ( REAL(jk,wp) - 0.5_wp ) * h_i(ji,jj,jl) * r1_nlay_i
                  zs  = zalpha * zs0 + ( 1._wp - zalpha ) * s_i(ji,jj,jl)     ! weighting the profile
                  sz_i(ji,jj,jk,jl) = MIN( rn_simax, MAX( zs, rn_simin ) )
               ENDDO
            ENDDO
         END_2D
Guillaume Samson's avatar
Guillaume Samson committed
         !
         !            !-------------------------------------------!
      CASE( 3 )       ! constant salinity with a fix profile      ! (Schwarzacher (1959) multiyear salinity profile
         !            !-------------------------------------------!                                   (mean = 2.30)
         !
         s_i(:,:,:) = 2.30_wp
!!gm Remark: if we keep the case 3, then compute an store one for all time-step
!!           a array  S_prof(1:nlay_i) containing the calculation and just do:
!         DO jk = 1, nlay_i
!            sz_i(:,:,jk,:) = S_prof(jk)
!         END DO
!!gm end
         DO jl = 1, jpl
            DO jk = 1, nlay_i
               ztmp1 = ( REAL(jk,wp) - 0.5_wp ) * r1_nlay_i
               ztmp2 = 1.6_wp * (  1._wp - COS( rpi * ztmp1**(0.407_wp/(0.573_wp+ztmp1)) ) )
               DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
                  sz_i(ji,jj,jk,jl) =  ztmp2
               END_2D
            END DO
         END DO
Guillaume Samson's avatar
Guillaume Samson committed
      END SELECT
      !
   END SUBROUTINE ice_var_salprof


   SUBROUTINE ice_var_salprof1d
      !!-------------------------------------------------------------------
      !!                  ***  ROUTINE ice_var_salprof1d  ***
      !!
      !! ** Purpose :   1d computation of the sea ice salinity profile
      !!                Works with 1d vectors and is used by thermodynamic modules
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jk    ! dummy loop indices
      REAL(wp) ::   ztmp1, ztmp2, z1_dS   ! local scalars
      REAL(wp) ::   zs, zs0              !   -      -
      !
      REAL(wp) ::   z_slope_s, zalpha   !
Guillaume Samson's avatar
Guillaume Samson committed
      REAL(wp), PARAMETER :: zsi0 = 3.5_wp
      REAL(wp), PARAMETER :: zsi1 = 4.5_wp
      !!-------------------------------------------------------------------
      !
      SELECT CASE ( nn_icesal )
      !
      !               !---------------------------------------!
      CASE( 1 )       !  constant salinity in time and space  !
         !            !---------------------------------------!
         sz_i_1d(1:npti,:) = rn_icesal
         !
         !            !---------------------------------------------!
      CASE( 2 )       !  time varying salinity with linear profile  !
         !            !---------------------------------------------!
         z1_dS = 1._wp / ( zsi1 - zsi0 )
         !
         DO ji = 1, npti
            !                                      ! Slope of the linear profile
            IF( h_i_1d(ji) > epsi20 ) THEN   ;   z_slope_s = 2._wp * s_i_1d(ji) / h_i_1d(ji)
            ELSE                             ;   z_slope_s = 0._wp
Guillaume Samson's avatar
Guillaume Samson committed
            ENDIF
            !
            zalpha = MAX(  0._wp , MIN(  ( zsi1 - s_i_1d(ji) ) * z1_dS , 1._wp  )  )
Guillaume Samson's avatar
Guillaume Samson committed
            !                             ! force a constant profile when SSS too low (Baltic Sea)
            IF( 2._wp * s_i_1d(ji) >= sss_1d(ji) )   zalpha = 0._wp
Guillaume Samson's avatar
Guillaume Samson committed
            !
            !
            ! Computation of the profile
            DO jk = 1, nlay_i
Guillaume Samson's avatar
Guillaume Samson committed
               !                          ! linear profile with 0 surface value
               zs0 = z_slope_s * ( REAL(jk,wp) - 0.5_wp ) * h_i_1d(ji) * r1_nlay_i
               zs  = zalpha * zs0 + ( 1._wp - zalpha ) * s_i_1d(ji)
Guillaume Samson's avatar
Guillaume Samson committed
               sz_i_1d(ji,jk) = MIN( rn_simax , MAX( zs , rn_simin ) )
            END DO
         END DO
         !
         !            !-------------------------------------------!
      CASE( 3 )       ! constant salinity with a fix profile      ! (Schwarzacher (1959) multiyear salinity profile
         !            !-------------------------------------------!                                   (mean = 2.30)
         !
         s_i_1d(1:npti) = 2.30_wp
         !
!!gm cf remark in ice_var_salprof routine, CASE( 3 )
         DO jk = 1, nlay_i
            ztmp1  = ( REAL(jk,wp) - 0.5_wp ) * r1_nlay_i
            ztmp2 =  1.6_wp * ( 1._wp - COS( rpi * ztmp1**( 0.407_wp / ( 0.573_wp + ztmp1 ) ) ) )
            DO ji = 1, npti
               sz_i_1d(ji,jk) = ztmp2
            END DO
         END DO
         !
      END SELECT
      !
   END SUBROUTINE ice_var_salprof1d


   SUBROUTINE ice_var_zapsmall
      !!-------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_zapsmall ***
      !!
      !! ** Purpose :   Remove too small sea ice areas and correct fluxes
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jl, jk   ! dummy loop indices
      REAL(wp), DIMENSION(jpi,jpj) ::   zswitch
      !!-------------------------------------------------------------------
      !
      DO jl = 1, jpl       !==  loop over the categories  ==!
         !
         WHERE( a_i(:,:,jl) > epsi10 )   ;   h_i(:,:,jl) = v_i(:,:,jl) / a_i(:,:,jl)
         ELSEWHERE                       ;   h_i(:,:,jl) = 0._wp
         END WHERE
         !
         WHERE( a_i(:,:,jl) < epsi10 .OR. v_i(:,:,jl) < epsi10 .OR. h_i(:,:,jl) < epsi10 )   ;   zswitch(:,:) = 0._wp
         ELSEWHERE                                                                           ;   zswitch(:,:) = 1._wp
         END WHERE
         !
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            !-----------------------------------------------------------------
            ! Zap ice energy and use ocean heat to melt ice
            !-----------------------------------------------------------------
            DO jk = 1, nlay_i
               ! update exchanges with ocean
               hfx_res(ji,jj)   = hfx_res(ji,jj) - (1._wp - zswitch(ji,jj) ) * e_i(ji,jj,jk,jl) * r1_Dt_ice ! W.m-2 <0
               e_i(ji,jj,jk,jl) = e_i(ji,jj,jk,jl) * zswitch(ji,jj)
               t_i(ji,jj,jk,jl) = t_i(ji,jj,jk,jl) * zswitch(ji,jj) + rt0 * ( 1._wp - zswitch(ji,jj) )
            ENDDO
            !
            DO jk = 1, nlay_s
               ! update exchanges with ocean
               hfx_res(ji,jj)   = hfx_res(ji,jj) - (1._wp - zswitch(ji,jj) ) * e_s(ji,jj,jk,jl) * r1_Dt_ice ! W.m-2 <0
               e_s(ji,jj,jk,jl) = e_s(ji,jj,jk,jl) * zswitch(ji,jj)
               t_s(ji,jj,jk,jl) = t_s(ji,jj,jk,jl) * zswitch(ji,jj) + rt0 * ( 1._wp - zswitch(ji,jj) )
            ENDDO
            !
            !-----------------------------------------------------------------
            ! zap ice and snow volume, add water and salt to ocean
            !-----------------------------------------------------------------
Guillaume Samson's avatar
Guillaume Samson committed
            ! update exchanges with ocean
            sfx_res(ji,jj)  = sfx_res(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * sv_i(ji,jj,jl)   * rhoi * r1_Dt_ice
            wfx_res(ji,jj)  = wfx_res(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * v_i (ji,jj,jl)   * rhoi * r1_Dt_ice
            wfx_res(ji,jj)  = wfx_res(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * v_s (ji,jj,jl)   * rhos * r1_Dt_ice
            wfx_res(ji,jj)  = wfx_res(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * ( v_ip(ji,jj,jl)+v_il(ji,jj,jl) ) * rhow * r1_Dt_ice
Guillaume Samson's avatar
Guillaume Samson committed
            !
            a_i  (ji,jj,jl) = a_i (ji,jj,jl) * zswitch(ji,jj)
            v_i  (ji,jj,jl) = v_i (ji,jj,jl) * zswitch(ji,jj)
            v_s  (ji,jj,jl) = v_s (ji,jj,jl) * zswitch(ji,jj)
            t_su (ji,jj,jl) = t_su(ji,jj,jl) * zswitch(ji,jj) + t_bo(ji,jj) * ( 1._wp - zswitch(ji,jj) )
            oa_i (ji,jj,jl) = oa_i(ji,jj,jl) * zswitch(ji,jj)
            sv_i (ji,jj,jl) = sv_i(ji,jj,jl) * zswitch(ji,jj)
            !
            h_i (ji,jj,jl) = h_i (ji,jj,jl) * zswitch(ji,jj)
            h_s (ji,jj,jl) = h_s (ji,jj,jl) * zswitch(ji,jj)
            !
            a_ip (ji,jj,jl) = a_ip (ji,jj,jl) * zswitch(ji,jj)
            v_ip (ji,jj,jl) = v_ip (ji,jj,jl) * zswitch(ji,jj)
            v_il (ji,jj,jl) = v_il (ji,jj,jl) * zswitch(ji,jj)
            h_ip (ji,jj,jl) = h_ip (ji,jj,jl) * zswitch(ji,jj)
            h_il (ji,jj,jl) = h_il (ji,jj,jl) * zswitch(ji,jj)
            !
         END_2D
         !
      END DO

      ! to be sure that at_i is the sum of a_i(jl)
      at_i (:,:) = SUM( a_i (:,:,:), dim=3 )
      vt_i (:,:) = SUM( v_i (:,:,:), dim=3 )
!!clem add?
!      vt_s (:,:) = SUM( v_s (:,:,:), dim=3 )
!      st_i (:,:) = SUM( sv_i(:,:,:), dim=3 )
!      et_s(:,:)  = SUM( SUM( e_s (:,:,:,:), dim=4 ), dim=3 )
!      et_i(:,:)  = SUM( SUM( e_i (:,:,:,:), dim=4 ), dim=3 )
!!clem

      ! open water = 1 if at_i=0
      WHERE( at_i(:,:) == 0._wp )   ato_i(:,:) = 1._wp
      !
   END SUBROUTINE ice_var_zapsmall


   SUBROUTINE ice_var_zapneg( pdt, pato_i, pv_i, pv_s, psv_i, poa_i, pa_i, pa_ip, pv_ip, pv_il, pe_s, pe_i )
      !!-------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_zapneg ***
      !!
      !! ** Purpose :   Remove negative sea ice fields and correct fluxes
      !!-------------------------------------------------------------------
      REAL(wp)                    , INTENT(in   ) ::   pdt        ! tracer time-step
      REAL(wp), DIMENSION(:,:)    , INTENT(inout) ::   pato_i     ! open water area
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_i       ! ice volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_s       ! snw volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   psv_i      ! salt content
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   poa_i      ! age content
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pa_i       ! ice concentration
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pa_ip      ! melt pond fraction
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_ip      ! melt pond volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_il      ! melt pond lid volume
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pe_s       ! snw heat content
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pe_i       ! ice heat content
      !
      INTEGER  ::   ji, jj, jl, jk   ! dummy loop indices
      REAL(wp) ::   z1_dt
      !!-------------------------------------------------------------------
      !
      z1_dt = 1._wp / pdt
      !
      DO jl = 1, jpl       !==  loop over the categories  ==!
         !
         ! make sure a_i=0 where v_i<=0
         WHERE( pv_i(:,:,:) <= 0._wp )   pa_i(:,:,:) = 0._wp

         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            !----------------------------------------
            ! zap ice energy and send it to the ocean
            !----------------------------------------
            DO jk = 1, nlay_i
               IF( pe_i(ji,jj,jk,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp ) THEN
                  hfx_res(ji,jj)   = hfx_res(ji,jj) - pe_i(ji,jj,jk,jl) * z1_dt ! W.m-2 >0
                  pe_i(ji,jj,jk,jl) = 0._wp
               ENDIF
            ENDDO
            !
            DO jk = 1, nlay_s
               IF( pe_s(ji,jj,jk,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp ) THEN
                  hfx_res(ji,jj)   = hfx_res(ji,jj) - pe_s(ji,jj,jk,jl) * z1_dt ! W.m-2 <0
                  pe_s(ji,jj,jk,jl) = 0._wp
               ENDIF
            ENDDO
            !
            !-----------------------------------------------------
            ! zap ice and snow volume, add water and salt to ocean
            !-----------------------------------------------------
Guillaume Samson's avatar
Guillaume Samson committed
            IF( pv_i(ji,jj,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp ) THEN
               wfx_res(ji,jj)    = wfx_res(ji,jj) + pv_i (ji,jj,jl) * rhoi * z1_dt
               pv_i   (ji,jj,jl) = 0._wp
            ENDIF
            IF( pv_s(ji,jj,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp ) THEN
               wfx_res(ji,jj)    = wfx_res(ji,jj) + pv_s (ji,jj,jl) * rhos * z1_dt
               pv_s   (ji,jj,jl) = 0._wp
            ENDIF
            IF( psv_i(ji,jj,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp .OR. pv_i(ji,jj,jl) <= 0._wp ) THEN
               sfx_res(ji,jj)    = sfx_res(ji,jj) + psv_i(ji,jj,jl) * rhoi * z1_dt
               psv_i  (ji,jj,jl) = 0._wp
            ENDIF
            IF( pv_ip(ji,jj,jl) < 0._wp .OR. pv_il(ji,jj,jl) < 0._wp .OR. pa_ip(ji,jj,jl) <= 0._wp ) THEN
               wfx_res(ji,jj)    = wfx_res(ji,jj) + pv_il(ji,jj,jl) * rhow * z1_dt
Guillaume Samson's avatar
Guillaume Samson committed
               pv_il  (ji,jj,jl) = 0._wp
            ENDIF
            IF( pv_ip(ji,jj,jl) < 0._wp .OR. pa_ip(ji,jj,jl) <= 0._wp ) THEN
               wfx_res(ji,jj)    = wfx_res(ji,jj) + pv_ip(ji,jj,jl) * rhow * z1_dt
Guillaume Samson's avatar
Guillaume Samson committed
               pv_ip  (ji,jj,jl) = 0._wp
            ENDIF
         END_2D
         !
      END DO
      !
      WHERE( pato_i(:,:)   < 0._wp )   pato_i(:,:)   = 0._wp
      WHERE( poa_i (:,:,:) < 0._wp )   poa_i (:,:,:) = 0._wp
      WHERE( pa_i  (:,:,:) < 0._wp )   pa_i  (:,:,:) = 0._wp
      WHERE( pa_ip (:,:,:) < 0._wp )   pa_ip (:,:,:) = 0._wp
      !
   END SUBROUTINE ice_var_zapneg


   SUBROUTINE ice_var_roundoff( pa_i, pv_i, pv_s, psv_i, poa_i, pa_ip, pv_ip, pv_il, pe_s, pe_i )
      !!-------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_roundoff ***
      !!
      !! ** Purpose :   Remove negative sea ice values arising from roundoff errors
      !!-------------------------------------------------------------------
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pa_i       ! ice concentration
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pv_i       ! ice volume
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pv_s       ! snw volume
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   psv_i      ! salt content
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   poa_i      ! age content
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pa_ip      ! melt pond fraction
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pv_ip      ! melt pond volume
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pv_il      ! melt pond lid volume
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::   pe_s       ! snw heat content
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::   pe_i       ! ice heat content
      !!-------------------------------------------------------------------
      !

      WHERE( pa_i (1:npti,:)   < 0._wp )   pa_i (1:npti,:)   = 0._wp   !  a_i must be >= 0
      WHERE( pv_i (1:npti,:)   < 0._wp )   pv_i (1:npti,:)   = 0._wp   !  v_i must be >= 0
      WHERE( pv_s (1:npti,:)   < 0._wp )   pv_s (1:npti,:)   = 0._wp   !  v_s must be >= 0
      WHERE( psv_i(1:npti,:)   < 0._wp )   psv_i(1:npti,:)   = 0._wp   ! sv_i must be >= 0
      WHERE( poa_i(1:npti,:)   < 0._wp )   poa_i(1:npti,:)   = 0._wp   ! oa_i must be >= 0
      WHERE( pe_i (1:npti,:,:) < 0._wp )   pe_i (1:npti,:,:) = 0._wp   !  e_i must be >= 0
      WHERE( pe_s (1:npti,:,:) < 0._wp )   pe_s (1:npti,:,:) = 0._wp   !  e_s must be >= 0
      IF( ln_pnd_LEV .OR. ln_pnd_TOPO ) THEN
         WHERE( pa_ip(1:npti,:) < 0._wp )    pa_ip(1:npti,:)   = 0._wp   ! a_ip must be >= 0
         WHERE( pv_ip(1:npti,:) < 0._wp )    pv_ip(1:npti,:)   = 0._wp   ! v_ip must be >= 0
         IF( ln_pnd_lids ) THEN
            WHERE( pv_il(1:npti,:) < 0._wp .AND. pv_il(1:npti,:) > -epsi10 ) pv_il(1:npti,:)   = 0._wp   ! v_il must be >= 0
         ENDIF
      ENDIF
      !
   END SUBROUTINE ice_var_roundoff


   SUBROUTINE ice_var_bv
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_bv ***
      !!
      !! ** Purpose :   computes mean brine volume (%) in sea ice
      !!
      !! ** Method  : e = - 0.054 * S (ppt) / T (C)
      !!
      !! References : Vancoppenolle et al., JGR, 2007
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jk, jl   ! dummy loop indices
      !!-------------------------------------------------------------------
      !
      bv_i (:,:,:) = 0._wp
      DO_2D( 0, 0, 0, 0 )
         DO jl = 1, jpl
            DO jk = 1, nlay_i
               IF( t_i(ji,jj,jk,jl) < rt0 - epsi10 ) THEN
                  bv_i(ji,jj,jl) = bv_i(ji,jj,jl) - rTmlt * sz_i(ji,jj,jk,jl) * r1_nlay_i / ( t_i(ji,jj,jk,jl) - rt0 )
               ENDIF
            ENDDO
         ENDDO
         IF( vt_i(ji,jj) > epsi20 ) THEN
            bvm_i(ji,jj) = SUM( bv_i(ji,jj,:) * v_i(ji,jj,:) ) / vt_i(ji,jj)
         ELSE
            bvm_i(ji,jj) = 0._wp
         ENDIF
      END_2D
Guillaume Samson's avatar
Guillaume Samson committed
      !
   END SUBROUTINE ice_var_bv


   SUBROUTINE ice_var_enthalpy
      !!-------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_enthalpy ***
      !!
      !! ** Purpose :   Computes sea ice energy of melting q_i (J.m-3) from temperature
      !!
      !! ** Method  :   Formula (Bitz and Lipscomb, 1999)
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jk   ! dummy loop indices
      REAL(wp) ::   ztmelts  ! local scalar
      !!-------------------------------------------------------------------
      !
      DO ji = 1, npti
         DO jk = 1, nlay_i             ! Sea ice energy of melting
Guillaume Samson's avatar
Guillaume Samson committed
            ztmelts      = - rTmlt  * sz_i_1d(ji,jk)
            t_i_1d(ji,jk) = MIN( t_i_1d(ji,jk), ztmelts + rt0 ) ! Force t_i_1d to be lower than melting point => likely conservation issue
                                                                !   (sometimes zdf scheme produces abnormally high temperatures)
            e_i_1d(ji,jk) = rhoi * ( rcpi  * ( ztmelts - ( t_i_1d(ji,jk) - rt0 ) )           &
               &                   + rLfus * ( 1._wp - ztmelts / ( t_i_1d(ji,jk) - rt0 ) )   &
               &                   - rcp   * ztmelts )
         END DO
         DO jk = 1, nlay_s             ! Snow energy of melting
Guillaume Samson's avatar
Guillaume Samson committed
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
            e_s_1d(ji,jk) = rhos * ( rcpi * ( rt0 - t_s_1d(ji,jk) ) + rLfus )
         END DO
      END DO
      !
   END SUBROUTINE ice_var_enthalpy


   FUNCTION ice_var_sshdyn(pssh, psnwice_mass, psnwice_mass_b)
      !!---------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_sshdyn  ***
      !!
      !! ** Purpose :  compute the equivalent ssh in lead when sea ice is embedded
      !!
      !! ** Method  :  ssh_lead = ssh + (Mice + Msnow) / rho0
      !!
      !! ** Reference : Jean-Michel Campin, John Marshall, David Ferreira,
      !!                Sea ice-ocean coupling using a rescaled vertical coordinate z*,
      !!                Ocean Modelling, Volume 24, Issues 1-2, 2008
      !!----------------------------------------------------------------------
      !
      ! input
      REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pssh            !: ssh [m]
      REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psnwice_mass    !: mass of snow and ice at current  ice time step [Kg/m2]
      REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psnwice_mass_b  !: mass of snow and ice at previous ice time step [Kg/m2]
      !
      ! output
      REAL(wp), DIMENSION(jpi,jpj) :: ice_var_sshdyn  ! equivalent ssh in lead [m]
      !
      ! temporary
      REAL(wp) :: zintn, zintb                     ! time interpolation weights []
      !
      ! compute ice load used to define the equivalent ssh in lead
      IF( ln_ice_embd ) THEN
         !
         ! average interpolation coeff as used in dynspg = (1/nn_fsbc)   * {SUM[n/nn_fsbc], n=0,nn_fsbc-1}
         !                                               = (1/nn_fsbc)^2 * {SUM[n]        , n=0,nn_fsbc-1}
         zintn = REAL( nn_fsbc - 1 ) / REAL( nn_fsbc ) * 0.5_wp
         !
         ! average interpolation coeff as used in dynspg = (1/nn_fsbc)   *    {SUM[1-n/nn_fsbc], n=0,nn_fsbc-1}
         !                                               = (1/nn_fsbc)^2 * (nn_fsbc^2 - {SUM[n], n=0,nn_fsbc-1})
         zintb = REAL( nn_fsbc + 1 ) / REAL( nn_fsbc ) * 0.5_wp
         !
         ! compute equivalent ssh in lead
         ice_var_sshdyn(:,:) = pssh(:,:) + ( zintn * psnwice_mass(:,:) + zintb * psnwice_mass_b(:,:) ) * r1_rho0
         !
      ELSE
         ! compute equivalent ssh in lead
         ice_var_sshdyn(:,:) = pssh(:,:)
      ENDIF
      !
   END FUNCTION ice_var_sshdyn


   !!-------------------------------------------------------------------
   !!                ***  INTERFACE ice_var_itd   ***
   !!
   !! ** Purpose :  converting N-cat ice to jpl ice categories
   !!-------------------------------------------------------------------
   SUBROUTINE ice_var_itd_1c1c( phti, phts, pati ,                             ph_i, ph_s, pa_i, &
      &                         ptmi, ptms, ptmsu, psmi, patip, phtip, phtil,  pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il )
      !!-------------------------------------------------------------------
      !! ** Purpose :  converting 1-cat ice to 1 ice category
      !!-------------------------------------------------------------------
      REAL(wp), DIMENSION(:), INTENT(in)    ::   phti, phts, pati    ! input  ice/snow variables
      REAL(wp), DIMENSION(:), INTENT(inout) ::   ph_i, ph_s, pa_i    ! output ice/snow variables
      REAL(wp), DIMENSION(:), INTENT(in)    ::   ptmi, ptms, ptmsu, psmi, patip, phtip, phtil    ! input  ice/snow temp & sal & ponds
      REAL(wp), DIMENSION(:), INTENT(inout) ::   pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il    ! output ice/snow temp & sal & ponds
      !!-------------------------------------------------------------------
      ! == thickness and concentration == !
      ph_i(:) = phti(:)
      ph_s(:) = phts(:)
      pa_i(:) = pati(:)
      !
      ! == temperature and salinity and ponds == !
      pt_i (:) = ptmi (:)
      pt_s (:) = ptms (:)
      pt_su(:) = ptmsu(:)
      ps_i (:) = psmi (:)
      pa_ip(:) = patip(:)
      ph_ip(:) = phtip(:)
      ph_il(:) = phtil(:)

   END SUBROUTINE ice_var_itd_1c1c

   SUBROUTINE ice_var_itd_Nc1c( phti, phts, pati ,                             ph_i, ph_s, pa_i, &
      &                         ptmi, ptms, ptmsu, psmi, patip, phtip, phtil,  pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il )
      !!-------------------------------------------------------------------
      !! ** Purpose :  converting N-cat ice to 1 ice category
      !!-------------------------------------------------------------------
      REAL(wp), DIMENSION(:,:), INTENT(in)    ::   phti, phts, pati    ! input  ice/snow variables
      REAL(wp), DIMENSION(:)  , INTENT(inout) ::   ph_i, ph_s, pa_i    ! output ice/snow variables
      REAL(wp), DIMENSION(:,:), INTENT(in)    ::   ptmi, ptms, ptmsu, psmi, patip, phtip, phtil    ! input  ice/snow temp & sal & ponds
      REAL(wp), DIMENSION(:)  , INTENT(inout) ::   pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il    ! output ice/snow temp & sal & ponds
      !
      REAL(wp), ALLOCATABLE, DIMENSION(:) ::   z1_ai, z1_vi, z1_vs
      !
      INTEGER ::   idim
      !!-------------------------------------------------------------------
      !
      idim = SIZE( phti, 1 )
      !
      ! == thickness and concentration == !
      ALLOCATE( z1_ai(idim), z1_vi(idim), z1_vs(idim) )
      !
      pa_i(:) = SUM( pati(:,:), dim=2 )

      WHERE( ( pa_i(:) ) /= 0._wp )   ;   z1_ai(:) = 1._wp / pa_i(:)
      ELSEWHERE                       ;   z1_ai(:) = 0._wp
      END WHERE

      ph_i(:) = SUM( phti(:,:) * pati(:,:), dim=2 ) * z1_ai(:)
      ph_s(:) = SUM( phts(:,:) * pati(:,:), dim=2 ) * z1_ai(:)
      !
      ! == temperature and salinity == !
      WHERE( ( pa_i(:) * ph_i(:) ) /= 0._wp )   ;   z1_vi(:) = 1._wp / ( pa_i(:) * ph_i(:) )
      ELSEWHERE                                 ;   z1_vi(:) = 0._wp
      END WHERE
      WHERE( ( pa_i(:) * ph_s(:) ) /= 0._wp )   ;   z1_vs(:) = 1._wp / ( pa_i(:) * ph_s(:) )
      ELSEWHERE                                 ;   z1_vs(:) = 0._wp
      END WHERE
      pt_i (:) = SUM( ptmi (:,:) * pati(:,:) * phti(:,:), dim=2 ) * z1_vi(:)
      pt_s (:) = SUM( ptms (:,:) * pati(:,:) * phts(:,:), dim=2 ) * z1_vs(:)
      pt_su(:) = SUM( ptmsu(:,:) * pati(:,:)            , dim=2 ) * z1_ai(:)
      ps_i (:) = SUM( psmi (:,:) * pati(:,:) * phti(:,:), dim=2 ) * z1_vi(:)

      ! == ponds == !
      pa_ip(:) = SUM( patip(:,:), dim=2 )
      WHERE( pa_ip(:) /= 0._wp )
         ph_ip(:) = SUM( phtip(:,:) * patip(:,:), dim=2 ) / pa_ip(:)
         ph_il(:) = SUM( phtil(:,:) * patip(:,:), dim=2 ) / pa_ip(:)
      ELSEWHERE
         ph_ip(:) = 0._wp
         ph_il(:) = 0._wp
      END WHERE
      !
      DEALLOCATE( z1_ai, z1_vi, z1_vs )
      !
   END SUBROUTINE ice_var_itd_Nc1c

   SUBROUTINE ice_var_itd_1cMc( phti, phts, pati ,                             ph_i, ph_s, pa_i, &
      &                         ptmi, ptms, ptmsu, psmi, patip, phtip, phtil,  pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il )
      !!-------------------------------------------------------------------
      !!
      !! ** Purpose :  converting 1-cat ice to jpl ice categories
      !!
      !!
      !! ** Method:   ice thickness distribution follows a gamma function from Abraham et al. (2015)
      !!              it has the property of conserving total concentration and volume
      !!
      !!
      !! ** Arguments : phti: 1-cat ice thickness
      !!                phts: 1-cat snow depth
      !!                pati: 1-cat ice concentration
      !!
      !! ** Output    : jpl-cat
      !!
      !!  Abraham, C., Steiner, N., Monahan, A. and Michel, C., 2015.
      !!               Effects of subgrid‐scale snow thickness variability on radiative transfer in sea ice.
      !!               Journal of Geophysical Research: Oceans, 120(8), pp.5597-5614
      !!-------------------------------------------------------------------
      REAL(wp), DIMENSION(:),   INTENT(in)    ::   phti, phts, pati    ! input  ice/snow variables
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   ph_i, ph_s, pa_i    ! output ice/snow variables
      REAL(wp), DIMENSION(:)  , INTENT(in)    ::   ptmi, ptms, ptmsu, psmi, patip, phtip, phtil    ! input  ice/snow temp & sal & ponds
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il    ! output ice/snow temp & sal & ponds
      !
      REAL(wp), ALLOCATABLE, DIMENSION(:) ::   zfra, z1_hti
      INTEGER  ::   ji, jk, jl
      INTEGER  ::   idim
      REAL(wp) ::   zv, zdh
      !!-------------------------------------------------------------------
      !
      idim = SIZE( phti , 1 )
      !
      ph_i(1:idim,1:jpl) = 0._wp
      ph_s(1:idim,1:jpl) = 0._wp
      pa_i(1:idim,1:jpl) = 0._wp
      !
      ALLOCATE( z1_hti(idim) )
      WHERE( phti(:) /= 0._wp )   ;   z1_hti(:) = 1._wp / phti(:)
      ELSEWHERE                   ;   z1_hti(:) = 0._wp
      END WHERE
      !
      ! == thickness and concentration == !
      ! for categories 1:jpl-1, integrate the gamma function from hi_max(jl-1) to hi_max(jl)
      DO jl = 1, jpl-1
         DO ji = 1, idim
            !
            IF( phti(ji) > 0._wp ) THEN
               ! concentration : integrate ((4A/H^2)xexp(-2x/H))dx from x=hi_max(jl-1) to hi_max(jl)
               pa_i(ji,jl) = pati(ji) * z1_hti(ji) * (  ( phti(ji) + 2.*hi_max(jl-1) ) * EXP( -2.*hi_max(jl-1)*z1_hti(ji) ) &
                  &                                   - ( phti(ji) + 2.*hi_max(jl  ) ) * EXP( -2.*hi_max(jl  )*z1_hti(ji) ) )
               !
               ! volume : integrate ((4A/H^2)x^2exp(-2x/H))dx from x=hi_max(jl-1) to hi_max(jl)
               zv = pati(ji) * z1_hti(ji) * (  ( phti(ji)*phti(ji) + 2.*phti(ji)*hi_max(jl-1) + 2.*hi_max(jl-1)*hi_max(jl-1) ) &
                  &                            * EXP( -2.*hi_max(jl-1)*z1_hti(ji) ) &
                  &                          - ( phti(ji)*phti(ji) + 2.*phti(ji)*hi_max(jl) + 2.*hi_max(jl)*hi_max(jl) ) &
                  &                            * EXP(-2.*hi_max(jl)*z1_hti(ji)) )
               ! thickness
               IF( pa_i(ji,jl) > epsi06 ) THEN
                  ph_i(ji,jl) = zv / pa_i(ji,jl)
               ELSE
                  ph_i(ji,jl) = 0.
                  pa_i(ji,jl) = 0.
               ENDIF
            ENDIF
            !
         ENDDO
      ENDDO
      !
      ! for the last category (jpl), integrate the gamma function from hi_max(jpl-1) to infinity
      DO ji = 1, idim
         !
         IF( phti(ji) > 0._wp ) THEN
            ! concentration : integrate ((4A/H^2)xexp(-2x/H))dx from x=hi_max(jpl-1) to infinity
            pa_i(ji,jpl) = pati(ji) * z1_hti(ji) * ( phti(ji) + 2.*hi_max(jpl-1) ) * EXP( -2.*hi_max(jpl-1)*z1_hti(ji) )

            ! volume : integrate ((4A/H^2)x^2exp(-2x/H))dx from x=hi_max(jpl-1) to infinity
            zv = pati(ji) * z1_hti(ji) * ( phti(ji)*phti(ji) + 2.*phti(ji)*hi_max(jpl-1) + 2.*hi_max(jpl-1)*hi_max(jpl-1) ) &
               &                         * EXP( -2.*hi_max(jpl-1)*z1_hti(ji) )
            ! thickness
            IF( pa_i(ji,jpl) > epsi06 ) THEN
               ph_i(ji,jpl) = zv / pa_i(ji,jpl)
            else
               ph_i(ji,jpl) = 0.
               pa_i(ji,jpl) = 0.
            ENDIF
         ENDIF
         !
      ENDDO
      !
      ! Add Snow in each category where pa_i is not 0
      DO jl = 1, jpl
         DO ji = 1, idim
            IF( pa_i(ji,jl) > 0._wp ) THEN
               ph_s(ji,jl) = ph_i(ji,jl) * phts(ji) * z1_hti(ji)
               ! In case snow load is in excess that would lead to transformation from snow to ice
               ! Then, transfer the snow excess into the ice (different from icethd_dh)
               zdh = MAX( 0._wp, ( rhos * ph_s(ji,jl) + ( rhoi - rho0 ) * ph_i(ji,jl) ) * r1_rho0 )
               ! recompute h_i, h_s avoiding out of bounds values
               ph_i(ji,jl) = MIN( hi_max(jl), ph_i(ji,jl) + zdh )
               ph_s(ji,jl) = MAX( 0._wp, ph_s(ji,jl) - zdh * rhoi * r1_rhos )
            ENDIF
         END DO
      END DO
      !
      DEALLOCATE( z1_hti )
      !
      ! == temperature and salinity == !
      DO jl = 1, jpl
         pt_i (:,jl) = ptmi (:)
         pt_s (:,jl) = ptms (:)
         pt_su(:,jl) = ptmsu(:)
         ps_i (:,jl) = psmi (:)
      END DO
      !
      ! == ponds == !
      ALLOCATE( zfra(idim) )
      ! keep the same pond fraction atip/ati for each category
      WHERE( pati(:) /= 0._wp )   ;   zfra(:) = patip(:) / pati(:)
      ELSEWHERE                   ;   zfra(:) = 0._wp
      END WHERE
      DO jl = 1, jpl
         pa_ip(:,jl) = zfra(:) * pa_i(:,jl)
      END DO
      ! keep the same v_ip/v_i ratio for each category
      WHERE( ( phti(:) * pati(:) ) /= 0._wp )   ;   zfra(:) = ( phtip(:) * patip(:) ) / ( phti(:) * pati(:) )
      ELSEWHERE                                 ;   zfra(:) = 0._wp
      END WHERE
      DO jl = 1, jpl
         WHERE( pa_ip(:,jl) /= 0._wp )   ;   ph_ip(:,jl) = zfra(:) * ( ph_i(:,jl) * pa_i(:,jl) ) / pa_ip(:,jl)
         ELSEWHERE                       ;   ph_ip(:,jl) = 0._wp
         END WHERE
      END DO
      ! keep the same v_il/v_i ratio for each category
      WHERE( ( phti(:) * pati(:) ) /= 0._wp )   ;   zfra(:) = ( phtil(:) * patip(:) ) / ( phti(:) * pati(:) )
      ELSEWHERE                                 ;   zfra(:) = 0._wp
      END WHERE
      DO jl = 1, jpl
         WHERE( pa_ip(:,jl) /= 0._wp )   ;   ph_il(:,jl) = zfra(:) * ( ph_i(:,jl) * pa_i(:,jl) ) / pa_ip(:,jl)
         ELSEWHERE                       ;   ph_il(:,jl) = 0._wp
         END WHERE
      END DO
      DEALLOCATE( zfra )
      !
   END SUBROUTINE ice_var_itd_1cMc

   SUBROUTINE ice_var_itd_NcMc( phti, phts, pati ,                             ph_i, ph_s, pa_i, &
      &                         ptmi, ptms, ptmsu, psmi, patip, phtip, phtil,  pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il )
      !!-------------------------------------------------------------------
      !!
      !! ** Purpose :  converting N-cat ice to jpl ice categories
      !!
      !!                  ice thickness distribution follows a gaussian law
      !!               around the concentration of the most likely ice thickness
      !!                           (similar as iceistate.F90)
      !!
      !! ** Method:   Iterative procedure
      !!
      !!               1) Fill ice cat that correspond to input thicknesses
      !!                  Find the lowest(jlmin) and highest(jlmax) cat that are filled
      !!
      !!               2) Expand the filling to the cat jlmin-1 and jlmax+1
      !!                   by removing 25% ice area from jlmin and jlmax (resp.)
      !!
      !!               3) Expand the filling to the empty cat between jlmin and jlmax
      !!                   by a) removing 25% ice area from the lower cat (ascendant loop jlmin=>jlmax)
      !!                      b) removing 25% ice area from the higher cat (descendant loop jlmax=>jlmin)
      !!
      !! ** Arguments : phti: N-cat ice thickness
      !!                phts: N-cat snow depth
      !!                pati: N-cat ice concentration
      !!
      !! ** Output    : jpl-cat
      !!
      !!  (Example of application: BDY forcings when inputs have N-cat /= jpl)
      !!-------------------------------------------------------------------
      REAL(wp), DIMENSION(:,:), INTENT(in)    ::   phti, phts, pati    ! input  ice/snow variables
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   ph_i, ph_s, pa_i    ! output ice/snow variables
      REAL(wp), DIMENSION(:,:), INTENT(in)    ::   ptmi, ptms, ptmsu, psmi, patip, phtip, phtil    ! input  ice/snow temp & sal & ponds
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il    ! output ice/snow temp & sal & ponds
      !
      INTEGER , ALLOCATABLE, DIMENSION(:,:) ::   jlfil, jlfil2
      INTEGER , ALLOCATABLE, DIMENSION(:)   ::   jlmax, jlmin
      REAL(wp), ALLOCATABLE, DIMENSION(:)   ::   z1_ai, z1_vi, z1_vs, ztmp, zfra
      !
      REAL(wp), PARAMETER ::   ztrans = 0.25_wp
      INTEGER  ::   ji, jl, jl1, jl2
      INTEGER  ::   idim, icat
      !!-------------------------------------------------------------------
      !
      idim = SIZE( phti, 1 )
      icat = SIZE( phti, 2 )
      !
      ! == thickness and concentration == !
      !                                 ! ---------------------- !
      IF( icat == jpl ) THEN            ! input cat = output cat !
         !                              ! ---------------------- !
         ph_i(:,:) = phti(:,:)
         ph_s(:,:) = phts(:,:)
         pa_i(:,:) = pati(:,:)
         !
         ! == temperature and salinity and ponds == !
         pt_i (:,:) = ptmi (:,:)
         pt_s (:,:) = ptms (:,:)
         pt_su(:,:) = ptmsu(:,:)
         ps_i (:,:) = psmi (:,:)
         pa_ip(:,:) = patip(:,:)
         ph_ip(:,:) = phtip(:,:)
         ph_il(:,:) = phtil(:,:)
         !                              ! ---------------------- !
      ELSEIF( icat == 1 ) THEN          ! input cat = 1          !
         !                              ! ---------------------- !
         CALL  ice_var_itd_1cMc( phti(:,1), phts(:,1), pati (:,1), &
            &                    ph_i(:,:), ph_s(:,:), pa_i (:,:), &
            &                    ptmi(:,1), ptms(:,1), ptmsu(:,1), psmi(:,1), patip(:,1), phtip(:,1), phtil(:,1), &
            &                    pt_i(:,:), pt_s(:,:), pt_su(:,:), ps_i(:,:), pa_ip(:,:), ph_ip(:,:), ph_il(:,:)  )
         !                              ! ---------------------- !
      ELSEIF( jpl == 1 ) THEN           ! output cat = 1         !
         !                              ! ---------------------- !
         CALL  ice_var_itd_Nc1c( phti(:,:), phts(:,:), pati (:,:), &
            &                    ph_i(:,1), ph_s(:,1), pa_i (:,1), &
            &                    ptmi(:,:), ptms(:,:), ptmsu(:,:), psmi(:,:), patip(:,:), phtip(:,:), phtil(:,:), &
            &                    pt_i(:,1), pt_s(:,1), pt_su(:,1), ps_i(:,1), pa_ip(:,1), ph_ip(:,1), ph_il(:,1)  )
         !                              ! ----------------------- !
      ELSE                              ! input cat /= output cat !
         !                              ! ----------------------- !

         ALLOCATE( jlfil(idim,jpl), jlfil2(idim,jpl) )       ! allocate arrays
         ALLOCATE( jlmin(idim), jlmax(idim) )

         ! --- initialize output fields to 0 --- !
         ph_i(1:idim,1:jpl) = 0._wp
         ph_s(1:idim,1:jpl) = 0._wp
         pa_i(1:idim,1:jpl) = 0._wp
         !
         ! --- fill the categories --- !
         !     find where cat-input = cat-output and fill cat-output fields
         jlmax(:) = 0
         jlmin(:) = 999
         jlfil(:,:) = 0
         DO jl1 = 1, jpl
            DO jl2 = 1, icat
               DO ji = 1, idim
                  IF( hi_max(jl1-1) <= phti(ji,jl2) .AND. hi_max(jl1) > phti(ji,jl2) ) THEN
                     ! fill the right category
                     ph_i(ji,jl1) = phti(ji,jl2)
                     ph_s(ji,jl1) = phts(ji,jl2)
                     pa_i(ji,jl1) = pati(ji,jl2)
                     ! record categories that are filled
                     jlmax(ji) = MAX( jlmax(ji), jl1 )
                     jlmin(ji) = MIN( jlmin(ji), jl1 )
                     jlfil(ji,jl1) = jl1
                  ENDIF
               END DO
            END DO
         END DO
         !
         ! --- fill the gaps between categories --- !
         !     transfer from categories filled at the previous step to the empty ones in between
         DO ji = 1, idim
            jl1 = jlmin(ji)
            jl2 = jlmax(ji)
            IF( jl1 > 1 ) THEN
               ! fill the lower cat (jl1-1)
               pa_i(ji,jl1-1) = ztrans * pa_i(ji,jl1)
               ph_i(ji,jl1-1) = hi_mean(jl1-1)
               ! remove from cat jl1
               pa_i(ji,jl1  ) = ( 1._wp - ztrans ) * pa_i(ji,jl1)
            ENDIF
            IF( jl2 < jpl ) THEN
               ! fill the upper cat (jl2+1)
               pa_i(ji,jl2+1) = ztrans * pa_i(ji,jl2)
               ph_i(ji,jl2+1) = hi_mean(jl2+1)
               ! remove from cat jl2
               pa_i(ji,jl2  ) = ( 1._wp - ztrans ) * pa_i(ji,jl2)
            ENDIF
         END DO
         !
         jlfil2(:,:) = jlfil(:,:)
         ! fill categories from low to high
         DO jl = 2, jpl-1
            DO ji = 1, idim
               IF( jlfil(ji,jl-1) /= 0 .AND. jlfil(ji,jl) == 0 ) THEN
                  ! fill high
                  pa_i(ji,jl) = ztrans * pa_i(ji,jl-1)
                  ph_i(ji,jl) = hi_mean(jl)
                  jlfil(ji,jl) = jl
                  ! remove low
                  pa_i(ji,jl-1) = ( 1._wp - ztrans ) * pa_i(ji,jl-1)
               ENDIF
            END DO
         END DO
         !
         ! fill categories from high to low
         DO jl = jpl-1, 2, -1
            DO ji = 1, idim
               IF( jlfil2(ji,jl+1) /= 0 .AND. jlfil2(ji,jl) == 0 ) THEN
                  ! fill low
                  pa_i(ji,jl) = pa_i(ji,jl) + ztrans * pa_i(ji,jl+1)
                  ph_i(ji,jl) = hi_mean(jl)
                  jlfil2(ji,jl) = jl
                  ! remove high
                  pa_i(ji,jl+1) = ( 1._wp - ztrans ) * pa_i(ji,jl+1)
               ENDIF
            END DO
         END DO
         !
         DEALLOCATE( jlfil, jlfil2 )      ! deallocate arrays
         DEALLOCATE( jlmin, jlmax )
         !
         ! == temperature and salinity == !
         !
         ALLOCATE( z1_ai(idim), z1_vi(idim), z1_vs(idim), ztmp(idim) )
         !
         WHERE( SUM( pa_i(:,:), dim=2 ) /= 0._wp )               ;   z1_ai(:) = 1._wp / SUM( pa_i(:,:), dim=2 )
         ELSEWHERE                                               ;   z1_ai(:) = 0._wp
         END WHERE
         WHERE( SUM( pa_i(:,:) * ph_i(:,:), dim=2 ) /= 0._wp )   ;   z1_vi(:) = 1._wp / SUM( pa_i(:,:) * ph_i(:,:), dim=2 )
         ELSEWHERE                                               ;   z1_vi(:) = 0._wp
         END WHERE
         WHERE( SUM( pa_i(:,:) * ph_s(:,:), dim=2 ) /= 0._wp )   ;   z1_vs(:) = 1._wp / SUM( pa_i(:,:) * ph_s(:,:), dim=2 )
         ELSEWHERE                                               ;   z1_vs(:) = 0._wp
         END WHERE
         !
         ! fill all the categories with the same value
         ztmp(:) = SUM( ptmi (:,:) * pati(:,:) * phti(:,:), dim=2 ) * z1_vi(:)
         DO jl = 1, jpl
            pt_i (:,jl) = ztmp(:)
         END DO
         ztmp(:) = SUM( ptms (:,:) * pati(:,:) * phts(:,:), dim=2 ) * z1_vs(:)
         DO jl = 1, jpl
            pt_s (:,jl) = ztmp(:)
         END DO
         ztmp(:) = SUM( ptmsu(:,:) * pati(:,:)            , dim=2 ) * z1_ai(:)
         DO jl = 1, jpl
            pt_su(:,jl) = ztmp(:)
         END DO
         ztmp(:) = SUM( psmi (:,:) * pati(:,:) * phti(:,:), dim=2 ) * z1_vi(:)
         DO jl = 1, jpl
            ps_i (:,jl) = ztmp(:)
         END DO
         !
         DEALLOCATE( z1_ai, z1_vi, z1_vs, ztmp )
         !
         ! == ponds == !
         ALLOCATE( zfra(idim) )
         ! keep the same pond fraction atip/ati for each category
         WHERE( SUM( pati(:,:), dim=2 ) /= 0._wp )   ;   zfra(:) = SUM( patip(:,:), dim=2 ) / SUM( pati(:,:), dim=2 )
         ELSEWHERE                                   ;   zfra(:) = 0._wp
         END WHERE
         DO jl = 1, jpl
            pa_ip(:,jl) = zfra(:) * pa_i(:,jl)
         END DO
         ! keep the same v_ip/v_i ratio for each category
         WHERE( SUM( phti(:,:) * pati(:,:), dim=2 ) /= 0._wp )
            zfra(:) = SUM( phtip(:,:) * patip(:,:), dim=2 ) / SUM( phti(:,:) * pati(:,:), dim=2 )
         ELSEWHERE
            zfra(:) = 0._wp
         END WHERE
         DO jl = 1, jpl
            WHERE( pa_ip(:,jl) /= 0._wp )   ;   ph_ip(:,jl) = zfra(:) * ( ph_i(:,jl) * pa_i(:,jl) ) / pa_ip(:,jl)
            ELSEWHERE                       ;   ph_ip(:,jl) = 0._wp
            END WHERE
         END DO
         ! keep the same v_il/v_i ratio for each category
         WHERE( SUM( phti(:,:) * pati(:,:), dim=2 ) /= 0._wp )
            zfra(:) = SUM( phtil(:,:) * patip(:,:), dim=2 ) / SUM( phti(:,:) * pati(:,:), dim=2 )
         ELSEWHERE
            zfra(:) = 0._wp
         END WHERE
         DO jl = 1, jpl
            WHERE( pa_ip(:,jl) /= 0._wp )   ;   ph_il(:,jl) = zfra(:) * ( ph_i(:,jl) * pa_i(:,jl) ) / pa_ip(:,jl)
            ELSEWHERE                       ;   ph_il(:,jl) = 0._wp
            END WHERE
         END DO
         DEALLOCATE( zfra )
         !
      ENDIF
      !
   END SUBROUTINE ice_var_itd_NcMc

   !!-------------------------------------------------------------------
   !! INTERFACE ice_var_snwfra
   !!
   !! ** Purpose :  fraction of ice covered by snow
   !!
   !! ** Method  :  In absence of proper snow model on top of sea ice,
   !!               we argue that snow does not cover the whole ice because
   !!               of wind blowing...
   !!
   !! ** Arguments : ph_s: snow thickness
   !!
   !! ** Output    : pa_s_fra: fraction of ice covered by snow
   !!
   !!-------------------------------------------------------------------
   SUBROUTINE ice_var_snwfra_3d( ph_s, pa_s_fra )
      REAL(wp), DIMENSION(A2D(0),jpl), INTENT(in   ) ::   ph_s        ! snow thickness
      REAL(wp), DIMENSION(A2D(0),jpl), INTENT(  out) ::   pa_s_fra    ! ice fraction covered by snow
Guillaume Samson's avatar
Guillaume Samson committed
      IF    ( nn_snwfra == 0 ) THEN   ! basic 0 or 1 snow cover
         WHERE( ph_s > 0._wp ) ; pa_s_fra = 1._wp
         ELSEWHERE             ; pa_s_fra = 0._wp
         END WHERE
      ELSEIF( nn_snwfra == 1 ) THEN   ! snow cover depends on hsnow (met-office style)
         pa_s_fra = 1._wp - EXP( -0.2_wp * rhos * ph_s )
      ELSEIF( nn_snwfra == 2 ) THEN   ! snow cover depends on hsnow (cice style)
         pa_s_fra = ph_s / ( ph_s + 0.02_wp )
      ENDIF
   END SUBROUTINE ice_var_snwfra_3d

   SUBROUTINE ice_var_snwfra_2d( ph_s, pa_s_fra )
      REAL(wp), DIMENSION(:,:), INTENT(in   ) ::   ph_s        ! snow thickness
      REAL(wp), DIMENSION(:,:), INTENT(  out) ::   pa_s_fra    ! ice fraction covered by snow
      IF    ( nn_snwfra == 0 ) THEN   ! basic 0 or 1 snow cover
         WHERE( ph_s > 0._wp ) ; pa_s_fra = 1._wp
         ELSEWHERE             ; pa_s_fra = 0._wp
         END WHERE
      ELSEIF( nn_snwfra == 1 ) THEN   ! snow cover depends on hsnow (met-office style)
         pa_s_fra = 1._wp - EXP( -0.2_wp * rhos * ph_s )
      ELSEIF( nn_snwfra == 2 ) THEN   ! snow cover depends on hsnow (cice style)
         pa_s_fra = ph_s / ( ph_s + 0.02_wp )
      ENDIF
   END SUBROUTINE ice_var_snwfra_2d

   SUBROUTINE ice_var_snwfra_1d( ph_s, pa_s_fra )
      REAL(wp), DIMENSION(:), INTENT(in   ) ::   ph_s        ! snow thickness
      REAL(wp), DIMENSION(:), INTENT(  out) ::   pa_s_fra    ! ice fraction covered by snow
      IF    ( nn_snwfra == 0 ) THEN   ! basic 0 or 1 snow cover
         WHERE( ph_s > 0._wp ) ; pa_s_fra = 1._wp
         ELSEWHERE             ; pa_s_fra = 0._wp
         END WHERE
      ELSEIF( nn_snwfra == 1 ) THEN   ! snow cover depends on hsnow (met-office style)
         pa_s_fra = 1._wp - EXP( -0.2_wp * rhos * ph_s )
      ELSEIF( nn_snwfra == 2 ) THEN   ! snow cover depends on hsnow (cice style)
         pa_s_fra = ph_s / ( ph_s + 0.02_wp )
      ENDIF
   END SUBROUTINE ice_var_snwfra_1d

   !!--------------------------------------------------------------------------
   !! INTERFACE ice_var_snwblow
   !!
   !! ** Purpose :   Compute distribution of precip over the ice
   !!
   !!                Snow accumulation in one thermodynamic time step
   !!                snowfall is partitionned between leads and ice.
   !!                If snow fall was uniform, a fraction (1-at_i) would fall into leads
   !!                but because of the winds, more snow falls on leads than on sea ice
   !!                and a greater fraction (1-at_i)^beta of the total mass of snow
   !!                (beta < 1) falls in leads.
   !!                In reality, beta depends on wind speed,
   !!                and should decrease with increasing wind speed but here, it is
   !!                considered as a constant. an average value is 0.66
   !!--------------------------------------------------------------------------
!!gm  I think it can be usefull to set this as a FUNCTION, not a SUBROUTINE....
   SUBROUTINE ice_var_snwblow_2d( pin, pout )
      REAL(wp), DIMENSION(A2D(0)), INTENT(in   ) :: pin   ! previous fraction lead ( 1. - a_i_b )
      REAL(wp), DIMENSION(A2D(0)), INTENT(inout) :: pout
Guillaume Samson's avatar
Guillaume Samson committed
      pout = ( 1._wp - ( pin )**rn_snwblow )
   END SUBROUTINE ice_var_snwblow_2d

   SUBROUTINE ice_var_snwblow_1d( pin, pout )
      REAL(wp), DIMENSION(:), INTENT(in   ) :: pin
      REAL(wp), DIMENSION(:), INTENT(inout) :: pout
      pout = ( 1._wp - ( pin )**rn_snwblow )
   END SUBROUTINE ice_var_snwblow_1d

#else
   !!----------------------------------------------------------------------
   !!   Default option         Dummy module           NO SI3 sea-ice model
   !!----------------------------------------------------------------------
#endif

   !!======================================================================
END MODULE icevar