Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
MODULE diawri
!!======================================================================
!! *** MODULE diawri ***
!! Ocean diagnostics : write ocean output files
!!=====================================================================
!! History : OPA ! 1991-03 (M.-A. Foujols) Original code
!! 4.0 ! 1991-11 (G. Madec)
!! ! 1992-06 (M. Imbard) correction restart file
!! ! 1992-07 (M. Imbard) split into diawri and rstwri
!! ! 1993-03 (M. Imbard) suppress writibm
!! ! 1998-01 (C. Levy) NETCDF format using ioipsl INTERFACE
!! ! 1999-02 (E. Guilyardi) name of netCDF files + variables
!! 8.2 ! 2000-06 (M. Imbard) Original code (diabort.F)
!! NEMO 1.0 ! 2002-06 (A.Bozec, E. Durand) Original code (diainit.F)
!! - ! 2002-09 (G. Madec) F90: Free form and module
!! - ! 2002-12 (G. Madec) merge of diabort and diainit, F90
!! ! 2005-11 (V. Garnier) Surface pressure gradient organization
!! 3.2 ! 2008-11 (B. Lemaire) creation from old diawri
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! dia_wri : create the standart output files
!! dia_wri_state : create an output NetCDF file for a single instantaeous ocean state and forcing fields
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and tracers
USE abl ! abl variables in case ln_abl = .true.
USE dom_oce ! ocean space and time domain
USE zdf_oce ! ocean vertical physics
USE sbc_oce ! Surface boundary condition: ocean fields
USE sbc_ice ! Surface boundary condition: ice fields
USE sbcssr ! restoring term toward SST/SSS climatology
USE phycst ! physical constants
USE zdfmxl ! mixed layer
USE dianam ! build name of file (routine)
USE zdfddm ! vertical physics: double diffusion
USE diahth ! thermocline diagnostics
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
USE in_out_manager ! I/O manager
USE iom
USE ioipsl
#if defined key_si3
USE ice
USE icewri
#endif
USE lib_mpp ! MPP library
USE timing ! preformance summary
IMPLICIT NONE
PRIVATE
PUBLIC dia_wri ! routines called by step.F90
PUBLIC dia_wri_state
PUBLIC dia_wri_alloc ! Called by nemogcm module
#if ! defined key_xios
PUBLIC dia_wri_alloc_abl ! Called by sbcabl module (if ln_abl = .true.)
#endif
INTEGER :: nid_T, nz_T, nh_T, ndim_T, ndim_hT ! grid_T file
INTEGER :: nid_U, nz_U, nh_U, ndim_U, ndim_hU ! grid_U file
INTEGER :: nid_V, nz_V, nh_V, ndim_V, ndim_hV ! grid_V file
INTEGER :: ndim_A, ndim_hA ! ABL file
INTEGER :: nid_A, nz_A, nh_A ! grid_ABL file
INTEGER :: ndex(1) ! ???
INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_hT, ndex_hU, ndex_hV
INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_hA, ndex_A ! ABL
!!----------------------------------------------------------------------
!! NEMO/SAS 4.0 , NEMO Consortium (2018)
!! $Id: diawri.F90 14239 2020-12-23 08:57:16Z smasson $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
# if defined key_xios
!!----------------------------------------------------------------------
!! 'key_xios' use IOM library
!!----------------------------------------------------------------------
INTEGER FUNCTION dia_wri_alloc()
!
dia_wri_alloc = 0
!
END FUNCTION dia_wri_alloc
SUBROUTINE dia_wri( kt, Kmm )
!!---------------------------------------------------------------------
!! *** ROUTINE dia_wri ***
!!
!! ** Purpose : Standard output of opa: dynamics and tracer fields
!! NETCDF format is used by default
!! Standalone surface scheme
!!
!! ** Method : use iom_put
!!----------------------------------------------------------------------
!!
INTEGER, INTENT( in ) :: kt ! ocean time-step index
INTEGER, INTENT( in ) :: Kmm ! ocean time levelindex
!!----------------------------------------------------------------------
!
! Output the initial state and forcings
IF( ninist == 1 ) THEN
CALL dia_wri_state( Kmm, 'output.init' )
ninist = 0
ENDIF
!
END SUBROUTINE dia_wri
#else
!!----------------------------------------------------------------------
!! Default option use IOIPSL library
!!----------------------------------------------------------------------
INTEGER FUNCTION dia_wri_alloc()
!!----------------------------------------------------------------------
INTEGER :: ierr
!!----------------------------------------------------------------------
!
ALLOCATE( ndex_hT(jpi*jpj), ndex_hU(jpi*jpj), ndex_hV(jpi*jpj), STAT=dia_wri_alloc )
CALL mpp_sum( 'diawri', dia_wri_alloc )
!
END FUNCTION dia_wri_alloc
INTEGER FUNCTION dia_wri_alloc_abl()
!!----------------------------------------------------------------------
ALLOCATE( ndex_hA(jpi*jpj), ndex_A (jpi*jpj*jpkam1), STAT=dia_wri_alloc_abl)
CALL mpp_sum( 'diawri', dia_wri_alloc_abl )
!
END FUNCTION dia_wri_alloc_abl
SUBROUTINE dia_wri( kt, Kmm )
!!---------------------------------------------------------------------
!! *** ROUTINE dia_wri ***
!!
!! ** Purpose : Standard output of opa: dynamics and tracer fields
!! NETCDF format is used by default
!!
!! ** Method : At the beginning of the first time step (nit000),
!! define all the NETCDF files and fields
!! At each time step call histdef to compute the mean if ncessary
!! Each nn_write time step, output the instantaneous or mean fields
!!----------------------------------------------------------------------
INTEGER, INTENT( in ) :: kt ! ocean time-step index
INTEGER, INTENT( in ) :: Kmm ! ocean time level index
!!
LOGICAL :: ll_print = .FALSE. ! =T print and flush numout
CHARACTER (len=40) :: clhstnam, clop, clmx ! local names
INTEGER :: inum = 11 ! temporary logical unit
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: ierr ! error code return from allocation
INTEGER :: iimi, iima, ipk, it, itmod, ijmi, ijma ! local integers
INTEGER :: ipka ! ABL
REAL(wp) :: zsto, zout, zmax, zjulian ! local scalars
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: zw3d_abl ! ABL 3D workspace
!!----------------------------------------------------------------------
!
! Output the initial state and forcings
IF( ninist == 1 ) THEN
CALL dia_wri_state( Kmm, 'output.init' )
ninist = 0
ENDIF
!
IF( nn_write == -1 ) RETURN ! we will never do any output
!
IF( ln_timing ) CALL timing_start('dia_wri')
!
! 0. Initialisation
! -----------------
! local variable for debugging
ll_print = .FALSE.
ll_print = ll_print .AND. lwp
! Define frequency of output and means
IF( ln_mskland ) THEN ; clop = "only(x)" ! put 1.e+20 on land (very expensive!!)
ELSE ; clop = "x" ! no use of the mask value (require less cpu time)
ENDIF
#if defined key_diainstant
zsto = nn_write * rn_Dt
clop = "inst("//TRIM(clop)//")"
#else
zsto=rn_Dt
clop = "ave("//TRIM(clop)//")"
#endif
zout = nn_write * rn_Dt
zmax = ( nitend - nit000 + 1 ) * rn_Dt
! Define indices of the horizontal output zoom and vertical limit storage
iimi = 1 ; iima = jpi
ijmi = 1 ; ijma = jpj
ipk = jpk
IF(ln_abl) ipka = jpkam1
! define time axis
it = kt
itmod = kt - nit000 + 1
! 1. Define NETCDF files and fields at beginning of first time step
! -----------------------------------------------------------------
IF( kt == nit000 ) THEN
! Define the NETCDF files (one per grid)
! Compute julian date from starting date of the run
CALL ymds2ju( nyear, nmonth, nday, rn_Dt, zjulian )
zjulian = zjulian - adatrj ! set calendar origin to the beginning of the experiment
IF(lwp)WRITE(numout,*)
IF(lwp)WRITE(numout,*) 'Date 0 used :', nit000, ' YEAR ', nyear, &
& ' MONTH ', nmonth, ' DAY ', nday, 'Julian day : ', zjulian
IF(lwp)WRITE(numout,*) ' indexes of zoom = ', iimi, iima, ijmi, ijma, &
' limit storage in depth = ', ipk
! WRITE root name in date.file for use by postpro
IF(lwp) THEN
CALL dia_nam( clhstnam, nn_write,' ' )
CALL ctl_opn( inum, 'date.file', 'REPLACE', 'FORMATTED', 'SEQUENTIAL', -1, numout, lwp, narea )
WRITE(inum,*) clhstnam
CLOSE(inum)
ENDIF
! Define the T grid FILE ( nid_T )
CALL dia_nam( clhstnam, nn_write, 'grid_T' )
IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam ! filename
CALL histbeg( clhstnam, jpi, glamt, jpj, gphit, & ! Horizontal grid: glamt and gphit
& iimi, iima-iimi+1, ijmi, ijma-ijmi+1, &
& nit000-1, zjulian, rn_Dt, nh_T, nid_T, domain_id=nidom, snc4chunks=snc4set )
CALL histvert( nid_T, "deptht", "Vertical T levels", & ! Vertical grid: gdept
& "m", ipk, gdept_1d, nz_T, "down" )
! ! Index of ocean points
CALL wheneq( jpi*jpj , tmask, 1, 1., ndex_hT, ndim_hT ) ! surface
! Define the U grid FILE ( nid_U )
CALL dia_nam( clhstnam, nn_write, 'grid_U' )
IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam ! filename
CALL histbeg( clhstnam, jpi, glamu, jpj, gphiu, & ! Horizontal grid: glamu and gphiu
& iimi, iima-iimi+1, ijmi, ijma-ijmi+1, &
& nit000-1, zjulian, rn_Dt, nh_U, nid_U, domain_id=nidom, snc4chunks=snc4set )
CALL histvert( nid_U, "depthu", "Vertical U levels", & ! Vertical grid: gdept
& "m", ipk, gdept_1d, nz_U, "down" )
! ! Index of ocean points
CALL wheneq( jpi*jpj , umask, 1, 1., ndex_hU, ndim_hU ) ! surface
! Define the V grid FILE ( nid_V )
CALL dia_nam( clhstnam, nn_write, 'grid_V' ) ! filename
IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam
CALL histbeg( clhstnam, jpi, glamv, jpj, gphiv, & ! Horizontal grid: glamv and gphiv
& iimi, iima-iimi+1, ijmi, ijma-ijmi+1, &
& nit000-1, zjulian, rn_Dt, nh_V, nid_V, domain_id=nidom, snc4chunks=snc4set )
CALL histvert( nid_V, "depthv", "Vertical V levels", & ! Vertical grid : gdept
& "m", ipk, gdept_1d, nz_V, "down" )
! ! Index of ocean points
CALL wheneq( jpi*jpj , vmask, 1, 1., ndex_hV, ndim_hV ) ! surface
! No W grid FILE
IF( ln_abl ) THEN
! Define the ABL grid FILE ( nid_A )
CALL dia_nam( clhstnam, nn_write, 'grid_ABL' )
IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam ! filename
CALL histbeg( clhstnam, jpi, glamt, jpj, gphit, & ! Horizontal grid: glamt and gphit
& iimi, iima-iimi+1, ijmi, ijma-ijmi+1, &
& nit000-1, zjulian, rn_Dt, nh_A, nid_A, domain_id=nidom, snc4chunks=snc4set )
CALL histvert( nid_A, "ght_abl", "Vertical T levels", & ! Vertical grid: gdept
& "m", ipka, ght_abl(2:jpka), nz_A, "up" )
! ! Index of ocean points
ALLOCATE( zw3d_abl(jpi,jpj,ipka) )
zw3d_abl(:,:,:) = 1._wp
CALL wheneq( jpi*jpj*ipka, zw3d_abl, 1, 1., ndex_A , ndim_A ) ! volume
CALL wheneq( jpi*jpj , zw3d_abl, 1, 1., ndex_hA, ndim_hA ) ! surface
DEALLOCATE(zw3d_abl)
ENDIF
! Declare all the output fields as NETCDF variables
! !!! nid_T : 3D
CALL histdef( nid_T, "sst_m", "Sea Surface temperature" , "C" , & ! sst
& jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
CALL histdef( nid_T, "sss_m", "Sea Surface Salinity" , "PSU" , & ! sss
& jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
CALL histdef( nid_T, "sowaflup", "Net Upward Water Flux" , "Kg/m2/s", & ! (emp-rnf)
& jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
CALL histdef( nid_T, "sosfldow", "downward salt flux" , "PSU/m2/s", & ! (sfx)
& jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
CALL histdef( nid_T, "sohefldo", "Net Downward Heat Flux" , "W/m2" , & ! qns + qsr
& jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
CALL histdef( nid_T, "soshfldo", "Shortwave Radiation" , "W/m2" , & ! qsr
& jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
CALL histdef( nid_T, "soicecov", "Ice fraction" , "[0,1]" , & ! fr_i
& jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
CALL histdef( nid_T, "sowindsp", "wind speed at 10m" , "m/s" , & ! wndm
& jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
!
IF( ln_abl ) THEN
! !!! nid_A : 3D
CALL histdef( nid_A, "t_abl", "Potential Temperature" , "K" , & ! t_abl
& jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout )
CALL histdef( nid_A, "q_abl", "Humidity" , "kg/kg" , & ! q_abl
& jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout )
CALL histdef( nid_A, "u_abl", "Atmospheric U-wind " , "m/s" , & ! u_abl
& jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout )
CALL histdef( nid_A, "v_abl", "Atmospheric V-wind " , "m/s" , & ! v_abl
& jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout )
CALL histdef( nid_A, "tke_abl", "Atmospheric TKE " , "m2/s2" , & ! tke_abl
& jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout )
CALL histdef( nid_A, "avm_abl", "Atmospheric turbulent viscosity", "m2/s" , & ! avm_abl
& jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout )
CALL histdef( nid_A, "avt_abl", "Atmospheric turbulent diffusivity", "m2/s2", & ! avt_abl
& jpi, jpj, nh_A, ipka, 1, ipka, nz_A, 32, clop, zsto, zout )
CALL histdef( nid_A, "pblh", "Atmospheric boundary layer height " , "m", & ! pblh
& jpi, jpj, nh_A, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
#if defined key_si3
CALL histdef( nid_A, "oce_frac", "Fraction of open ocean" , " ", & ! ato_i
& jpi, jpj, nh_A, 1 , 1, 1 , -99 , 32, clop, zsto, zout )
#endif
CALL histend( nid_A, snc4chunks=snc4set )
!
ENDIF
!
CALL histdef( nid_T, "sozotaux", "Wind Stress along i-axis" , "N/m2" , & ! utau
& jpi, jpj, nh_T, 1 , 1, 1 , - 99, 32, clop, zsto, zout )
CALL histdef( nid_T, "sometauy", "Wind Stress along j-axis" , "N/m2" , & ! vtau
& jpi, jpj, nh_T, 1 , 1, 1 , - 99, 32, clop, zsto, zout )
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
CALL histend( nid_T, snc4chunks=snc4set )
! !!! nid_U : 3D
CALL histdef( nid_U, "ssu_m", "Velocity component in x-direction", "m/s" , & ! ssu
& jpi, jpj, nh_U, 1 , 1, 1 , - 99, 32, clop, zsto, zout )
CALL histend( nid_U, snc4chunks=snc4set )
! !!! nid_V : 3D
CALL histdef( nid_V, "ssv_m", "Velocity component in y-direction", "m/s", & ! ssv_m
& jpi, jpj, nh_V, 1 , 1, 1 , - 99, 32, clop, zsto, zout )
CALL histend( nid_V, snc4chunks=snc4set )
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'End of NetCDF Initialization'
IF(ll_print) CALL FLUSH(numout )
ENDIF
! 2. Start writing data
! ---------------------
! ndex(1) est utilise ssi l'avant dernier argument est diffferent de
! la taille du tableau en sortie. Dans ce cas , l'avant dernier argument
! donne le nombre d'elements, et ndex la liste des indices a sortir
IF( lwp .AND. MOD( itmod, nn_write ) == 0 ) THEN
WRITE(numout,*) 'dia_wri : write model outputs in NetCDF files at ', kt, 'time-step'
WRITE(numout,*) '~~~~~~ '
ENDIF
! Write fields on T grid
CALL histwrite( nid_T, "sst_m", it, sst_m, ndim_hT, ndex_hT ) ! sea surface temperature
CALL histwrite( nid_T, "sss_m", it, sss_m, ndim_hT, ndex_hT ) ! sea surface salinity
CALL histwrite( nid_T, "sowaflup", it, (emp - rnf ) , ndim_hT, ndex_hT ) ! upward water flux
CALL histwrite( nid_T, "sosfldow", it, sfx , ndim_hT, ndex_hT ) ! downward salt flux
! (includes virtual salt flux beneath ice
! in linear free surface case)
CALL histwrite( nid_T, "sohefldo", it, qns + qsr , ndim_hT, ndex_hT ) ! total heat flux
CALL histwrite( nid_T, "soshfldo", it, qsr , ndim_hT, ndex_hT ) ! solar heat flux
CALL histwrite( nid_T, "soicecov", it, fr_i , ndim_hT, ndex_hT ) ! ice fraction
CALL histwrite( nid_T, "sowindsp", it, wndm , ndim_hT, ndex_hT ) ! wind speed
CALL histwrite( nid_T, "sozotaux", it, utau , ndim_hT, ndex_hT ) ! i-wind stress
CALL histwrite( nid_T, "sometauy", it, vtau , ndim_hT, ndex_hT ) ! j-wind stress
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
!
IF( ln_abl ) THEN
ALLOCATE( zw3d_abl(jpi,jpj,jpka) )
IF( ln_mskland ) THEN
DO jk=1,jpka
zw3d_abl(:,:,jk) = tmask(:,:,1)
END DO
ELSE
zw3d_abl(:,:,:) = 1._wp
ENDIF
CALL histwrite( nid_A, "pblh" , it, pblh(:,:) *zw3d_abl(:,:,1 ), ndim_hA, ndex_hA ) ! pblh
CALL histwrite( nid_A, "u_abl" , it, u_abl (:,:,2:jpka,nt_n )*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! u_abl
CALL histwrite( nid_A, "v_abl" , it, v_abl (:,:,2:jpka,nt_n )*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! v_abl
CALL histwrite( nid_A, "t_abl" , it, tq_abl (:,:,2:jpka,nt_n,1)*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! t_abl
CALL histwrite( nid_A, "q_abl" , it, tq_abl (:,:,2:jpka,nt_n,2)*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! q_abl
CALL histwrite( nid_A, "tke_abl", it, tke_abl (:,:,2:jpka,nt_n )*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! tke_abl
CALL histwrite( nid_A, "avm_abl", it, avm_abl (:,:,2:jpka )*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! avm_abl
CALL histwrite( nid_A, "avt_abl", it, avt_abl (:,:,2:jpka )*zw3d_abl(:,:,2:jpka), ndim_A , ndex_A ) ! avt_abl
#if defined key_si3
CALL histwrite( nid_A, "oce_frac" , it, ato_i(:,:) , ndim_hA, ndex_hA ) ! ato_i
#endif
DEALLOCATE(zw3d_abl)
ENDIF
!
! Write fields on U grid
CALL histwrite( nid_U, "ssu_m" , it, ssu_m , ndim_hU, ndex_hU ) ! i-current speed
! Write fields on V grid
CALL histwrite( nid_V, "ssv_m" , it, ssv_m , ndim_hV, ndex_hV ) ! j-current speed
! 3. Close all files
! ---------------------------------------
IF( kt == nitend ) THEN
CALL histclo( nid_T )
CALL histclo( nid_U )
CALL histclo( nid_V )
IF(ln_abl) CALL histclo( nid_A )
ENDIF
!
IF( ln_timing ) CALL timing_stop('dia_wri')
!
END SUBROUTINE dia_wri
#endif
SUBROUTINE dia_wri_state( Kmm, cdfile_name )
!!---------------------------------------------------------------------
!! *** ROUTINE dia_wri_state ***
!!
!! ** Purpose : create a NetCDF file named cdfile_name which contains
!! the instantaneous ocean state and forcing fields.
!! Used to find errors in the initial state or save the last
!! ocean state in case of abnormal end of a simulation
!!
!! ** Method : NetCDF files using ioipsl
!! File 'output.init.nc' is created if ninist = 1 (namelist)
!! File 'output.abort.nc' is created in case of abnormal job end
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: Kmm ! ocean time levelindex
CHARACTER (len=* ), INTENT( in ) :: cdfile_name ! name of the file created
!!
INTEGER :: inum
!!----------------------------------------------------------------------
!
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dia_wri_state : single instantaneous ocean state'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~ and forcing fields file created '
IF(lwp) WRITE(numout,*) ' and named :', cdfile_name, '...nc'
!
CALL iom_open( TRIM(cdfile_name), inum, ldwrt = .TRUE. )
!
CALL iom_rstput( 0, 0, inum, 'votemper', ts (:,:,:,jp_tem,Kmm) ) ! now temperature
CALL iom_rstput( 0, 0, inum, 'vosaline', ts (:,:,:,jp_sal,Kmm) ) ! now salinity
CALL iom_rstput( 0, 0, inum, 'sossheig', ssh(:,:, Kmm) ) ! sea surface height
CALL iom_rstput( 0, 0, inum, 'vozocrtx', uu (:,:,:, Kmm) ) ! now i-velocity
CALL iom_rstput( 0, 0, inum, 'vomecrty', vv (:,:,:, Kmm) ) ! now j-velocity
CALL iom_rstput( 0, 0, inum, 'vovecrtz', ww ) ! now k-velocity
CALL iom_rstput( 0, 0, inum, 'sowaflup', emp - rnf ) ! freshwater budget
CALL iom_rstput( 0, 0, inum, 'sohefldo', qsr + qns ) ! total heat flux
CALL iom_rstput( 0, 0, inum, 'soshfldo', qsr ) ! solar heat flux
CALL iom_rstput( 0, 0, inum, 'soicecov', fr_i ) ! ice fraction
CALL iom_rstput( 0, 0, inum, 'sozotaux', utau ) ! i-wind stress
CALL iom_rstput( 0, 0, inum, 'sometauy', vtau ) ! j-wind stress
!
CALL iom_close( inum )
!
#if defined key_si3
IF( nn_ice == 2 ) THEN ! condition needed in case agrif + ice-model but no-ice in child grid
CALL iom_open( TRIM(cdfile_name)//'_ice', inum, ldwrt = .TRUE., kdlev = jpl, cdcomp = 'ICE' )
CALL ice_wri_state( inum )
CALL iom_close( inum )
ENDIF
!
#endif
END SUBROUTINE dia_wri_state
!!======================================================================
END MODULE diawri