Skip to content
Snippets Groups Projects
icedyn_rhg_evp.F90 68.4 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
MODULE icedyn_rhg_evp
   !!======================================================================
   !!                     ***  MODULE  icedyn_rhg_evp  ***
   !!   Sea-Ice dynamics : rheology Elasto-Viscous-Plastic
   !!======================================================================
   !! History :   -   !  2007-03  (M.A. Morales Maqueda, S. Bouillon) Original code
   !!            3.0  !  2008-03  (M. Vancoppenolle) adaptation to new model
   !!             -   !  2008-11  (M. Vancoppenolle, S. Bouillon, Y. Aksenov) add surface tilt in ice rheolohy
   !!            3.3  !  2009-05  (G.Garric)    addition of the evp case
   !!            3.4  !  2011-01  (A. Porter)   dynamical allocation
   !!            3.5  !  2012-08  (R. Benshila) AGRIF
   !!            3.6  !  2016-06  (C. Rousset)  Rewriting + landfast ice + mEVP (Bouillon 2013)
   !!            3.7  !  2017     (C. Rousset)  add aEVP (Kimmritz 2016-2017)
   !!            4.0  !  2018     (many people) SI3 [aka Sea Ice cube]
   !!----------------------------------------------------------------------
#if defined key_si3
   !!----------------------------------------------------------------------
   !!   'key_si3'                                       SI3 sea-ice model
   !!----------------------------------------------------------------------
   !!   ice_dyn_rhg_evp : computes ice velocities from EVP rheology
   !!   rhg_evp_rst     : read/write EVP fields in ice restart
   !!----------------------------------------------------------------------
   USE phycst         ! Physical constant
   USE dom_oce        ! Ocean domain
   USE sbc_oce , ONLY : ln_ice_embd, nn_fsbc, ssh_m
   USE sbc_ice , ONLY : utau_ice, vtau_ice, snwice_mass, snwice_mass_b
   USE ice            ! sea-ice: ice variables
   USE icevar         ! ice_var_sshdyn
   USE icedyn_rdgrft  ! sea-ice: ice strength
   USE bdy_oce , ONLY : ln_bdy
   USE bdyice
#if defined key_agrif
   USE agrif_ice_interp
#endif
   !
   USE in_out_manager ! I/O manager
   USE iom            ! I/O manager library
   USE lib_mpp        ! MPP library
   USE lib_fortran    ! fortran utilities (glob_sum + no signed zero)
   USE lbclnk         ! lateral boundary conditions (or mpp links)
   USE prtctl         ! Print control

   USE netcdf         ! NetCDF library for convergence test
   IMPLICIT NONE
   PRIVATE

   PUBLIC   ice_dyn_rhg_evp   ! called by icedyn_rhg.F90
   PUBLIC   rhg_evp_rst       ! called by icedyn_rhg.F90

   !! for convergence tests
   INTEGER ::   ncvgid   ! netcdf file id
   INTEGER ::   nvarid   ! netcdf variable id
   REAL(wp), DIMENSION(:,:), ALLOCATABLE ::   fimask   ! mask at F points for the ice
   
   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/ICE 4.0 , NEMO Consortium (2018)
   !! $Id: icedyn_rhg_evp.F90 15550 2021-11-28 20:02:31Z clem $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE ice_dyn_rhg_evp( kt, Kmm, pstress1_i, pstress2_i, pstress12_i, pshear_i, pdivu_i, pdelta_i )
      !!-------------------------------------------------------------------
      !!                 ***  SUBROUTINE ice_dyn_rhg_evp  ***
      !!                             EVP-C-grid
      !!
      !! ** purpose : determines sea ice drift from wind stress, ice-ocean
      !!  stress and sea-surface slope. Ice-ice interaction is described by
      !!  a non-linear elasto-viscous-plastic (EVP) law including shear
      !!  strength and a bulk rheology (Hunke and Dukowicz, 2002).
      !!
      !!  The points in the C-grid look like this, dear reader
      !!
      !!                              (ji,jj)
      !!                                 |
      !!                                 |
      !!                      (ji-1,jj)  |  (ji,jj)
      !!                             ---------
      !!                            |         |
      !!                            | (ji,jj) |------(ji,jj)
      !!                            |         |
      !!                             ---------
      !!                     (ji-1,jj-1)     (ji,jj-1)
      !!
      !! ** Inputs  : - wind forcing (stress), oceanic currents
      !!                ice total volume (vt_i) per unit area
      !!                snow total volume (vt_s) per unit area
      !!
      !! ** Action  : - compute u_ice, v_ice : the components of the
      !!                sea-ice velocity vector
      !!              - compute delta_i, shear_i, divu_i, which are inputs
      !!                of the ice thickness distribution
      !!
      !! ** Steps   : 0) compute mask at F point
      !!              1) Compute ice snow mass, ice strength
      !!              2) Compute wind, oceanic stresses, mass terms and
      !!                 coriolis terms of the momentum equation
      !!              3) Solve the momentum equation (iterative procedure)
      !!              4) Recompute delta, shear and divergence
      !!                 (which are inputs of the ITD) & store stress
      !!                 for the next time step
      !!              5) Diagnostics including charge ellipse
      !!
      !! ** Notes   : There is the possibility to use aEVP from the nice work of Kimmritz et al. (2016 & 2017)
      !!              by setting up ln_aEVP=T (i.e. changing alpha and beta parameters).
      !!              This is an upgraded version of mEVP from Bouillon et al. 2013
      !!              (i.e. more stable and better convergence)
      !!
      !! References : Hunke and Dukowicz, JPO97
      !!              Bouillon et al., Ocean Modelling 2009
      !!              Bouillon et al., Ocean Modelling 2013
      !!              Kimmritz et al., Ocean Modelling 2016 & 2017
      !!-------------------------------------------------------------------
      INTEGER                 , INTENT(in   ) ::   kt                                    ! time step
      INTEGER                 , INTENT(in   ) ::   Kmm                                   ! ocean time level index
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   pstress1_i, pstress2_i, pstress12_i   !
      REAL(wp), DIMENSION(:,:), INTENT(  out) ::   pshear_i  , pdivu_i   , pdelta_i      !
      !!
      INTEGER ::   ji, jj       ! dummy loop indices
      INTEGER ::   jter         ! local integers
      !
      REAL(wp) ::   zrhoco                                              ! rho0 * rn_cio
      REAL(wp) ::   zdtevp, z1_dtevp                                    ! time step for subcycling
      REAL(wp) ::   ecc2, z1_ecc2                                       ! square of yield ellipse eccenticity
      REAL(wp) ::   zalph1, z1_alph1, zalph2, z1_alph2                  ! alpha coef from Bouillon 2009 or Kimmritz 2017
      REAl(wp) ::   zbetau, zbetav
      REAL(wp) ::   zm1, zm2, zm3, zmassU, zmassV, zvU, zvV             ! ice/snow mass and volume
      REAL(wp) ::   zp_delf, zds2, zdt, zdt2, zdiv, zdiv2               ! temporary scalars
      REAL(wp) ::   zTauO, zTauB, zRHS, zvel                            ! temporary scalars
      REAL(wp) ::   zkt                                                 ! isotropic tensile strength for landfast ice
      REAL(wp) ::   zvCr                                                ! critical ice volume above which ice is landfast
      !
      REAL(wp) ::   zfac_x, zfac_y
      !
      REAL(wp), DIMENSION(jpi,jpj) ::   zdelta, zp_delt                 ! delta and P/delta at T points
      REAL(wp), DIMENSION(jpi,jpj) ::   zbeta                           ! beta coef from Kimmritz 2017
      !
      REAL(wp), DIMENSION(jpi,jpj) ::   zdt_m                           ! (dt / ice-snow_mass) on T points
      REAL(wp), DIMENSION(jpi,jpj) ::   zaU  , zaV                      ! ice fraction on U/V points
      REAL(wp), DIMENSION(jpi,jpj) ::   zmU_t, zmV_t                    ! (ice-snow_mass / dt) on U/V points
      REAL(wp), DIMENSION(jpi,jpj) ::   zmf                             ! coriolis parameter at T points
      REAL(wp), DIMENSION(jpi,jpj) ::   v_oceU, u_oceV, v_iceU, u_iceV  ! ocean/ice u/v component on V/U points
      !
      REAL(wp), DIMENSION(jpi,jpj) ::   zds                             ! shear
      REAL(wp), DIMENSION(jpi,jpj) ::   zten_i                          ! tension
      REAL(wp), DIMENSION(jpi,jpj) ::   zs1, zs2, zs12                  ! stress tensor components
      REAL(wp), DIMENSION(jpi,jpj) ::   zsshdyn                         ! array used for the calculation of ice surface slope:
      !                                                                 !    ocean surface (ssh_m) if ice is not embedded
      !                                                                 !    ice bottom surface if ice is embedded
      REAL(wp), DIMENSION(jpi,jpj) ::   zfU  , zfV                      ! internal stresses
      REAL(wp), DIMENSION(jpi,jpj) ::   zspgU, zspgV                    ! surface pressure gradient at U/V points
      REAL(wp), DIMENSION(jpi,jpj) ::   zCorU, zCorV                    ! Coriolis stress array
      REAL(wp), DIMENSION(jpi,jpj) ::   ztaux_ai, ztauy_ai              ! ice-atm. stress at U-V points
      REAL(wp), DIMENSION(jpi,jpj) ::   ztaux_oi, ztauy_oi              ! ice-ocean stress at U-V points
      REAL(wp), DIMENSION(jpi,jpj) ::   ztaux_bi, ztauy_bi              ! ice-OceanBottom stress at U-V points (landfast)
      REAL(wp), DIMENSION(jpi,jpj) ::   ztaux_base, ztauy_base          ! ice-bottom stress at U-V points (landfast)
      !
      REAL(wp), DIMENSION(jpi,jpj) ::   zmsk, zmsk00, zmsk15
Guillaume Samson's avatar
Guillaume Samson committed
      REAL(wp), DIMENSION(jpi,jpj) ::   zmsk01x, zmsk01y                ! dummy arrays
      REAL(wp), DIMENSION(jpi,jpj) ::   zmsk00x, zmsk00y                ! mask for ice presence

      REAL(wp), PARAMETER          ::   zepsi  = 1.0e-20_wp             ! tolerance parameter
      REAL(wp), PARAMETER          ::   zmmin  = 1._wp                  ! ice mass (kg/m2)  below which ice velocity becomes very small
      REAL(wp), PARAMETER          ::   zamin  = 0.001_wp               ! ice concentration below which ice velocity becomes very small
      !! --- check convergence
      REAL(wp), DIMENSION(jpi,jpj) ::   zu_ice, zv_ice
      !! --- diags
      REAL(wp) ::   zsig1, zsig2, zsig12, zfac, z1_strength
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zsig_I, zsig_II, zsig1_p, zsig2_p
      !! --- SIMIP diags
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_xmtrp_ice ! X-component of ice mass transport (kg/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_ymtrp_ice ! Y-component of ice mass transport (kg/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_xmtrp_snw ! X-component of snow mass transport (kg/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_ymtrp_snw ! Y-component of snow mass transport (kg/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_xatrp     ! X-component of area transport (m2/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_yatrp     ! Y-component of area transport (m2/s)
      !! -- advect fields at the rheology time step for the calculation of strength
      !!    it seems that convergence is worse when ll_advups=true. So it is not really a good idea
      LOGICAL  ::   ll_advups = .FALSE.
      REAL(wp) ::   zdt_ups
      REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) ::   za_i_ups, zv_i_ups   ! tracers advected upstream
      !!-------------------------------------------------------------------

      IF( kt == nit000 .AND. lwp )   WRITE(numout,*) '-- ice_dyn_rhg_evp: EVP sea-ice rheology'
      !
      ! for diagnostics and convergence tests
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         zmsk00(ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi06  ) ) ! 1 if ice    , 0 if no ice
         zmsk  (ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi10  ) ) ! 1 if ice    , 0 if no ice
Guillaume Samson's avatar
Guillaume Samson committed
      END_2D
      IF( nn_rhg_chkcvg > 0 ) THEN
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            zmsk15(ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - 0.15_wp ) ) ! 1 if 15% ice, 0 if less
         END_2D
      ENDIF
      !
      !------------------------------------------------------------------------------!
      ! 0) mask at F points for the ice
      !------------------------------------------------------------------------------!
      IF( kt == nit000 ) THEN
         ! ocean/land mask
         ALLOCATE( fimask(jpi,jpj) )
         IF( rn_ishlat == 0._wp ) THEN
            DO_2D( 0, 0, 0, 0 )
               fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
            END_2D
         ELSE
            DO_2D( 0, 0, 0, 0 )
               fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
               ! Lateral boundary conditions on velocity (modify fimask)
               IF( fimask(ji,jj) == 0._wp ) THEN
                  fimask(ji,jj) = rn_ishlat * MIN( 1._wp , MAX( umask(ji,jj,1), umask(ji,jj+1,1), &
                     &                                          vmask(ji,jj,1), vmask(ji+1,jj,1) ) )
               ENDIF
            END_2D
         ENDIF
         CALL lbc_lnk( 'icedyn_rhg_evp', fimask, 'F', 1._wp )
      ENDIF
      !------------------------------------------------------------------------------!
      ! 1) define some variables and initialize arrays
      !------------------------------------------------------------------------------!
      zrhoco = rho0 * rn_cio

      ! ecc2: square of yield ellipse eccenticrity
      ecc2    = rn_ecc * rn_ecc
      z1_ecc2 = 1._wp / ecc2

      ! alpha parameters (Bouillon 2009)
      IF( .NOT. ln_aEVP ) THEN
         zdtevp   = rDt_ice / REAL( nn_nevp )
         zalph1 =   2._wp * rn_relast * REAL( nn_nevp )
         zalph2 = zalph1 * z1_ecc2

         z1_alph1 = 1._wp / ( zalph1 + 1._wp )
         z1_alph2 = 1._wp / ( zalph2 + 1._wp )
      ELSE
         zdtevp   = rDt_ice
         ! zalpha parameters set later on adaptatively
      ENDIF
      z1_dtevp = 1._wp / zdtevp

      ! Initialise stress tensor
      zs1 (:,:) = pstress1_i (:,:)
      zs2 (:,:) = pstress2_i (:,:)
      zs12(:,:) = pstress12_i(:,:)

      ! Ice strength
      CALL ice_strength

      ! landfast param from Lemieux(2016): add isotropic tensile strength (following Konig Beatty and Holland, 2010)
      IF( ln_landfast_L16 ) THEN   ;   zkt = rn_lf_tensile
      ELSE                         ;   zkt = 0._wp
      ENDIF
      !
      !------------------------------------------------------------------------------!
      ! 2) Wind / ocean stress, mass terms, coriolis terms
      !------------------------------------------------------------------------------!
      ! sea surface height
      !    embedded sea ice: compute representative ice top surface
      !    non-embedded sea ice: use ocean surface for slope calculation
      zsshdyn(:,:) = ice_var_sshdyn( ssh_m, snwice_mass, snwice_mass_b)

      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         zm1          = ( rhos * vt_s(ji,jj) + rhoi * vt_i(ji,jj) )  ! Ice/snow mass at U-V points
         zmf  (ji,jj) = zm1 * ff_t(ji,jj)                            ! Coriolis at T points (m*f)
         zdt_m(ji,jj) = zdtevp / MAX( zm1, zmmin )                   ! dt/m at T points (for alpha and beta coefficients)
      END_2D
      
      DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )

         ! ice fraction at U-V points
         zaU(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji+1,jj) * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
         zaV(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji,jj+1) * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)

         ! Ice/snow mass at U-V points
         zm1 = ( rhos * vt_s(ji  ,jj  ) + rhoi * vt_i(ji  ,jj  ) )
         zm2 = ( rhos * vt_s(ji+1,jj  ) + rhoi * vt_i(ji+1,jj  ) )
         zm3 = ( rhos * vt_s(ji  ,jj+1) + rhoi * vt_i(ji  ,jj+1) )
         zmassU = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm2 * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
         zmassV = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm3 * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)

         ! Ocean currents at U-V points
         ! (brackets added to fix the order of floating point operations for halo 1 - halo 2 compatibility)
         v_oceU(ji,jj)   = 0.25_wp * ( (v_oce(ji,jj) + v_oce(ji,jj-1)) + (v_oce(ji+1,jj) + v_oce(ji+1,jj-1)) ) * umask(ji,jj,1)
         u_oceV(ji,jj)   = 0.25_wp * ( (u_oce(ji,jj) + u_oce(ji-1,jj)) + (u_oce(ji,jj+1) + u_oce(ji-1,jj+1)) ) * vmask(ji,jj,1)

         ! m/dt
         zmU_t(ji,jj)    = zmassU * z1_dtevp
         zmV_t(ji,jj)    = zmassV * z1_dtevp

         ! Drag ice-atm.
         ztaux_ai(ji,jj) = zaU(ji,jj) * utau_ice(ji,jj)
         ztauy_ai(ji,jj) = zaV(ji,jj) * vtau_ice(ji,jj)

         ! Surface pressure gradient (- m*g*GRAD(ssh)) at U-V points
         zspgU(ji,jj)    = - zmassU * grav * ( zsshdyn(ji+1,jj) - zsshdyn(ji,jj) ) * r1_e1u(ji,jj)
         zspgV(ji,jj)    = - zmassV * grav * ( zsshdyn(ji,jj+1) - zsshdyn(ji,jj) ) * r1_e2v(ji,jj)

         ! masks
         zmsk00x(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassU ) )  ! 0 if no ice
         zmsk00y(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassV ) )  ! 0 if no ice

         ! switches
         IF( zmassU <= zmmin .AND. zaU(ji,jj) <= zamin ) THEN   ;   zmsk01x(ji,jj) = 0._wp
         ELSE                                                   ;   zmsk01x(ji,jj) = 1._wp   ;   ENDIF
         IF( zmassV <= zmmin .AND. zaV(ji,jj) <= zamin ) THEN   ;   zmsk01y(ji,jj) = 0._wp
         ELSE                                                   ;   zmsk01y(ji,jj) = 1._wp   ;   ENDIF

      END_2D
      !
      !                                  !== Landfast ice parameterization ==!
      !
      IF( ln_landfast_L16 ) THEN         !-- Lemieux 2016
         DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            ! ice thickness at U-V points
            zvU = 0.5_wp * ( vt_i(ji,jj) * e1e2t(ji,jj) + vt_i(ji+1,jj) * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
            zvV = 0.5_wp * ( vt_i(ji,jj) * e1e2t(ji,jj) + vt_i(ji,jj+1) * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)
            ! ice-bottom stress at U points
            zvCr = zaU(ji,jj) * rn_lf_depfra * hu(ji,jj,Kmm) * ( 1._wp - icb_mask(ji,jj) ) ! if grounded icebergs are read: ocean depth = 0
            ztaux_base(ji,jj) = - rn_lf_bfr * MAX( 0._wp, zvU - zvCr ) * EXP( -rn_crhg * ( 1._wp - zaU(ji,jj) ) )
            ! ice-bottom stress at V points
            zvCr = zaV(ji,jj) * rn_lf_depfra * hv(ji,jj,Kmm) * ( 1._wp - icb_mask(ji,jj) ) ! if grounded icebergs are read: ocean depth = 0
            ztauy_base(ji,jj) = - rn_lf_bfr * MAX( 0._wp, zvV - zvCr ) * EXP( -rn_crhg * ( 1._wp - zaV(ji,jj) ) )
            ! ice_bottom stress at T points
            zvCr = at_i(ji,jj) * rn_lf_depfra * ht(ji,jj) * ( 1._wp - icb_mask(ji,jj) )    ! if grounded icebergs are read: ocean depth = 0
            tau_icebfr(ji,jj) = - rn_lf_bfr * MAX( 0._wp, vt_i(ji,jj) - zvCr ) * EXP( -rn_crhg * ( 1._wp - at_i(ji,jj) ) )
         END_2D
         CALL lbc_lnk( 'icedyn_rhg_evp', tau_icebfr(:,:), 'T', 1.0_wp )
         !
      ELSE                               !-- no landfast
         DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            ztaux_base(ji,jj) = 0._wp
            ztauy_base(ji,jj) = 0._wp
         END_2D
      ENDIF

      !------------------------------------------------------------------------------!
      ! 3) Solution of the momentum equation, iterative procedure
      !------------------------------------------------------------------------------!
      !
      !                                               ! ==================== !
      DO jter = 1 , nn_nevp                           !    loop over jter    !
         !                                            ! ==================== !
         l_full_nf_update = jter == nn_nevp   ! false: disable full North fold update (performances) for iter = 1 to nn_nevp-1
         !
         ! convergence test
         IF( nn_rhg_chkcvg == 1 .OR. nn_rhg_chkcvg == 2  ) THEN
            DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
               zu_ice(ji,jj) = u_ice(ji,jj) * umask(ji,jj,1) ! velocity at previous time step
               zv_ice(ji,jj) = v_ice(ji,jj) * vmask(ji,jj,1)
            END_2D
         ENDIF

         ! --- divergence, tension & shear (Appendix B of Hunke & Dukowicz, 2002) --- !
         DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )

            ! shear at F points
            zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj)   &
               &         + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj)   &
               &         ) * r1_e1e2f(ji,jj) * fimask(ji,jj)

         END_2D

         DO_2D( 0, 0, 0, 0 )

            ! shear**2 at T points (doc eq. A16)
            zds2 = ( zds(ji,jj  ) * zds(ji,jj  ) * e1e2f(ji,jj  ) + zds(ji-1,jj  ) * zds(ji-1,jj  ) * e1e2f(ji-1,jj  )  &
               &   + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1)  &
               &   ) * 0.25_wp * r1_e1e2t(ji,jj)

            ! divergence at T points
            zdiv  = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj)   &
               &    + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1)   &
               &    ) * r1_e1e2t(ji,jj)
            zdiv2 = zdiv * zdiv

            ! tension at T points
            zdt  = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj)   &
               &   - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj)   &
               &   ) * r1_e1e2t(ji,jj)
            zdt2 = zdt * zdt

            ! delta at T points
            zdelta(ji,jj) = SQRT( zdiv2 + ( zdt2 + zds2 ) * z1_ecc2 ) * zmsk(ji,jj)        ! zmsk is for reducing cpu
Guillaume Samson's avatar
Guillaume Samson committed

            ! P/delta at T points
            zp_delt(ji,jj) = strength(ji,jj) / ( zdelta(ji,jj) + rn_creepl ) * zmsk(ji,jj) ! zmsk is for reducing cpu
Guillaume Samson's avatar
Guillaume Samson committed

         END_2D
         CALL lbc_lnk( 'icedyn_rhg_evp', zdelta, 'T', 1.0_wp, zp_delt, 'T', 1.0_wp )

         !
         DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls )   ! loop ends at jpi,jpj so that no lbc_lnk are needed for zs1 and zs2

            ! divergence at T points (duplication to avoid communications)
            ! (brackets added to fix the order of floating point operations for halo 1 - halo 2 compatibility)
            zdiv  = ( (e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj))   &
               &    + (e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1))   &
               &    ) * r1_e1e2t(ji,jj)

            ! tension at T points (duplication to avoid communications)
            zdt  = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj)   &
               &   - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj)   &
               &   ) * r1_e1e2t(ji,jj)

            ! alpha for aEVP
            !   gamma = 0.5*P/(delta+creepl) * (c*pi)**2/Area * dt/m
            !   alpha = beta = sqrt(4*gamma)
            IF( ln_aEVP ) THEN
               zalph1   = MAX( 50._wp, rpi * SQRT( 0.5_wp * zp_delt(ji,jj) * r1_e1e2t(ji,jj) * zdt_m(ji,jj) ) )
               z1_alph1 = 1._wp / ( zalph1 + 1._wp )
               zalph2   = zalph1
               z1_alph2 = z1_alph1
               ! explicit:
               ! z1_alph1 = 1._wp / zalph1
               ! z1_alph2 = 1._wp / zalph1
               ! zalph1 = zalph1 - 1._wp
               ! zalph2 = zalph1
            ENDIF

            ! stress at T points (zkt/=0 if landfast)
            zs1(ji,jj) = ( zs1(ji,jj)*zalph1 + zp_delt(ji,jj) * ( zdiv*(1._wp + zkt) - zdelta(ji,jj)*(1._wp - zkt) ) ) &
               &         * z1_alph1 * zmsk(ji,jj) ! zmsk is for reducing cpu
            zs2(ji,jj) = ( zs2(ji,jj)*zalph2 + zp_delt(ji,jj) * ( zdt * z1_ecc2 * (1._wp + zkt) ) ) &
               &         * z1_alph2 * zmsk(ji,jj) ! zmsk is for reducing cpu
Guillaume Samson's avatar
Guillaume Samson committed

         END_2D

         ! Save beta at T-points for further computations
         IF( ln_aEVP ) THEN
            DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
               zbeta(ji,jj) = MAX( 50._wp, rpi * SQRT( 0.5_wp * zp_delt(ji,jj) * r1_e1e2t(ji,jj) * zdt_m(ji,jj) ) )
            END_2D
         ENDIF

         DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )

            ! alpha for aEVP
            IF( ln_aEVP ) THEN
               zalph2   = MAX( zbeta(ji,jj), zbeta(ji+1,jj), zbeta(ji,jj+1), zbeta(ji+1,jj+1) )
               z1_alph2 = 1._wp / ( zalph2 + 1._wp )
               ! explicit:
               ! z1_alph2 = 1._wp / zalph2
               ! zalph2 = zalph2 - 1._wp
            ENDIF

            ! P/delta at F points
            ! (brackets added to fix the order of floating point operations for halo 1 - halo 2 compatibility)
            zp_delf = 0.25_wp * ( (zp_delt(ji,jj) + zp_delt(ji+1,jj)) + (zp_delt(ji,jj+1) + zp_delt(ji+1,jj+1)) )

            ! stress at F points (zkt/=0 if landfast)
            zs12(ji,jj)= ( zs12(ji,jj) * zalph2 + zp_delf * ( zds(ji,jj) * z1_ecc2 * (1._wp + zkt) ) * 0.5_wp ) &
Guillaume Samson's avatar
Guillaume Samson committed

         END_2D

         ! --- Ice internal stresses (Appendix C of Hunke and Dukowicz, 2002) --- !
         ! (brackets added to fix the order of floating point operations for halo 1 - halo 2 compatibility)
         DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            !                   !--- U points
            zfU(ji,jj) = 0.5_wp * ( (( zs1(ji+1,jj) - zs1(ji,jj) ) * e2u(ji,jj)                                             &
               &                  + ( zs2(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj) - zs2(ji,jj) * e2t(ji,jj) * e2t(ji,jj)    &
               &                    ) * r1_e2u(ji,jj))                                                                      &
               &                  + ( zs12(ji,jj) * e1f(ji,jj) * e1f(ji,jj) - zs12(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1)  &
               &                    ) * 2._wp * r1_e1u(ji,jj)                                                              &
               &                  ) * r1_e1e2u(ji,jj)
            !
            !                !--- V points
            zfV(ji,jj) = 0.5_wp * ( (( zs1(ji,jj+1) - zs1(ji,jj) ) * e1v(ji,jj)                                             &
               &                  - ( zs2(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1) - zs2(ji,jj) * e1t(ji,jj) * e1t(ji,jj)    &
               &                    ) * r1_e1v(ji,jj))                                                                      &
               &                  + ( zs12(ji,jj) * e2f(ji,jj) * e2f(ji,jj) - zs12(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj)  &
               &                    ) * 2._wp * r1_e2v(ji,jj)                                                              &
               &                  ) * r1_e1e2v(ji,jj)
            !
            !                !--- ice currents at U-V point
            v_iceU(ji,jj) = 0.25_wp * ( (v_ice(ji,jj) + v_ice(ji,jj-1)) + (v_ice(ji+1,jj) + v_ice(ji+1,jj-1)) ) * umask(ji,jj,1)
            u_iceV(ji,jj) = 0.25_wp * ( (u_ice(ji,jj) + u_ice(ji-1,jj)) + (u_ice(ji,jj+1) + u_ice(ji-1,jj+1)) ) * vmask(ji,jj,1)
            !
         END_2D
         !
         ! --- Computation of ice velocity --- !
         !  Bouillon et al. 2013 (eq 47-48) => unstable unless alpha, beta vary as in Kimmritz 2016 & 2017
         !  Bouillon et al. 2009 (eq 34-35) => stable
         IF( MOD(jter,2) == 0 ) THEN ! even iterations
            !
            DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
               !                 !--- tau_io/(v_oce - v_ice)
               zTauO = zaV(ji,jj) * zrhoco * SQRT( ( v_ice (ji,jj) - v_oce (ji,jj) ) * ( v_ice (ji,jj) - v_oce (ji,jj) )  &
                  &                              + ( u_iceV(ji,jj) - u_oceV(ji,jj) ) * ( u_iceV(ji,jj) - u_oceV(ji,jj) ) )
               !                 !--- Ocean-to-Ice stress
               ztauy_oi(ji,jj) = zTauO * ( v_oce(ji,jj) - v_ice(ji,jj) )
               !
               !                 !--- tau_bottom/v_ice
               zvel  = 5.e-05_wp + SQRT( v_ice(ji,jj) * v_ice(ji,jj) + u_iceV(ji,jj) * u_iceV(ji,jj) )
               zTauB = ztauy_base(ji,jj) / zvel
               !                 !--- OceanBottom-to-Ice stress
               ztauy_bi(ji,jj) = zTauB * v_ice(ji,jj)
               !
               !                 !--- Coriolis at V-points (energy conserving formulation)
               zCorV(ji,jj)  = - 0.25_wp * r1_e2v(ji,jj) *  &
                  &    ( zmf(ji,jj  ) * ( e2u(ji,jj  ) * u_ice(ji,jj  ) + e2u(ji-1,jj  ) * u_ice(ji-1,jj  ) )  &
                  &    + zmf(ji,jj+1) * ( e2u(ji,jj+1) * u_ice(ji,jj+1) + e2u(ji-1,jj+1) * u_ice(ji-1,jj+1) ) )
               !
               !                 !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
               zRHS = zfV(ji,jj) + ztauy_ai(ji,jj) + zCorV(ji,jj) + zspgV(ji,jj) + ztauy_oi(ji,jj)
               !
               !                 !--- landfast switch => 0 = static  friction : TauB > RHS & sign(TauB) /= sign(RHS)
               !                                         1 = sliding friction : TauB < RHS
               rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztauy_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
               !
               IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
                  zbetav = MAX( zbeta(ji,jj), zbeta(ji,jj+1) )
                  v_ice(ji,jj) = ( (          rswitch   * ( zmV_t(ji,jj) * ( zbetav * v_ice(ji,jj) + v_ice_b(ji,jj) )         & ! previous velocity
                     &                                    + zRHS + zTauO * v_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmV_t(ji,jj) * ( zbetav + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) * (  v_ice_b(ji,jj)                                                   &
                     &                                     + v_ice  (ji,jj) * MAX( 0._wp, zbetav - zdtevp * rn_lf_relax )     & ! static friction => slow decrease to v=0
                     &                                    ) / ( zbetav + 1._wp )                                              &
                     &             ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00y(ji,jj)
               ELSE               !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
                  v_ice(ji,jj) = ( (          rswitch   * ( zmV_t(ji,jj) * v_ice(ji,jj)                                       & ! previous velocity
                     &                                    + zRHS + zTauO * v_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmV_t(ji,jj) + zTauO - zTauB )                      & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) *   v_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax )         & ! static friction => slow decrease to v=0
                     &             ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &            )  * zmsk00y(ji,jj)
               ENDIF
            END_2D
            IF( nn_hls == 1 )   CALL lbc_lnk( 'icedyn_rhg_evp', v_ice, 'V', -1.0_wp )
            !
            DO_2D( 0, 0, 0, 0 )
               !                 !--- tau_io/(u_oce - u_ice)
               zTauO = zaU(ji,jj) * zrhoco * SQRT( ( u_ice (ji,jj) - u_oce (ji,jj) ) * ( u_ice (ji,jj) - u_oce (ji,jj) )  &
                  &                              + ( v_iceU(ji,jj) - v_oceU(ji,jj) ) * ( v_iceU(ji,jj) - v_oceU(ji,jj) ) )
               !                 !--- Ocean-to-Ice stress
               ztaux_oi(ji,jj) = zTauO * ( u_oce(ji,jj) - u_ice(ji,jj) )
               !
               !                 !--- tau_bottom/u_ice
               zvel  = 5.e-05_wp + SQRT( v_iceU(ji,jj) * v_iceU(ji,jj) + u_ice(ji,jj) * u_ice(ji,jj) )
               zTauB = ztaux_base(ji,jj) / zvel
               !                 !--- OceanBottom-to-Ice stress
               ztaux_bi(ji,jj) = zTauB * u_ice(ji,jj)
               !
               !                 !--- Coriolis at U-points (energy conserving formulation)
               zCorU(ji,jj)  =   0.25_wp * r1_e1u(ji,jj) *  &
                  &    ( zmf(ji  ,jj) * ( e1v(ji  ,jj) * v_ice(ji  ,jj) + e1v(ji  ,jj-1) * v_ice(ji  ,jj-1) )  &
                  &    + zmf(ji+1,jj) * ( e1v(ji+1,jj) * v_ice(ji+1,jj) + e1v(ji+1,jj-1) * v_ice(ji+1,jj-1) ) )
               !
               !                 !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
               zRHS = zfU(ji,jj) + ztaux_ai(ji,jj) + zCorU(ji,jj) + zspgU(ji,jj) + ztaux_oi(ji,jj)
               !
               !                 !--- landfast switch => 0 = static  friction : TauB > RHS & sign(TauB) /= sign(RHS)
               !                                         1 = sliding friction : TauB < RHS
               rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztaux_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
               !
               IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
                  zbetau = MAX( zbeta(ji,jj), zbeta(ji+1,jj) )
                  u_ice(ji,jj) = ( (          rswitch   * ( zmU_t(ji,jj) * ( zbetau * u_ice(ji,jj) + u_ice_b(ji,jj) )         & ! previous velocity
                     &                                    + zRHS + zTauO * u_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmU_t(ji,jj) * ( zbetau + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) * (  u_ice_b(ji,jj)                                                   &
                     &                                     + u_ice  (ji,jj) * MAX( 0._wp, zbetau - zdtevp * rn_lf_relax )     & ! static friction => slow decrease to v=0
                     &                                    ) / ( zbetau + 1._wp )                                              &
                     &             ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00x(ji,jj)
               ELSE               !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
                  u_ice(ji,jj) = ( (          rswitch   * ( zmU_t(ji,jj) * u_ice(ji,jj)                                       & ! previous velocity
                     &                                    + zRHS + zTauO * u_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmU_t(ji,jj) + zTauO - zTauB )                      & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) *   u_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax )         & ! static friction => slow decrease to v=0
                     &             ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00x(ji,jj)
               ENDIF
            END_2D
            IF( nn_hls == 1 ) THEN   ;   CALL lbc_lnk( 'icedyn_rhg_evp', u_ice, 'U', -1.0_wp )
            ELSE                     ;   CALL lbc_lnk( 'icedyn_rhg_evp', u_ice, 'U', -1.0_wp, v_ice, 'V', -1.0_wp )
            ENDIF
            !
         ELSE ! odd iterations
            !
            DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
               !                 !--- tau_io/(u_oce - u_ice)
               zTauO = zaU(ji,jj) * zrhoco * SQRT( ( u_ice (ji,jj) - u_oce (ji,jj) ) * ( u_ice (ji,jj) - u_oce (ji,jj) )  &
                  &                              + ( v_iceU(ji,jj) - v_oceU(ji,jj) ) * ( v_iceU(ji,jj) - v_oceU(ji,jj) ) )
               !                 !--- Ocean-to-Ice stress
               ztaux_oi(ji,jj) = zTauO * ( u_oce(ji,jj) - u_ice(ji,jj) )
               !
               !                 !--- tau_bottom/u_ice
               zvel  = 5.e-05_wp + SQRT( v_iceU(ji,jj) * v_iceU(ji,jj) + u_ice(ji,jj) * u_ice(ji,jj) )
               zTauB = ztaux_base(ji,jj) / zvel
               !                 !--- OceanBottom-to-Ice stress
               ztaux_bi(ji,jj) = zTauB * u_ice(ji,jj)
               !
               !                 !--- Coriolis at U-points (energy conserving formulation)
               zCorU(ji,jj)  =   0.25_wp * r1_e1u(ji,jj) *  &
                  &    ( zmf(ji  ,jj) * ( e1v(ji  ,jj) * v_ice(ji  ,jj) + e1v(ji  ,jj-1) * v_ice(ji  ,jj-1) )  &
                  &    + zmf(ji+1,jj) * ( e1v(ji+1,jj) * v_ice(ji+1,jj) + e1v(ji+1,jj-1) * v_ice(ji+1,jj-1) ) )
               !
               !                 !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
               zRHS = zfU(ji,jj) + ztaux_ai(ji,jj) + zCorU(ji,jj) + zspgU(ji,jj) + ztaux_oi(ji,jj)
               !
               !                 !--- landfast switch => 0 = static  friction : TauB > RHS & sign(TauB) /= sign(RHS)
               !                                         1 = sliding friction : TauB < RHS
               rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztaux_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
               !
               IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
                  zbetau = MAX( zbeta(ji,jj), zbeta(ji+1,jj) )
                  u_ice(ji,jj) = ( (          rswitch   * ( zmU_t(ji,jj) * ( zbetau * u_ice(ji,jj) + u_ice_b(ji,jj) )         & ! previous velocity
                     &                                    + zRHS + zTauO * u_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmU_t(ji,jj) * ( zbetau + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) * (  u_ice_b(ji,jj)                                                   &
                     &                                     + u_ice  (ji,jj) * MAX( 0._wp, zbetau - zdtevp * rn_lf_relax )     & ! static friction => slow decrease to v=0
                     &                                    ) / ( zbetau + 1._wp )                                              &
                     &             ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00x(ji,jj)
               ELSE               !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
                  u_ice(ji,jj) = ( (          rswitch   * ( zmU_t(ji,jj) * u_ice(ji,jj)                                       & ! previous velocity
                     &                                    + zRHS + zTauO * u_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmU_t(ji,jj) + zTauO - zTauB )                      & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) *   u_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax )         & ! static friction => slow decrease to v=0
                     &             ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00x(ji,jj)
               ENDIF
            END_2D
            IF( nn_hls == 1 )   CALL lbc_lnk( 'icedyn_rhg_evp', u_ice, 'U', -1.0_wp )
            !
            DO_2D( 0, 0, 0, 0 )
               !                 !--- tau_io/(v_oce - v_ice)
               zTauO = zaV(ji,jj) * zrhoco * SQRT( ( v_ice (ji,jj) - v_oce (ji,jj) ) * ( v_ice (ji,jj) - v_oce (ji,jj) )  &
                  &                              + ( u_iceV(ji,jj) - u_oceV(ji,jj) ) * ( u_iceV(ji,jj) - u_oceV(ji,jj) ) )
               !                 !--- Ocean-to-Ice stress
               ztauy_oi(ji,jj) = zTauO * ( v_oce(ji,jj) - v_ice(ji,jj) )
               !
               !                 !--- tau_bottom/v_ice
               zvel  = 5.e-05_wp + SQRT( v_ice(ji,jj) * v_ice(ji,jj) + u_iceV(ji,jj) * u_iceV(ji,jj) )
               zTauB = ztauy_base(ji,jj) / zvel
               !                 !--- OceanBottom-to-Ice stress
               ztauy_bi(ji,jj) = zTauB * v_ice(ji,jj)
               !
               !                 !--- Coriolis at v-points (energy conserving formulation)
               zCorV(ji,jj)  = - 0.25_wp * r1_e2v(ji,jj) *  &
                  &    ( zmf(ji,jj  ) * ( e2u(ji,jj  ) * u_ice(ji,jj  ) + e2u(ji-1,jj  ) * u_ice(ji-1,jj  ) )  &
                  &    + zmf(ji,jj+1) * ( e2u(ji,jj+1) * u_ice(ji,jj+1) + e2u(ji-1,jj+1) * u_ice(ji-1,jj+1) ) )
               !
               !                 !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
               zRHS = zfV(ji,jj) + ztauy_ai(ji,jj) + zCorV(ji,jj) + zspgV(ji,jj) + ztauy_oi(ji,jj)
               !
               !                 !--- landfast switch => 0 = static  friction : TauB > RHS & sign(TauB) /= sign(RHS)
               !                                         1 = sliding friction : TauB < RHS
               rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztauy_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
               !
               IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
                  zbetav = MAX( zbeta(ji,jj), zbeta(ji,jj+1) )
                  v_ice(ji,jj) = ( (          rswitch   * ( zmV_t(ji,jj) * ( zbetav * v_ice(ji,jj) + v_ice_b(ji,jj) )         & ! previous velocity
                     &                                    + zRHS + zTauO * v_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmV_t(ji,jj) * ( zbetav + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) * (  v_ice_b(ji,jj)                                                   &
                     &                                     + v_ice  (ji,jj) * MAX( 0._wp, zbetav - zdtevp * rn_lf_relax )     & ! static friction => slow decrease to v=0
                     &                                    ) / ( zbetav + 1._wp )                                              &
                     &             ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00y(ji,jj)
               ELSE               !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
                  v_ice(ji,jj) = ( (          rswitch   * ( zmV_t(ji,jj) * v_ice(ji,jj)                                       & ! previous velocity
                     &                                    + zRHS + zTauO * v_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmV_t(ji,jj) + zTauO - zTauB )                      & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) *   v_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax )         & ! static friction => slow decrease to v=0
                     &             ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00y(ji,jj)
               ENDIF
            END_2D
            IF( nn_hls == 1 ) THEN   ;   CALL lbc_lnk( 'icedyn_rhg_evp', v_ice, 'V', -1.0_wp )
            ELSE                     ;   CALL lbc_lnk( 'icedyn_rhg_evp', u_ice, 'U', -1.0_wp, v_ice, 'V', -1.0_wp )
            ENDIF
            !
         ENDIF
         !
#if defined key_agrif
!!       CALL agrif_interp_ice( 'U', jter, nn_nevp )
!!       CALL agrif_interp_ice( 'V', jter, nn_nevp )
         CALL agrif_interp_ice( 'U' )
         CALL agrif_interp_ice( 'V' )
#endif
         IF( ln_bdy )   CALL bdy_ice_dyn( 'U' )
         IF( ln_bdy )   CALL bdy_ice_dyn( 'V' )
         !
         ! convergence test
         IF( nn_rhg_chkcvg == 2 )   CALL rhg_cvg( kt, jter, nn_nevp, u_ice, v_ice, zu_ice, zv_ice, zmsk15 )
         !
         !
         ! --- change strength according to advected a_i and v_i (upstream for now) --- !
         IF( ll_advups .AND. ln_str_H79 ) THEN
            !
            IF( jter == 1 ) THEN                               ! init
               ALLOCATE( za_i_ups(jpi,jpj,jpl), zv_i_ups(jpi,jpj,jpl) )
               zdt_ups = rDt_ice / REAL( nn_nevp )
               za_i_ups(:,:,:) = a_i(:,:,:)
               zv_i_ups(:,:,:) = v_i(:,:,:)
            ELSE
               CALL lbc_lnk( 'icedyn_rhg_evp', za_i_ups, 'T', 1.0_wp, zv_i_ups, 'T', 1.0_wp )               
            ENDIF
            !
            CALL rhg_upstream( jter, zdt_ups, u_ice, v_ice, za_i_ups )   ! upstream advection: a_i
            CALL rhg_upstream( jter, zdt_ups, u_ice, v_ice, zv_i_ups )   ! upstream advection: v_i
            !
            DO_2D( 0, 0, 0, 0 )    ! strength
               strength(ji,jj) = rn_pstar * SUM( zv_i_ups(ji,jj,:) ) * EXP( -rn_crhg * ( 1._wp - SUM( za_i_ups(ji,jj,:) ) ) )
            END_2D
            !
            IF( jter == nn_nevp ) THEN
               DEALLOCATE( za_i_ups, zv_i_ups )
            ENDIF
         ENDIF
         !                                                ! ==================== !
      END DO                                              !  end loop over jter  !
      !                                                   ! ==================== !
      IF( ln_aEVP )   CALL iom_put( 'beta_evp' , zbeta )
      !
      IF( ll_advups .AND. ln_str_H79 )   CALL lbc_lnk( 'icedyn_rhg_evp', strength, 'T', 1.0_wp )
      !
      !------------------------------------------------------------------------------!
      ! 4) Recompute delta, shear and div (inputs for mechanical redistribution)
      !------------------------------------------------------------------------------!
      DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )

         ! shear at F points
         zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj)   &
            &         + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj)   &
            &         ) * r1_e1e2f(ji,jj) * fimask(ji,jj)

      END_2D

      DO_2D( 0, 0, 0, 0 )   ! no vector loop

         ! tension**2 at T points
         zdt  = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj)   &
            &   - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj)   &
            &   ) * r1_e1e2t(ji,jj)
         zdt2 = zdt * zdt

         zten_i(ji,jj) = zdt

         ! shear**2 at T points (doc eq. A16)
         zds2 = ( zds(ji,jj  ) * zds(ji,jj  ) * e1e2f(ji,jj  ) + zds(ji-1,jj  ) * zds(ji-1,jj  ) * e1e2f(ji-1,jj  )  &
            &   + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1)  &
            &   ) * 0.25_wp * r1_e1e2t(ji,jj)

         ! shear at T points
         pshear_i(ji,jj) = SQRT( zdt2 + zds2 ) * zmsk(ji,jj)
Guillaume Samson's avatar
Guillaume Samson committed

         ! divergence at T points
         pdivu_i(ji,jj) = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj)   &
            &             + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1)   &
Guillaume Samson's avatar
Guillaume Samson committed

         ! delta at T points
         zfac            = SQRT( pdivu_i(ji,jj) * pdivu_i(ji,jj) + ( zdt2 + zds2 ) * z1_ecc2 ) * zmsk(ji,jj) ! delta
Guillaume Samson's avatar
Guillaume Samson committed
         rswitch         = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zfac ) ) ! 0 if delta=0
         pdelta_i(ji,jj) = zfac + rn_creepl * rswitch ! delta+creepl

      END_2D
      CALL lbc_lnk( 'icedyn_rhg_evp', pshear_i, 'T', 1._wp, pdivu_i, 'T', 1._wp, pdelta_i, 'T', 1._wp, zten_i, 'T', 1._wp, &
         &                            zs1     , 'T', 1._wp, zs2    , 'T', 1._wp, zs12    , 'F', 1._wp )

      ! --- Store the stress tensor for the next time step --- !
      pstress1_i (:,:) = zs1 (:,:)
      pstress2_i (:,:) = zs2 (:,:)
      pstress12_i(:,:) = zs12(:,:)
      !

      !------------------------------------------------------------------------------!
      ! 5) diagnostics
      !------------------------------------------------------------------------------!
      ! --- ice-ocean, ice-atm. & ice-oceanbottom(landfast) stresses --- !
      IF(  iom_use('utau_oi') .OR. iom_use('vtau_oi') .OR. iom_use('utau_ai') .OR. iom_use('vtau_ai') .OR. &
         & iom_use('utau_bi') .OR. iom_use('vtau_bi') ) THEN
         !
         CALL lbc_lnk( 'icedyn_rhg_evp', ztaux_oi, 'U', -1.0_wp, ztauy_oi, 'V', -1.0_wp, &
            &                            ztaux_ai, 'U', -1.0_wp, ztauy_ai, 'V', -1.0_wp, &
            &                            ztaux_bi, 'U', -1.0_wp, ztauy_bi, 'V', -1.0_wp )
         !
         CALL iom_put( 'utau_oi' , ztaux_oi * zmsk00 )
         CALL iom_put( 'vtau_oi' , ztauy_oi * zmsk00 )
         CALL iom_put( 'utau_ai' , ztaux_ai * zmsk00 )
         CALL iom_put( 'vtau_ai' , ztauy_ai * zmsk00 )
         CALL iom_put( 'utau_bi' , ztaux_bi * zmsk00 )
         CALL iom_put( 'vtau_bi' , ztauy_bi * zmsk00 )
      ENDIF

      ! --- divergence, shear and strength --- !
      IF( iom_use('icediv') )   CALL iom_put( 'icediv' , pdivu_i  * zmsk00 )   ! divergence
      IF( iom_use('iceshe') )   CALL iom_put( 'iceshe' , pshear_i * zmsk00 )   ! shear
      IF( iom_use('icestr') )   CALL iom_put( 'icestr' , strength * zmsk00 )   ! strength
      IF( iom_use('icedlt') )   CALL iom_put( 'icedlt' , pdelta_i * zmsk00 )   ! delta

      ! --- Stress tensor invariants (SIMIP diags) --- !
      IF( iom_use('normstr') .OR. iom_use('sheastr') ) THEN
         !
         ALLOCATE( zsig_I(jpi,jpj) , zsig_II(jpi,jpj) )
         !
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )

            ! Ice stresses
            ! sigma1, sigma2, sigma12 are some useful recombination of the stresses (Hunke and Dukowicz MWR 2002, Bouillon et al., OM2013)
            ! These are NOT stress tensor components, neither stress invariants, neither stress principal components
            ! I know, this can be confusing...
            zfac             =   strength(ji,jj) / ( pdelta_i(ji,jj) + rn_creepl )
            zsig1            =   zfac * ( pdivu_i(ji,jj) - pdelta_i(ji,jj) )
            zsig2            =   zfac * z1_ecc2 * zten_i(ji,jj)
            zsig12           =   zfac * z1_ecc2 * pshear_i(ji,jj)

            ! Stress invariants (sigma_I, sigma_II, Coon 1974, Feltham 2008)
            zsig_I (ji,jj)   =   zsig1 * 0.5_wp                                      ! 1st stress invariant, aka average normal stress, aka negative pressure
            zsig_II(ji,jj)   =   SQRT ( zsig2 * zsig2 * 0.25_wp + zsig12 * zsig12 )  ! 2nd  ''       ''    , aka maximum shear stress

         END_2D
         !
         ! Stress tensor invariants (normal and shear stress N/m) - SIMIP diags - definitions following Coon (1974) and Feltham (2008)
         IF( iom_use('normstr') )   CALL iom_put( 'normstr', zsig_I (:,:) * zmsk00(:,:) ) ! Normal stress
         IF( iom_use('sheastr') )   CALL iom_put( 'sheastr', zsig_II(:,:) * zmsk00(:,:) ) ! Maximum shear stress

         DEALLOCATE ( zsig_I, zsig_II )

      ENDIF

      ! --- Normalized stress tensor principal components --- !
      ! This are used to plot the normalized yield curve, see Lemieux & Dupont, 2020
      ! Recommendation 1 : we use ice strength, not replacement pressure
      ! Recommendation 2 : need to use deformations at PREVIOUS iterate for viscosities
      IF( iom_use('sig1_pnorm') .OR. iom_use('sig2_pnorm') ) THEN
         !
         ALLOCATE( zsig1_p(jpi,jpj) , zsig2_p(jpi,jpj) , zsig_I(jpi,jpj) , zsig_II(jpi,jpj) )
         !
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )

            ! Ice stresses computed with **viscosities** (delta, p/delta) at **previous** iterates
            !                        and **deformations** at current iterates
            !                        following Lemieux & Dupont (2020)
            zfac             =   zp_delt(ji,jj)
            zsig1            =   zfac * ( pdivu_i(ji,jj) - ( zdelta(ji,jj) + rn_creepl ) )
            zsig2            =   zfac * z1_ecc2 * zten_i(ji,jj)
            zsig12           =   zfac * z1_ecc2 * pshear_i(ji,jj)

            ! Stress invariants (sigma_I, sigma_II, Coon 1974, Feltham 2008), T-point
            zsig_I(ji,jj)    =   zsig1 * 0.5_wp                                       ! 1st stress invariant, aka average normal stress, aka negative pressure
            zsig_II(ji,jj)   =   SQRT ( zsig2 * zsig2 * 0.25_wp + zsig12 * zsig12 )   ! 2nd  ''       ''    , aka maximum shear stress

            ! Normalized  principal stresses (used to display the ellipse)
            z1_strength      =   1._wp / MAX( 1._wp, strength(ji,jj) )
            zsig1_p(ji,jj)   =   ( zsig_I(ji,jj) + zsig_II(ji,jj) ) * z1_strength
            zsig2_p(ji,jj)   =   ( zsig_I(ji,jj) - zsig_II(ji,jj) ) * z1_strength
         END_2D
         !
         CALL iom_put( 'sig1_pnorm' , zsig1_p * zmsk00 )
         CALL iom_put( 'sig2_pnorm' , zsig2_p * zmsk00 )
Guillaume Samson's avatar
Guillaume Samson committed

         DEALLOCATE( zsig1_p , zsig2_p , zsig_I, zsig_II )

      ENDIF

      ! --- SIMIP --- !
      IF(  iom_use('dssh_dx') .OR. iom_use('dssh_dy') .OR. &
         & iom_use('corstrx') .OR. iom_use('corstry') .OR. iom_use('intstrx') .OR. iom_use('intstry') ) THEN
         !
         CALL lbc_lnk( 'icedyn_rhg_evp', zspgU, 'U', -1.0_wp, zspgV, 'V', -1.0_wp, &
            &                            zCorU, 'U', -1.0_wp, zCorV, 'V', -1.0_wp, zfU, 'U', -1.0_wp, zfV, 'V', -1.0_wp )

         CALL iom_put( 'dssh_dx' , zspgU * zmsk00 )   ! Sea-surface tilt term in force balance (x)
         CALL iom_put( 'dssh_dy' , zspgV * zmsk00 )   ! Sea-surface tilt term in force balance (y)
         CALL iom_put( 'corstrx' , zCorU * zmsk00 )   ! Coriolis force term in force balance (x)
         CALL iom_put( 'corstry' , zCorV * zmsk00 )   ! Coriolis force term in force balance (y)
         CALL iom_put( 'intstrx' , zfU   * zmsk00 )   ! Internal force term in force balance (x)
         CALL iom_put( 'intstry' , zfV   * zmsk00 )   ! Internal force term in force balance (y)
      ENDIF

      IF(  iom_use('xmtrpice') .OR. iom_use('ymtrpice') .OR. &
         & iom_use('xmtrpsnw') .OR. iom_use('ymtrpsnw') .OR. iom_use('xatrp') .OR. iom_use('yatrp') ) THEN
         !
         ALLOCATE( zdiag_xmtrp_ice(jpi,jpj) , zdiag_ymtrp_ice(jpi,jpj) , &
            &      zdiag_xmtrp_snw(jpi,jpj) , zdiag_ymtrp_snw(jpi,jpj) , zdiag_xatrp(jpi,jpj) , zdiag_yatrp(jpi,jpj) )
         !
         DO_2D( 0, 0, 0, 0 )
            ! 2D ice mass, snow mass, area transport arrays (X, Y)
            zfac_x = 0.5 * u_ice(ji,jj) * e2u(ji,jj) * zmsk00(ji,jj)
            zfac_y = 0.5 * v_ice(ji,jj) * e1v(ji,jj) * zmsk00(ji,jj)

            zdiag_xmtrp_ice(ji,jj) = rhoi * zfac_x * ( vt_i(ji+1,jj) + vt_i(ji,jj) ) ! ice mass transport, X-component
            zdiag_ymtrp_ice(ji,jj) = rhoi * zfac_y * ( vt_i(ji,jj+1) + vt_i(ji,jj) ) !        ''           Y-   ''

            zdiag_xmtrp_snw(ji,jj) = rhos * zfac_x * ( vt_s(ji+1,jj) + vt_s(ji,jj) ) ! snow mass transport, X-component
            zdiag_ymtrp_snw(ji,jj) = rhos * zfac_y * ( vt_s(ji,jj+1) + vt_s(ji,jj) ) !          ''          Y-   ''

            zdiag_xatrp(ji,jj)     = zfac_x * ( at_i(ji+1,jj) + at_i(ji,jj) )        ! area transport,      X-component
            zdiag_yatrp(ji,jj)     = zfac_y * ( at_i(ji,jj+1) + at_i(ji,jj) )        !        ''            Y-   ''

         END_2D

         CALL lbc_lnk( 'icedyn_rhg_evp', zdiag_xmtrp_ice, 'U', -1.0_wp, zdiag_ymtrp_ice, 'V', -1.0_wp, &
            &                            zdiag_xmtrp_snw, 'U', -1.0_wp, zdiag_ymtrp_snw, 'V', -1.0_wp, &
            &                            zdiag_xatrp    , 'U', -1.0_wp, zdiag_yatrp    , 'V', -1.0_wp )

         CALL iom_put( 'xmtrpice' , zdiag_xmtrp_ice )   ! X-component of sea-ice mass transport (kg/s)
         CALL iom_put( 'ymtrpice' , zdiag_ymtrp_ice )   ! Y-component of sea-ice mass transport
         CALL iom_put( 'xmtrpsnw' , zdiag_xmtrp_snw )   ! X-component of snow mass transport (kg/s)
         CALL iom_put( 'ymtrpsnw' , zdiag_ymtrp_snw )   ! Y-component of snow mass transport
         CALL iom_put( 'xatrp'    , zdiag_xatrp     )   ! X-component of ice area transport
         CALL iom_put( 'yatrp'    , zdiag_yatrp     )   ! Y-component of ice area transport

         DEALLOCATE( zdiag_xmtrp_ice , zdiag_ymtrp_ice , &
            &        zdiag_xmtrp_snw , zdiag_ymtrp_snw , zdiag_xatrp , zdiag_yatrp )

      ENDIF
      !
      ! --- convergence tests --- !
      IF( nn_rhg_chkcvg == 1 .OR. nn_rhg_chkcvg == 2 ) THEN
         IF( iom_use('uice_cvg') ) THEN
            IF( ln_aEVP ) THEN   ! output: beta * ( u(t=nn_nevp) - u(t=nn_nevp-1) )
               CALL iom_put( 'uice_cvg', MAX( ABS( u_ice(:,:) - zu_ice(:,:) ) * zbeta(:,:) * umask(:,:,1) , &
                  &                           ABS( v_ice(:,:) - zv_ice(:,:) ) * zbeta(:,:) * vmask(:,:,1) ) * zmsk15(:,:) )
            ELSE                 ! output: nn_nevp * ( u(t=nn_nevp) - u(t=nn_nevp-1) )
               CALL iom_put( 'uice_cvg', REAL( nn_nevp ) * MAX( ABS( u_ice(:,:) - zu_ice(:,:) ) * umask(:,:,1) , &
                  &                                             ABS( v_ice(:,:) - zv_ice(:,:) ) * vmask(:,:,1) ) * zmsk15(:,:) )
            ENDIF
         ENDIF
      ENDIF
      !
   END SUBROUTINE ice_dyn_rhg_evp


   SUBROUTINE rhg_cvg( kt, kiter, kitermax, pu, pv, pub, pvb, pmsk15 )
      !!----------------------------------------------------------------------
      !!                    ***  ROUTINE rhg_cvg  ***
      !!
      !! ** Purpose :   check convergence of oce rheology
      !!
      !! ** Method  :   create a file ice_cvg.nc containing the convergence of ice velocity
      !!                during the sub timestepping of rheology so as:
      !!                  uice_cvg = MAX( u(t+1) - u(t) , v(t+1) - v(t) )
      !!                This routine is called every sub-iteration, so it is cpu expensive
      !!
      !! ** Note    :   for the first sub-iteration, uice_cvg is set to 0 (too large otherwise)
      !!----------------------------------------------------------------------
      INTEGER ,                 INTENT(in) ::   kt, kiter, kitermax       ! ocean time-step index
      REAL(wp), DIMENSION(:,:), INTENT(in) ::   pu, pv, pub, pvb          ! now and before velocities
      REAL(wp), DIMENSION(:,:), INTENT(in) ::   pmsk15
      !!
      INTEGER           ::   it, idtime, istatus
      INTEGER           ::   ji, jj          ! dummy loop indices
      REAL(wp)          ::   zresm           ! local real
      CHARACTER(len=20) ::   clname
      LOGICAL           ::   ll_maxcvg
      REAL(wp), DIMENSION(jpi,jpj,2) ::   zres
      REAL(wp), DIMENSION(2)         ::   ztmp
      !!----------------------------------------------------------------------
      ll_maxcvg = .FALSE.
      !
      ! create file
      IF( kt == nit000 .AND. kiter == 1 ) THEN
         !
         IF( lwp ) THEN
            WRITE(numout,*)
            WRITE(numout,*) 'rhg_cvg : ice rheology convergence control'
            WRITE(numout,*) '~~~~~~~'
         ENDIF
         !
         IF( lwm ) THEN
            clname = 'ice_cvg.nc'
            IF( .NOT. Agrif_Root() )   clname = TRIM(Agrif_CFixed())//"_"//TRIM(clname)
            istatus = NF90_CREATE( TRIM(clname), NF90_CLOBBER, ncvgid )
            istatus = NF90_DEF_DIM( ncvgid, 'time'  , NF90_UNLIMITED, idtime )
            istatus = NF90_DEF_VAR( ncvgid, 'uice_cvg', NF90_DOUBLE , (/ idtime /), nvarid )
            istatus = NF90_ENDDEF(ncvgid)
         ENDIF
         !
      ENDIF

      ! time
      it = ( kt - nit000 ) * kitermax + kiter

      ! convergence
      IF( kiter == 1 ) THEN ! remove the first iteration for calculations of convergence (always very large)
         zresm = 0._wp
      ELSE
         zresm = 0._wp
         IF( ll_maxcvg ) THEN   ! error max over the domain
            DO_2D( 0, 0, 0, 0 )
               zresm = MAX( zresm, MAX( ABS( pu(ji,jj) - pub(ji,jj) ) * umask(ji,jj,1), &
                  &                     ABS( pv(ji,jj) - pvb(ji,jj) ) * vmask(ji,jj,1) ) * pmsk15(ji,jj) )
            END_2D
            CALL mpp_max( 'icedyn_rhg_evp', zresm )
         ELSE                   ! error averaged over the domain
            DO_2D( 0, 0, 0, 0 )
               zres(ji,jj,1) = MAX( ABS( pu(ji,jj) - pub(ji,jj) ) * umask(ji,jj,1), &
                  &                 ABS( pv(ji,jj) - pvb(ji,jj) ) * vmask(ji,jj,1) ) * pmsk15(ji,jj)
               zres(ji,jj,2) = pmsk15(ji,jj)
            END_2D