Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
MODULE sedchem
!!======================================================================
!! *** Module sedchem ***
!! sediment : Variable for chemistry of the CO2 cycle
!!======================================================================
!! modules used
USE par_sed, ONLY : jpksed
USE sed ! sediment global variable
USE sedarr
USE eosbn2, ONLY : neos
USE lib_mpp ! distribued memory computing library
IMPLICIT NONE
PRIVATE
!! * Accessibility
PUBLIC sed_chem
PUBLIC ahini_for_at_sed !
PUBLIC solve_at_general_sed !
! Maximum number of iterations for each method
INTEGER, PARAMETER :: jp_maxniter_atgen = 20
REAL(wp), PARAMETER :: pp_rdel_ah_target = 1.E-4_wp
!! * Substitutions
# include "do_loop_substitute.h90"
!! * Module variables
REAL(wp) :: &
calcon = 1.03E-2 ! mean calcite concentration [Ca2+] in sea water [mole/kg solution]
REAL(wp) :: rgas = 83.14472 ! universal gas constants
! coeff. for density of sea water (Millero & Poisson 1981)
REAL(wp), DIMENSION(5) :: Adsw
DATA Adsw/8.24493E-1, -4.0899E-3, 7.6438E-5 , -8.246E-7, 5.3875E-9 /
REAL(wp), DIMENSION(3) :: Bdsw
DATA Bdsw / -5.72466E-3, 1.0227E-4, -1.6546E-6 /
REAL(wp) :: Cdsw = 4.8314E-4
REAL(wp), DIMENSION(6) :: Ddsw
DATA Ddsw / 999.842594 , 6.793952E-2 , -9.095290E-3, 1.001685E-4, -1.120083E-6, 6.536332E-9/
REAL(wp) :: devk10 = -25.5
REAL(wp) :: devk11 = -15.82
REAL(wp) :: devk12 = -29.48
REAL(wp) :: devk13 = -20.02
REAL(wp) :: devk14 = -18.03
REAL(wp) :: devk15 = -9.78
REAL(wp) :: devk16 = -48.76
REAL(wp) :: devk17 = -14.51
REAL(wp) :: devk18 = -23.12
REAL(wp) :: devk19 = -26.57
REAL(wp) :: devk110 = -29.48
!
REAL(wp) :: devk20 = 0.1271
REAL(wp) :: devk21 = -0.0219
REAL(wp) :: devk22 = 0.1622
REAL(wp) :: devk23 = 0.1119
REAL(wp) :: devk24 = 0.0466
REAL(wp) :: devk25 = -0.0090
REAL(wp) :: devk26 = 0.5304
REAL(wp) :: devk27 = 0.1211
REAL(wp) :: devk28 = 0.1758
REAL(wp) :: devk29 = 0.2020
REAL(wp) :: devk210 = 0.1622
!
REAL(wp) :: devk30 = 0.
REAL(wp) :: devk31 = 0.
REAL(wp) :: devk32 = 2.608E-3
REAL(wp) :: devk33 = -1.409e-3
REAL(wp) :: devk34 = 0.316e-3
REAL(wp) :: devk35 = -0.942e-3
REAL(wp) :: devk36 = 0.
REAL(wp) :: devk37 = -0.321e-3
REAL(wp) :: devk38 = -2.647e-3
REAL(wp) :: devk39 = -3.042e-3
REAL(wp) :: devk310 = -2.6080e-3
!
REAL(wp) :: devk40 = -3.08E-3
REAL(wp) :: devk41 = 1.13E-3
REAL(wp) :: devk42 = -2.84E-3
REAL(wp) :: devk43 = -5.13E-3
REAL(wp) :: devk44 = -4.53e-3
REAL(wp) :: devk45 = -3.91e-3
REAL(wp) :: devk46 = -11.76e-3
REAL(wp) :: devk47 = -2.67e-3
REAL(wp) :: devk48 = -5.15e-3
REAL(wp) :: devk49 = -4.08e-3
REAL(wp) :: devk410 = -2.84e-3
!
REAL(wp) :: devk50 = 0.0877E-3
REAL(wp) :: devk51 = -0.1475E-3
REAL(wp) :: devk52 = 0.
REAL(wp) :: devk53 = 0.0794E-3
REAL(wp) :: devk54 = 0.09e-3
REAL(wp) :: devk55 = 0.054e-3
REAL(wp) :: devk56 = 0.3692E-3
REAL(wp) :: devk57 = 0.0427e-3
REAL(wp) :: devk58 = 0.09e-3
REAL(wp) :: devk59 = 0.0714e-3
REAL(wp) :: devk510 = 0.0
!! $Id: sedchem.F90 15450 2021-10-27 14:32:08Z cetlod $
CONTAINS
SUBROUTINE sed_chem( kt )
!!----------------------------------------------------------------------
!! *** ROUTINE sed_chem ***
!!
!! ** Purpose : set chemical constants
!!
!! History :
!! ! 04-10 (N. Emprin, M. Gehlen ) Original code
!! ! 06-04 (C. Ethe) Re-organization
!!----------------------------------------------------------------------
!!* Arguments
INTEGER, INTENT(in) :: kt ! time step
INTEGER :: ji, jj, ikt
REAL(wp) :: ztc, ztc2
REAL(wp) :: zsal, zsal15
REAL(wp) :: zdens0, zaw, zbw, zcw
REAL(wp), DIMENSION(jpi,jpj,15) :: zchem_data
!!----------------------------------------------------------------------
IF( ln_timing ) CALL timing_start('sed_chem')
IF (lwp) WRITE(numsed,*) ' Getting Chemical constants from tracer model at time kt = ', kt
IF (lwp) WRITE(numsed,*) ' '
! reading variables
zchem_data(:,:,:) = rtrn
IF (ln_sediment_offline) THEN
CALL sed_chem_cst
ELSE
DO_2D( 0, 0, 0, 0 )
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
ikt = mbkt(ji,jj)
IF ( tmask(ji,jj,ikt) == 1 ) THEN
zchem_data(ji,jj,1) = ak13 (ji,jj,ikt)
zchem_data(ji,jj,2) = ak23 (ji,jj,ikt)
zchem_data(ji,jj,3) = akb3 (ji,jj,ikt)
zchem_data(ji,jj,4) = akw3 (ji,jj,ikt)
zchem_data(ji,jj,5) = aksp (ji,jj,ikt)
zchem_data(ji,jj,6) = borat (ji,jj,ikt)
zchem_data(ji,jj,7) = ak1p3 (ji,jj,ikt)
zchem_data(ji,jj,8) = ak2p3 (ji,jj,ikt)
zchem_data(ji,jj,9) = ak3p3 (ji,jj,ikt)
zchem_data(ji,jj,10)= aksi3 (ji,jj,ikt)
zchem_data(ji,jj,11)= sio3eq(ji,jj,ikt)
zchem_data(ji,jj,12)= aks3 (ji,jj,ikt)
zchem_data(ji,jj,13)= akf3 (ji,jj,ikt)
zchem_data(ji,jj,14)= sulfat(ji,jj,ikt)
zchem_data(ji,jj,15)= fluorid(ji,jj,ikt)
ENDIF
END_2D
CALL pack_arr ( jpoce, ak1s (1:jpoce), zchem_data(1:jpi,1:jpj,1) , iarroce(1:jpoce) )
CALL pack_arr ( jpoce, ak2s (1:jpoce), zchem_data(1:jpi,1:jpj,2) , iarroce(1:jpoce) )
CALL pack_arr ( jpoce, akbs (1:jpoce), zchem_data(1:jpi,1:jpj,3) , iarroce(1:jpoce) )
CALL pack_arr ( jpoce, akws (1:jpoce), zchem_data(1:jpi,1:jpj,4) , iarroce(1:jpoce) )
CALL pack_arr ( jpoce, aksps (1:jpoce), zchem_data(1:jpi,1:jpj,5) , iarroce(1:jpoce) )
CALL pack_arr ( jpoce, borats(1:jpoce), zchem_data(1:jpi,1:jpj,6) , iarroce(1:jpoce) )
CALL pack_arr ( jpoce, ak1ps (1:jpoce), zchem_data(1:jpi,1:jpj,7) , iarroce(1:jpoce) )
CALL pack_arr ( jpoce, ak2ps (1:jpoce), zchem_data(1:jpi,1:jpj,8) , iarroce(1:jpoce) )
CALL pack_arr ( jpoce, ak3ps (1:jpoce), zchem_data(1:jpi,1:jpj,9) , iarroce(1:jpoce) )
CALL pack_arr ( jpoce, aksis (1:jpoce), zchem_data(1:jpi,1:jpj,10), iarroce(1:jpoce) )
CALL pack_arr ( jpoce, sieqs (1:jpoce), zchem_data(1:jpi,1:jpj,11), iarroce(1:jpoce) )
CALL pack_arr ( jpoce, aks3s (1:jpoce), zchem_data(1:jpi,1:jpj,12), iarroce(1:jpoce) )
CALL pack_arr ( jpoce, akf3s (1:jpoce), zchem_data(1:jpi,1:jpj,13), iarroce(1:jpoce) )
CALL pack_arr ( jpoce, sulfats(1:jpoce), zchem_data(1:jpi,1:jpj,14), iarroce(1:jpoce) )
CALL pack_arr ( jpoce, fluorids(1:jpoce), zchem_data(1:jpi,1:jpj,15), iarroce(1:jpoce) )
ENDIF
DO ji = 1, jpoce
ztc = temp(ji)
ztc2 = ztc * ztc
! zqtt = ztkel * 0.01
zsal = salt(ji)
zsal15 = SQRT( zsal ) * zsal
! Density of Sea Water - F(temp,sal) [kg/m3]
zdens0 = Ddsw(1) + Ddsw(2) * ztc + Ddsw(3) * ztc2 &
+ Ddsw(4) * ztc * ztc2 + Ddsw(5) * ztc2 * ztc2 &
+ Ddsw(6) * ztc * ztc2 * ztc2
zaw = Adsw(1) + Adsw(2) * ztc + Adsw(3)* ztc2 + Adsw(4) * ztc * ztc2 &
+ Adsw(5) * ztc2 * ztc2
zbw = Bdsw(1) + Bdsw(2) * ztc + Bdsw(3) * ztc2
zcw = Cdsw
densSW(ji) = zdens0 + zaw * zsal + zbw * zsal15 + zcw * zsal * zsal
densSW(ji) = densSW(ji) * 1E-3 ! to get dens in [kg/l]
ak12s (ji) = ak1s (ji) * ak2s (ji)
ak12ps (ji) = ak1ps(ji) * ak2ps(ji)
ak123ps(ji) = ak1ps(ji) * ak2ps(ji) * ak3ps(ji)
calcon2(ji) = 0.01028 * ( salt(ji) / 35. ) * densSW(ji)
ENDDO
IF( ln_timing ) CALL timing_stop('sed_chem')
END SUBROUTINE sed_chem
SUBROUTINE ahini_for_at_sed(p_hini)
!!---------------------------------------------------------------------
!! *** ROUTINE ahini_for_at ***
!!
!! Subroutine returns the root for the 2nd order approximation of the
!! DIC -- B_T -- A_CB equation for [H+] (reformulated as a cubic
!! polynomial) around the local minimum, if it exists.
!! Returns * 1E-03_wp if p_alkcb <= 0
!! * 1E-10_wp if p_alkcb >= 2*p_dictot + p_bortot
!! * 1E-07_wp if 0 < p_alkcb < 2*p_dictot + p_bortot
!! and the 2nd order approximation does not have
!! a solution
!!---------------------------------------------------------------------
REAL(wp), DIMENSION(jpoce,jpksed), INTENT(OUT) :: p_hini
INTEGER :: ji, jk
REAL(wp) :: zca1, zba1
REAL(wp) :: zd, zsqrtd, zhmin
REAL(wp) :: za2, za1, za0
REAL(wp) :: p_dictot, p_bortot, p_alkcb
IF( ln_timing ) CALL timing_start('ahini_for_at_sed')
!
DO jk = 1, jpksed
DO ji = 1, jpoce
p_alkcb = pwcp(ji,jk,jwalk) / densSW(ji)
p_dictot = pwcp(ji,jk,jwdic) / densSW(ji)
p_bortot = borats(ji) / densSW(ji)
IF (p_alkcb <= 0.) THEN
p_hini(ji,jk) = 1.e-3
ELSEIF (p_alkcb >= (2.*p_dictot + p_bortot)) THEN
p_hini(ji,jk) = 1.e-10_wp
ELSE
zca1 = p_dictot/( p_alkcb + rtrn )
zba1 = p_bortot/ (p_alkcb + rtrn )
! Coefficients of the cubic polynomial
za2 = aKbs(ji)*(1. - zba1) + ak1s(ji)*(1.-zca1)
za1 = ak1s(ji)*akbs(ji)*(1. - zba1 - zca1) &
& + ak1s(ji)*ak2s(ji)*(1. - (zca1+zca1))
za0 = ak1s(ji)*ak2s(ji)*akbs(ji)*(1. - zba1 - (zca1+zca1))
! Taylor expansion around the minimum
zd = za2*za2 - 3.*za1 ! Discriminant of the quadratic equation
! for the minimum close to the root
IF(zd > 0.) THEN ! If the discriminant is positive
zsqrtd = SQRT(zd)
IF(za2 < 0) THEN
zhmin = (-za2 + zsqrtd)/3.
ELSE
zhmin = -za1/(za2 + zsqrtd)
ENDIF
p_hini(ji,jk) = zhmin + SQRT(-(za0 + zhmin*(za1 + zhmin*(za2 + zhmin)))/zsqrtd)
ELSE
p_hini(ji,jk) = 1.e-7
ENDIF
!
ENDIF
END DO
END DO
!
IF( ln_timing ) CALL timing_stop('ahini_for_at_sed')
!
END SUBROUTINE ahini_for_at_sed
!===============================================================================
SUBROUTINE anw_infsup_sed( p_alknw_inf, p_alknw_sup )
! Subroutine returns the lower and upper bounds of "non-water-selfionization"
! contributions to total alkalinity (the infimum and the supremum), i.e
! inf(TA - [OH-] + [H+]) and sup(TA - [OH-] + [H+])
! Argument variables
INTEGER :: jk
REAL(wp), DIMENSION(jpoce,jpksed), INTENT(OUT) :: p_alknw_inf
REAL(wp), DIMENSION(jpoce,jpksed), INTENT(OUT) :: p_alknw_sup
DO jk = 1, jpksed
p_alknw_inf(:,jk) = -pwcp(:,jk,jwpo4) / densSW(:)
p_alknw_sup(:,jk) = (2. * pwcp(:,jk,jwdic) + 2. * pwcp(:,jk,jwpo4) + pwcp(:,jk,jwsil) &
& + borats(:) ) / densSW(:)
END DO
END SUBROUTINE anw_infsup_sed
SUBROUTINE solve_at_general_sed( p_hini, zhi )
! Universal pH solver that converges from any given initial value,
! determines upper an lower bounds for the solution if required
! Argument variables
!--------------------
REAL(wp), DIMENSION(jpoce,jpksed), INTENT(IN) :: p_hini
REAL(wp), DIMENSION(jpoce,jpksed), INTENT(OUT) :: zhi
! Local variables
!-----------------
INTEGER :: ji, jk, jn
REAL(wp) :: zh_ini, zh, zh_prev, zh_lnfactor
REAL(wp) :: zdelta, zh_delta
REAL(wp) :: zeqn, zdeqndh, zalka
REAL(wp) :: aphscale
REAL(wp) :: znumer_dic, zdnumer_dic, zdenom_dic, zalk_dic, zdalk_dic
REAL(wp) :: znumer_bor, zdnumer_bor, zdenom_bor, zalk_bor, zdalk_bor
REAL(wp) :: znumer_po4, zdnumer_po4, zdenom_po4, zalk_po4, zdalk_po4
REAL(wp) :: znumer_sil, zdnumer_sil, zdenom_sil, zalk_sil, zdalk_sil
REAL(wp) :: znumer_so4, zdnumer_so4, zdenom_so4, zalk_so4, zdalk_so4
REAL(wp) :: znumer_flu, zdnumer_flu, zdenom_flu, zalk_flu, zdalk_flu
REAL(wp) :: zalk_wat, zdalk_wat
REAL(wp) :: zfact, p_alktot, zdic, zbot, zpt, zst, zft, zsit
LOGICAL :: l_exitnow
REAL(wp), PARAMETER :: pz_exp_threshold = 1.0
REAL(wp), DIMENSION(jpoce,jpksed) :: zalknw_inf, zalknw_sup, rmask, zh_min, zh_max, zeqn_absmin
IF( ln_timing ) CALL timing_start('solve_at_general_sed')
! Allocate temporary workspace
CALL anw_infsup_sed( zalknw_inf, zalknw_sup )
rmask(:,:) = 1.0
zhi(:,:) = 0.
! TOTAL H+ scale: conversion factor for Htot = aphscale * Hfree
DO jk = 1, jpksed
DO ji = 1, jpoce
IF (rmask(ji,jk) == 1.) THEN
p_alktot = pwcp(ji,jk,jwalk) / densSW(ji)
aphscale = 1. + sulfats(ji)/aks3s(ji)
zh_ini = p_hini(ji,jk)
zdelta = (p_alktot-zalknw_inf(ji,jk))**2 + 4.*akws(ji) / aphscale
IF(p_alktot >= zalknw_inf(ji,jk)) THEN
zh_min(ji,jk) = 2.*akws(ji) /( p_alktot-zalknw_inf(ji,jk) + SQRT(zdelta) )
ELSE
zh_min(ji,jk) = aphscale * (-(p_alktot-zalknw_inf(ji,jk)) + SQRT(zdelta) ) / 2.
ENDIF
zdelta = (p_alktot-zalknw_sup(ji,jk))**2 + 4.*akws(ji) / aphscale
IF(p_alktot <= zalknw_sup(ji,jk)) THEN
zh_max(ji,jk) = aphscale * (-(p_alktot-zalknw_sup(ji,jk)) + SQRT(zdelta) ) / 2.
ELSE
zh_max(ji,jk) = 2.*akws(ji) /( p_alktot-zalknw_sup(ji,jk) + SQRT(zdelta) )
ENDIF
zhi(ji,jk) = MAX(MIN(zh_max(ji,jk), zh_ini), zh_min(ji,jk))
ENDIF
END DO
END DO
zeqn_absmin(:,:) = HUGE(1._wp)
DO jn = 1, jp_maxniter_atgen
DO jk = 1, jpksed
DO ji = 1, jpoce
IF (rmask(ji,jk) == 1.) THEN
p_alktot = pwcp(ji,jk,jwalk) / densSW(ji)
zdic = pwcp(ji,jk,jwdic) / densSW(ji)
zbot = borats(ji) / densSW(ji)
zpt = pwcp(ji,jk,jwpo4) / densSW(ji)
zsit = pwcp(ji,jk,jwsil) / densSW(ji)
zst = sulfats(ji)
zft = fluorids(ji)
aphscale = 1. + sulfats(ji)/aks3s(ji)
zh = zhi(ji,jk)
zh_prev = zh
! H2CO3 - HCO3 - CO3 : n=2, m=0
znumer_dic = 2.*ak1s(ji)*ak2s(ji) + zh*ak1s(ji)
zdenom_dic = ak1s(ji)*ak2s(ji) + zh*(ak1s(ji) + zh)
zalk_dic = zdic * (znumer_dic/zdenom_dic)
zdnumer_dic = ak1s(ji)*ak1s(ji)*ak2s(ji) + zh &
*(4.*ak1s(ji)*ak2s(ji) + zh*ak1s(ji))
zdalk_dic = -zdic*(zdnumer_dic/zdenom_dic**2)
! B(OH)3 - B(OH)4 : n=1, m=0
znumer_bor = akbs(ji)
zdenom_bor = akbs(ji) + zh
zalk_bor = zbot * (znumer_bor/zdenom_bor)
zdnumer_bor = akbs(ji)
zdalk_bor = -zbot*(zdnumer_bor/zdenom_bor**2)
! H3PO4 - H2PO4 - HPO4 - PO4 : n=3, m=1
znumer_po4 = 3.*ak1ps(ji)*ak2ps(ji)*ak3ps(ji) &
& + zh*(2.*ak1ps(ji)*ak2ps(ji) + zh* ak1ps(ji))
zdenom_po4 = ak1ps(ji)*ak2ps(ji)*ak3ps(ji) &
& + zh*( ak1ps(ji)*ak2ps(ji) + zh*(ak1ps(ji) + zh))
zalk_po4 = zpt * (znumer_po4/zdenom_po4 - 1.) ! Zero level of H3PO4 = 1
zdnumer_po4 = ak1ps(ji)*ak2ps(ji)*ak1ps(ji)*ak2ps(ji)*ak3ps(ji) &
& + zh*(4.*ak1ps(ji)*ak1ps(ji)*ak2ps(ji)*ak3ps(ji) &
& + zh*(9.*ak1ps(ji)*ak2ps(ji)*ak3ps(ji) &
& + ak1ps(ji)*ak1ps(ji)*ak2ps(ji) &
& + zh*(4.*ak1ps(ji)*ak2ps(ji) + zh * ak1ps(ji) ) ) )
zdalk_po4 = -zpt * (zdnumer_po4/zdenom_po4**2)
! H4SiO4 - H3SiO4 : n=1, m=0
znumer_sil = aksis(ji)
zdenom_sil = aksis(ji) + zh
zalk_sil = zsit * (znumer_sil/zdenom_sil)
zdnumer_sil = aksis(ji)
zdalk_sil = -zsit * (zdnumer_sil/zdenom_sil**2)
! HSO4 - SO4 : n=1, m=1
aphscale = 1.0 + zst/aks3s(ji)
znumer_so4 = aks3s(ji) * aphscale
zdenom_so4 = aks3s(ji) * aphscale + zh
zalk_so4 = zst * (znumer_so4/zdenom_so4 - 1.)
zdnumer_so4 = aks3s(ji) * aphscale
zdalk_so4 = -zst * (zdnumer_so4/zdenom_so4**2)
! HF - F : n=1, m=1
znumer_flu = akf3s(ji)
zdenom_flu = akf3s(ji) + zh
zalk_flu = zft * (znumer_flu/zdenom_flu - 1.)
zdnumer_flu = akf3s(ji)
zdalk_flu = -zft * (zdnumer_flu/zdenom_flu**2)
! H2O - OH
zalk_wat = akws(ji)/zh - zh/aphscale
zdalk_wat = -akws(ji)/zh**2 - 1./aphscale
! CALCULATE [ALK]([CO3--], [HCO3-])
zeqn = zalk_dic + zalk_bor + zalk_po4 + zalk_sil &
& + zalk_so4 + zalk_flu &
& + zalk_wat - p_alktot
zalka = p_alktot - (zalk_bor + zalk_po4 + zalk_sil &
& + zalk_so4 + zalk_flu + zalk_wat)
zdeqndh = zdalk_dic + zdalk_bor + zdalk_po4 + zdalk_sil &
& + zdalk_so4 + zdalk_flu + zdalk_wat
! Adapt bracketing interval
IF(zeqn > 0._wp) THEN
zh_min(ji,jk) = zh_prev
ELSEIF(zeqn < 0._wp) THEN
zh_max(ji,jk) = zh_prev
ENDIF
IF(ABS(zeqn) >= 0.5_wp*zeqn_absmin(ji,jk)) THEN
! if the function evaluation at the current point is
! not decreasing faster than with a bisection step (at least linearly)
! in absolute value take one bisection step on [ph_min, ph_max]
! ph_new = (ph_min + ph_max)/2d0
!
! In terms of [H]_new:
! [H]_new = 10**(-ph_new)
! = 10**(-(ph_min + ph_max)/2d0)
! = SQRT(10**(-(ph_min + phmax)))
! = SQRT(zh_max * zh_min)
zh = SQRT(zh_max(ji,jk) * zh_min(ji,jk))
zh_lnfactor = (zh - zh_prev)/zh_prev ! Required to test convergence below
ELSE
! dzeqn/dpH = dzeqn/d[H] * d[H]/dpH
! = -zdeqndh * LOG(10) * [H]
! \Delta pH = -zeqn/(zdeqndh*d[H]/dpH) = zeqn/(zdeqndh*[H]*LOG(10))
!
! pH_new = pH_old + \deltapH
!
! [H]_new = 10**(-pH_new)
! = 10**(-pH_old - \Delta pH)
! = [H]_old * 10**(-zeqn/(zdeqndh*[H]_old*LOG(10)))
! = [H]_old * EXP(-LOG(10)*zeqn/(zdeqndh*[H]_old*LOG(10)))
! = [H]_old * EXP(-zeqn/(zdeqndh*[H]_old))
zh_lnfactor = -zeqn/(zdeqndh*zh_prev)
IF(ABS(zh_lnfactor) > pz_exp_threshold) THEN
zh = zh_prev*EXP(zh_lnfactor)
ELSE
zh_delta = zh_lnfactor*zh_prev
zh = zh_prev + zh_delta
ENDIF
IF( zh < zh_min(ji,jk) ) THEN
! if [H]_new < [H]_min
! i.e., if ph_new > ph_max then
! take one bisection step on [ph_prev, ph_max]
! ph_new = (ph_prev + ph_max)/2d0
! In terms of [H]_new:
! [H]_new = 10**(-ph_new)
! = 10**(-(ph_prev + ph_max)/2d0)
! = SQRT(10**(-(ph_prev + phmax)))
! = SQRT([H]_old*10**(-ph_max))
! = SQRT([H]_old * zh_min)
zh = SQRT(zh_prev * zh_min(ji,jk))
zh_lnfactor = (zh - zh_prev)/zh_prev ! Required to test convergence below
ENDIF
IF( zh > zh_max(ji,jk) ) THEN
! if [H]_new > [H]_max
! i.e., if ph_new < ph_min, then
! take one bisection step on [ph_min, ph_prev]
! ph_new = (ph_prev + ph_min)/2d0
! In terms of [H]_new:
! [H]_new = 10**(-ph_new)
! = 10**(-(ph_prev + ph_min)/2d0)
! = SQRT(10**(-(ph_prev + ph_min)))
! = SQRT([H]_old*10**(-ph_min))
! = SQRT([H]_old * zhmax)
zh = SQRT(zh_prev * zh_max(ji,jk))
zh_lnfactor = (zh - zh_prev)/zh_prev ! Required to test convergence below
ENDIF
ENDIF
zeqn_absmin(ji,jk) = MIN( ABS(zeqn), zeqn_absmin(ji,jk))
! Stop iterations once |\delta{[H]}/[H]| < rdel
! <=> |(zh - zh_prev)/zh_prev| = |EXP(-zeqn/(zdeqndh*zh_prev)) -1| < rdel
! |EXP(-zeqn/(zdeqndh*zh_prev)) -1| ~ |zeqn/(zdeqndh*zh_prev)|
! Alternatively:
! |\Delta pH| = |zeqn/(zdeqndh*zh_prev*LOG(10))|
! ~ 1/LOG(10) * |\Delta [H]|/[H]
! < 1/LOG(10) * rdel
! Hence |zeqn/(zdeqndh*zh)| < rdel
! rdel <-- pp_rdel_ah_target
l_exitnow = (ABS(zh_lnfactor) < pp_rdel_ah_target)
IF(l_exitnow) THEN
rmask(ji,jk) = 0.
ENDIF
zhi(ji,jk) = zh
IF(jn >= jp_maxniter_atgen) THEN
zhi(ji,jk) = -1._wp
ENDIF
ENDIF
END DO
END DO
END DO
!
IF( ln_timing ) CALL timing_stop('solve_at_general_sed')
END SUBROUTINE solve_at_general_sed
SUBROUTINE sed_chem_cst
!!---------------------------------------------------------------------
!! *** ROUTINE sed_chem_cst ***
!!
!! ** Purpose : Sea water chemistry computed following MOCSY protocol
!! Computation is done at the bottom of the ocean only
!!
!! ** Method : - ...
!!---------------------------------------------------------------------
INTEGER :: ji
REAL(wp), DIMENSION(jpoce) :: saltprac, temps
REAL(wp) :: ztkel, ztkel1, zt , zsal , zsal2 , zbuf1 , zbuf2
REAL(wp) :: ztgg , ztgg2, ztgg3 , ztgg4 , ztgg5
REAL(wp) :: zpres, ztc , zcl , zcpexp, zoxy , zcpexp2
REAL(wp) :: zsqrt, ztr , zlogt , zcek1, zc1, zplat
REAL(wp) :: zis , zis2 , zsal15, zisqrt, za1, za2
REAL(wp) :: zckb , zck1 , zck2 , zckw , zak1 , zak2 , zakb , zaksp0, zakw
REAL(wp) :: zck1p, zck2p, zck3p, zcksi, zak1p, zak2p, zak3p, zaksi
REAL(wp) :: zst , zft , zcks , zckf , zaksp1
REAL(wp) :: total2free, free2SWS, total2SWS, SWS2total
!!---------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('sed_chem_cst')
!
! Computation of chemical constants require practical salinity
! Thus, when TEOS08 is used, absolute salinity is converted to
! practical salinity
! -------------------------------------------------------------
IF (neos == -1) THEN
saltprac(:) = salt(:) * 35.0 / 35.16504
ELSE
saltprac(:) = salt(:)
ENDIF
!
! Computations of chemical constants require in situ temperature
! Here a quite simple formulation is used to convert
! potential temperature to in situ temperature. The errors is less than
! 0.04°C relative to an exact computation
! ---------------------------------------------------------------------
DO ji = 1, jpoce
zpres = zkbot(ji) / 1000.
za1 = 0.04 * ( 1.0 + 0.185 * temp(ji) + 0.035 * (saltprac(ji) - 35.0) )
za2 = 0.0075 * ( 1.0 - temp(ji) / 30.0 )
temps(ji) = temp(ji) - za1 * zpres + za2 * zpres**2
END DO
! CHEMICAL CONSTANTS - DEEP OCEAN
! -------------------------------
DO ji = 1, jpoce
! SET PRESSION ACCORDING TO SAUNDER (1980)
zc1 = 5.92E-3
zpres = ((1-zc1)-SQRT(((1-zc1)**2)-(8.84E-6*zkbot(ji)))) / 4.42E-6
zpres = zpres / 10.0
! SET ABSOLUTE TEMPERATURE
ztkel = temps(ji) + 273.15
zsal = saltprac(ji)
zsqrt = SQRT( zsal )
zsal15 = zsqrt * zsal
zlogt = LOG( ztkel )
ztr = 1. / ztkel
zis = 19.924 * zsal / ( 1000.- 1.005 * zsal )
zis2 = zis * zis
zisqrt = SQRT( zis )
ztc = temps(ji)
! CHLORINITY (WOOSTER ET AL., 1969)
zcl = zsal / 1.80655
! TOTAL SULFATE CONCENTR. [MOLES/kg soln]
zst = 0.14 * zcl /96.062
! TOTAL FLUORIDE CONCENTR. [MOLES/kg soln]
zft = 0.000067 * zcl /18.9984
! DISSOCIATION CONSTANT FOR SULFATES on free H scale (Dickson 1990)
zcks = EXP(-4276.1 * ztr + 141.328 - 23.093 * zlogt &
& + (-13856. * ztr + 324.57 - 47.986 * zlogt) * zisqrt &
& + (35474. * ztr - 771.54 + 114.723 * zlogt) * zis &
& - 2698. * ztr * zis**1.5 + 1776.* ztr * zis2 &
& + LOG(1.0 - 0.001005 * zsal))
! DISSOCIATION CONSTANT FOR FLUORIDES on free H scale (Dickson and Riley 79)
zckf = EXP( 1590.2*ztr - 12.641 + 1.525*zisqrt &
& + LOG(1.0d0 - 0.001005d0*zsal) &
& + LOG(1.0d0 + zst/zcks))
! DISSOCIATION CONSTANT FOR CARBONATE AND BORATE
zckb= (-8966.90 - 2890.53*zsqrt - 77.942*zsal &
& + 1.728*zsal15 - 0.0996*zsal*zsal)*ztr &
& + (148.0248 + 137.1942*zsqrt + 1.62142*zsal) &
& + (-24.4344 - 25.085*zsqrt - 0.2474*zsal) &
& * zlogt + 0.053105*zsqrt*ztkel
! DISSOCIATION COEFFICIENT FOR CARBONATE ACCORDING TO
! MEHRBACH (1973) REFIT BY MILLERO (1995), seawater scale
zck1 = -1.0*(3633.86*ztr - 61.2172 + 9.6777*zlogt &
- 0.011555*zsal + 0.0001152*zsal*zsal)
zck2 = -1.0*(471.78*ztr + 25.9290 - 3.16967*zlogt &
- 0.01781*zsal + 0.0001122*zsal*zsal)
! PKW (H2O) (MILLERO, 1995) from composite data
zckw = -13847.26 * ztr + 148.9652 - 23.6521 * zlogt + ( 118.67 * ztr &
- 5.977 + 1.0495 * zlogt ) * zsqrt - 0.01615 * zsal
! CONSTANTS FOR PHOSPHATE (MILLERO, 1995)
zck1p = -4576.752*ztr + 115.540 - 18.453*zlogt &
& + (-106.736*ztr + 0.69171) * zsqrt &
& + (-0.65643*ztr - 0.01844) * zsal
zck2p = -8814.715*ztr + 172.1033 - 27.927*zlogt &
& + (-160.340*ztr + 1.3566)*zsqrt &
& + (0.37335*ztr - 0.05778)*zsal
zck3p = -3070.75*ztr - 18.126 &
& + (17.27039*ztr + 2.81197) * zsqrt &
& + (-44.99486*ztr - 0.09984) * zsal
! CONSTANT FOR SILICATE, MILLERO (1995)
zcksi = -8904.2*ztr + 117.400 - 19.334*zlogt &
& + (-458.79*ztr + 3.5913) * zisqrt &
& + (188.74*ztr - 1.5998) * zis &
& + (-12.1652*ztr + 0.07871) * zis2 &
& + LOG(1.0 - 0.001005*zsal)
! APPARENT SOLUBILITY PRODUCT K'SP OF CALCITE IN SEAWATER
! (S=27-43, T=2-25 DEG C) at pres =0 (atmos. pressure) (MUCCI 1983)
zaksp0 = -171.9065 -0.077993*ztkel + 2839.319*ztr + 71.595*LOG10( ztkel ) &
& + (-0.77712 + 0.00284263*ztkel + 178.34*ztr) * zsqrt &
& - 0.07711*zsal + 0.0041249*zsal15
! CONVERT FROM DIFFERENT PH SCALES
total2free = 1.0/(1.0 + zst/zcks)
free2SWS = 1. + zst/zcks + zft/(zckf*total2free)
total2SWS = total2free * free2SWS
SWS2total = 1.0 / total2SWS
! K1, K2 OF CARBONIC ACID, KB OF BORIC ACID, KW (H2O) (LIT.?)
zak1 = 10**(zck1) * total2SWS
zak2 = 10**(zck2) * total2SWS
zakb = EXP( zckb ) * total2SWS
zakw = EXP( zckw )
zaksp1 = 10**(zaksp0)
zak1p = exp( zck1p )
zak2p = exp( zck2p )
zak3p = exp( zck3p )
zaksi = exp( zcksi )
zckf = zckf * total2SWS
! FORMULA FOR CPEXP AFTER EDMOND & GIESKES (1970)
! (REFERENCE TO CULBERSON & PYTKOQICZ (1968) AS MADE
! IN BROECKER ET AL. (1982) IS INCORRECT; HERE RGAS IS
! TAKEN TENFOLD TO CORRECT FOR THE NOTATION OF pres IN
! DBAR INSTEAD OF BAR AND THE EXPRESSION FOR CPEXP IS
! MULTIPLIED BY LN(10.) TO ALLOW USE OF EXP-FUNCTION
! WITH BASIS E IN THE FORMULA FOR AKSPP (CF. EDMOND
! & GIESKES (1970), P. 1285-1286 (THE SMALL
! FORMULA ON P. 1286 IS RIGHT AND CONSISTENT WITH THE
! SIGN IN PARTIAL MOLAR VOLUME CHANGE AS SHOWN ON P. 1285))
zcpexp = zpres / (rgas*ztkel)
zcpexp2 = zpres * zcpexp
! KB OF BORIC ACID, K1,K2 OF CARBONIC ACID PRESSURE
! CORRECTION AFTER CULBERSON AND PYTKOWICZ (1968)
! (CF. BROECKER ET AL., 1982)
zbuf1 = - ( devk10 + devk20 * ztc + devk30 * ztc * ztc )
zbuf2 = 0.5 * ( devk40 + devk50 * ztc )
ak1s(ji) = zak1 * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )
zbuf1 = - ( devk11 + devk21 * ztc + devk31 * ztc * ztc )
zbuf2 = 0.5 * ( devk41 + devk51 * ztc )
ak2s(ji) = zak2 * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )
zbuf1 = - ( devk12 + devk22 * ztc + devk32 * ztc * ztc )
zbuf2 = 0.5 * ( devk42 + devk52 * ztc )
akbs(ji) = zakb * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )
zbuf1 = - ( devk13 + devk23 * ztc + devk33 * ztc * ztc )
zbuf2 = 0.5 * ( devk43 + devk53 * ztc )
akws(ji) = zakw * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )
zbuf1 = - ( devk14 + devk24 * ztc + devk34 * ztc * ztc )
zbuf2 = 0.5 * ( devk44 + devk54 * ztc )
aks3s(ji) = zcks * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )
zbuf1 = - ( devk15 + devk25 * ztc + devk35 * ztc * ztc )
zbuf2 = 0.5 * ( devk45 + devk55 * ztc )
akf3s(ji) = zckf * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )
zbuf1 = - ( devk17 + devk27 * ztc + devk37 * ztc * ztc )
zbuf2 = 0.5 * ( devk47 + devk57 * ztc )
ak1ps(ji) = zak1p * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )
zbuf1 = - ( devk18 + devk28 * ztc + devk38 * ztc * ztc )
zbuf2 = 0.5 * ( devk48 + devk58 * ztc )
ak2ps(ji) = zak2p * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )
zbuf1 = - ( devk110 + devk210 * ztc + devk310 * ztc * ztc )
zbuf2 = 0.5 * ( devk410 + devk510 * ztc )
aksis(ji) = zaksi * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )
! Convert to total scale
ak1s(ji) = ak1s(ji) * SWS2total
ak2s(ji) = ak2s(ji) * SWS2total
akbs(ji) = akbs(ji) * SWS2total
akws(ji) = akws(ji) * SWS2total
ak1ps(ji) = ak1ps(ji) * SWS2total
ak2ps(ji) = ak2ps(ji) * SWS2total
ak3ps(ji) = ak3ps(ji) * SWS2total
aksis(ji) = aksis(ji) * SWS2total
akf3s(ji) = akf3s(ji) / total2free
! APPARENT SOLUBILITY PRODUCT K'SP OF CALCITE
! AS FUNCTION OF PRESSURE FOLLOWING MILLERO
! (P. 1285) AND BERNER (1976)
zbuf1 = - ( devk16 + devk26 * ztc + devk36 * ztc * ztc )
zbuf2 = 0.5 * ( devk46 + devk56 * ztc )
aksps(ji) = zaksp1 * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )
! TOTAL F, S, and BORATE CONCENTR. [MOLES/L]
borats(ji) = 0.0002414 * zcl / 10.811
sulfats(ji) = zst
fluorids(ji) = zft
! Iron and SIO3 saturation concentration from ...
sieqs(ji) = EXP( LOG( 10.) * ( 6.44 - 968. / ztkel ) ) * 1.e-6
END DO
!
IF( ln_timing ) CALL timing_stop('sed_chem_cst')
!
END SUBROUTINE sed_chem_cst
END MODULE sedchem