Skip to content
Snippets Groups Projects
sedchem.F90 32 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
MODULE sedchem

   !!======================================================================
   !!                        ***  Module sedchem  ***
   !! sediment :   Variable for chemistry of the CO2 cycle
   !!======================================================================
   !!   modules used
   USE par_sed, ONLY : jpksed
   USE sed     ! sediment global variable
   USE sedarr
   USE eosbn2, ONLY : neos
   USE lib_mpp         ! distribued memory computing library

   IMPLICIT NONE
   PRIVATE

   !! * Accessibility
   PUBLIC sed_chem
   PUBLIC ahini_for_at_sed     !
   PUBLIC solve_at_general_sed !

   ! Maximum number of iterations for each method
   INTEGER, PARAMETER :: jp_maxniter_atgen    = 20
   REAL(wp), PARAMETER :: pp_rdel_ah_target = 1.E-4_wp

   !! * Substitutions
#  include "do_loop_substitute.h90"
   !! * Module variables
   REAL(wp) :: &
      calcon = 1.03E-2        ! mean calcite concentration [Ca2+] in sea water [mole/kg solution] 

   REAL(wp) ::   rgas   = 83.14472      ! universal gas constants

   ! coeff. for density of sea water (Millero & Poisson 1981) 
   REAL(wp), DIMENSION(5)  :: Adsw                       
   DATA Adsw/8.24493E-1, -4.0899E-3, 7.6438E-5 , -8.246E-7, 5.3875E-9 /

   REAL(wp), DIMENSION(3)  :: Bdsw 
   DATA Bdsw / -5.72466E-3, 1.0227E-4, -1.6546E-6 /

   REAL(wp)  :: Cdsw = 4.8314E-4

   REAL(wp), DIMENSION(6)  :: Ddsw                    
   DATA Ddsw / 999.842594 , 6.793952E-2 , -9.095290E-3, 1.001685E-4, -1.120083E-6, 6.536332E-9/

   REAL(wp) :: devk10  = -25.5
   REAL(wp) :: devk11  = -15.82
   REAL(wp) :: devk12  = -29.48
   REAL(wp) :: devk13  = -20.02
   REAL(wp) :: devk14  = -18.03
   REAL(wp) :: devk15  = -9.78
   REAL(wp) :: devk16  = -48.76
   REAL(wp) :: devk17  = -14.51
   REAL(wp) :: devk18  = -23.12
   REAL(wp) :: devk19  = -26.57
   REAL(wp) :: devk110  = -29.48
   !
   REAL(wp) :: devk20  = 0.1271
   REAL(wp) :: devk21  = -0.0219
   REAL(wp) :: devk22  = 0.1622
   REAL(wp) :: devk23  = 0.1119
   REAL(wp) :: devk24  = 0.0466
   REAL(wp) :: devk25  = -0.0090
   REAL(wp) :: devk26  = 0.5304
   REAL(wp) :: devk27  = 0.1211
   REAL(wp) :: devk28  = 0.1758
   REAL(wp) :: devk29  = 0.2020
   REAL(wp) :: devk210  = 0.1622
   !
   REAL(wp) :: devk30  = 0.
   REAL(wp) :: devk31  = 0.
   REAL(wp) :: devk32  = 2.608E-3
   REAL(wp) :: devk33  = -1.409e-3
   REAL(wp) :: devk34  = 0.316e-3
   REAL(wp) :: devk35  = -0.942e-3
   REAL(wp) :: devk36  = 0.
   REAL(wp) :: devk37  = -0.321e-3
   REAL(wp) :: devk38  = -2.647e-3
   REAL(wp) :: devk39  = -3.042e-3
   REAL(wp) :: devk310  = -2.6080e-3
   !
   REAL(wp) :: devk40  = -3.08E-3
   REAL(wp) :: devk41  = 1.13E-3
   REAL(wp) :: devk42  = -2.84E-3
   REAL(wp) :: devk43  = -5.13E-3
   REAL(wp) :: devk44  = -4.53e-3
   REAL(wp) :: devk45  = -3.91e-3
   REAL(wp) :: devk46  = -11.76e-3
   REAL(wp) :: devk47  = -2.67e-3
   REAL(wp) :: devk48  = -5.15e-3
   REAL(wp) :: devk49  = -4.08e-3
   REAL(wp) :: devk410  = -2.84e-3
   !
   REAL(wp) :: devk50  = 0.0877E-3
   REAL(wp) :: devk51  = -0.1475E-3
   REAL(wp) :: devk52  = 0.
   REAL(wp) :: devk53  = 0.0794E-3
   REAL(wp) :: devk54  = 0.09e-3
   REAL(wp) :: devk55  = 0.054e-3
   REAL(wp) :: devk56  = 0.3692E-3
   REAL(wp) :: devk57  = 0.0427e-3
   REAL(wp) :: devk58  = 0.09e-3
   REAL(wp) :: devk59  = 0.0714e-3
   REAL(wp) :: devk510  = 0.0

   !! $Id: sedchem.F90 15450 2021-10-27 14:32:08Z cetlod $
CONTAINS

   SUBROUTINE sed_chem( kt )
      !!----------------------------------------------------------------------
      !!                   ***  ROUTINE sed_chem  ***
      !!
      !! ** Purpose :   set chemical constants
      !!
      !!   History :
      !!        !  04-10  (N. Emprin, M. Gehlen )  Original code
      !!        !  06-04  (C. Ethe)  Re-organization
      !!----------------------------------------------------------------------
      !!* Arguments
      INTEGER, INTENT(in) :: kt                     ! time step

      INTEGER  :: ji, jj, ikt
      REAL(wp) :: ztc, ztc2
      REAL(wp) :: zsal, zsal15  
      REAL(wp) :: zdens0, zaw, zbw, zcw    
      REAL(wp), DIMENSION(jpi,jpj,15) ::   zchem_data
      !!----------------------------------------------------------------------


      IF( ln_timing )  CALL timing_start('sed_chem')

      IF (lwp) WRITE(numsed,*) ' Getting Chemical constants from tracer model at time kt = ', kt
      IF (lwp) WRITE(numsed,*) ' '

      ! reading variables
      zchem_data(:,:,:) = rtrn

      IF (ln_sediment_offline) THEN
         CALL sed_chem_cst
      ELSE
Guillaume Samson's avatar
Guillaume Samson committed
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
            ikt = mbkt(ji,jj) 
            IF ( tmask(ji,jj,ikt) == 1 ) THEN
               zchem_data(ji,jj,1) = ak13  (ji,jj,ikt)
               zchem_data(ji,jj,2) = ak23  (ji,jj,ikt)
               zchem_data(ji,jj,3) = akb3  (ji,jj,ikt)
               zchem_data(ji,jj,4) = akw3  (ji,jj,ikt)
               zchem_data(ji,jj,5) = aksp  (ji,jj,ikt)
               zchem_data(ji,jj,6) = borat (ji,jj,ikt)
               zchem_data(ji,jj,7) = ak1p3 (ji,jj,ikt)
               zchem_data(ji,jj,8) = ak2p3 (ji,jj,ikt)
               zchem_data(ji,jj,9) = ak3p3 (ji,jj,ikt)
               zchem_data(ji,jj,10)= aksi3 (ji,jj,ikt)
               zchem_data(ji,jj,11)= sio3eq(ji,jj,ikt)
               zchem_data(ji,jj,12)= aks3  (ji,jj,ikt)
               zchem_data(ji,jj,13)= akf3  (ji,jj,ikt)
               zchem_data(ji,jj,14)= sulfat(ji,jj,ikt)
               zchem_data(ji,jj,15)= fluorid(ji,jj,ikt)
            ENDIF
         END_2D

         CALL pack_arr ( jpoce, ak1s  (1:jpoce), zchem_data(1:jpi,1:jpj,1) , iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, ak2s  (1:jpoce), zchem_data(1:jpi,1:jpj,2) , iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, akbs  (1:jpoce), zchem_data(1:jpi,1:jpj,3) , iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, akws  (1:jpoce), zchem_data(1:jpi,1:jpj,4) , iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, aksps (1:jpoce), zchem_data(1:jpi,1:jpj,5) , iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, borats(1:jpoce), zchem_data(1:jpi,1:jpj,6) , iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, ak1ps (1:jpoce), zchem_data(1:jpi,1:jpj,7) , iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, ak2ps (1:jpoce), zchem_data(1:jpi,1:jpj,8) , iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, ak3ps (1:jpoce), zchem_data(1:jpi,1:jpj,9) , iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, aksis (1:jpoce), zchem_data(1:jpi,1:jpj,10), iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, sieqs (1:jpoce), zchem_data(1:jpi,1:jpj,11), iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, aks3s (1:jpoce), zchem_data(1:jpi,1:jpj,12), iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, akf3s (1:jpoce), zchem_data(1:jpi,1:jpj,13), iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, sulfats(1:jpoce), zchem_data(1:jpi,1:jpj,14), iarroce(1:jpoce) )
         CALL pack_arr ( jpoce, fluorids(1:jpoce), zchem_data(1:jpi,1:jpj,15), iarroce(1:jpoce) )
      ENDIF

      DO ji = 1, jpoce
         ztc     = temp(ji)
         ztc2    = ztc * ztc
         ! zqtt    = ztkel * 0.01
         zsal    = salt(ji)
         zsal15  = SQRT( zsal ) * zsal

         ! Density of Sea Water - F(temp,sal) [kg/m3]
         zdens0 =  Ddsw(1) + Ddsw(2) * ztc + Ddsw(3) * ztc2 &
                  + Ddsw(4) * ztc * ztc2 + Ddsw(5) * ztc2 * ztc2 &
                  + Ddsw(6) * ztc * ztc2 * ztc2
         zaw =  Adsw(1) + Adsw(2) * ztc + Adsw(3)* ztc2 + Adsw(4) * ztc * ztc2 &
              + Adsw(5) * ztc2 * ztc2
         zbw =  Bdsw(1) + Bdsw(2) * ztc + Bdsw(3) * ztc2
         zcw =  Cdsw
         densSW(ji) = zdens0 + zaw * zsal + zbw * zsal15 + zcw * zsal * zsal
         densSW(ji) = densSW(ji) * 1E-3   ! to get dens in [kg/l]

         ak12s  (ji) = ak1s (ji) * ak2s (ji)
         ak12ps (ji) = ak1ps(ji) * ak2ps(ji)
         ak123ps(ji) = ak1ps(ji) * ak2ps(ji) * ak3ps(ji)

         calcon2(ji) = 0.01028 * ( salt(ji) / 35. ) * densSW(ji)
      ENDDO
       
      IF( ln_timing )  CALL timing_stop('sed_chem')

   END SUBROUTINE sed_chem

   SUBROUTINE ahini_for_at_sed(p_hini)
      !!---------------------------------------------------------------------
      !!                     ***  ROUTINE ahini_for_at  ***
      !!
      !! Subroutine returns the root for the 2nd order approximation of the
      !! DIC -- B_T -- A_CB equation for [H+] (reformulated as a cubic 
      !! polynomial) around the local minimum, if it exists.
      !! Returns * 1E-03_wp if p_alkcb <= 0
      !!         * 1E-10_wp if p_alkcb >= 2*p_dictot + p_bortot
      !!         * 1E-07_wp if 0 < p_alkcb < 2*p_dictot + p_bortot
      !!                    and the 2nd order approximation does not have 
      !!                    a solution
      !!---------------------------------------------------------------------
      REAL(wp), DIMENSION(jpoce,jpksed), INTENT(OUT)  ::  p_hini
      INTEGER  ::   ji, jk
      REAL(wp)  ::  zca1, zba1
      REAL(wp)  ::  zd, zsqrtd, zhmin
      REAL(wp)  ::  za2, za1, za0
      REAL(wp)  ::  p_dictot, p_bortot, p_alkcb

      IF( ln_timing )  CALL timing_start('ahini_for_at_sed')
      !
      DO jk = 1, jpksed
         DO ji = 1, jpoce
            p_alkcb  = pwcp(ji,jk,jwalk) / densSW(ji)
            p_dictot = pwcp(ji,jk,jwdic) / densSW(ji) 
            p_bortot = borats(ji) / densSW(ji)
            IF (p_alkcb <= 0.) THEN
                p_hini(ji,jk) = 1.e-3
            ELSEIF (p_alkcb >= (2.*p_dictot + p_bortot)) THEN
                p_hini(ji,jk) = 1.e-10_wp
            ELSE
                zca1 = p_dictot/( p_alkcb + rtrn )
                zba1 = p_bortot/ (p_alkcb + rtrn )
           ! Coefficients of the cubic polynomial
                za2 = aKbs(ji)*(1. - zba1) + ak1s(ji)*(1.-zca1)
                za1 = ak1s(ji)*akbs(ji)*(1. - zba1 - zca1)    &
                &     + ak1s(ji)*ak2s(ji)*(1. - (zca1+zca1))
                za0 = ak1s(ji)*ak2s(ji)*akbs(ji)*(1. - zba1 - (zca1+zca1))
                                        ! Taylor expansion around the minimum
                zd = za2*za2 - 3.*za1   ! Discriminant of the quadratic equation
                                        ! for the minimum close to the root

                IF(zd > 0.) THEN        ! If the discriminant is positive
                  zsqrtd = SQRT(zd)
                  IF(za2 < 0) THEN
                    zhmin = (-za2 + zsqrtd)/3.
                  ELSE
                    zhmin = -za1/(za2 + zsqrtd)
                  ENDIF
                  p_hini(ji,jk) = zhmin + SQRT(-(za0 + zhmin*(za1 + zhmin*(za2 + zhmin)))/zsqrtd)
                ELSE
                  p_hini(ji,jk) = 1.e-7
                ENDIF
             !
            ENDIF
         END DO
      END DO
      !
      IF( ln_timing )  CALL timing_stop('ahini_for_at_sed')
      !
   END SUBROUTINE ahini_for_at_sed

   !===============================================================================
   SUBROUTINE anw_infsup_sed( p_alknw_inf, p_alknw_sup )

   ! Subroutine returns the lower and upper bounds of "non-water-selfionization"
   ! contributions to total alkalinity (the infimum and the supremum), i.e
   ! inf(TA - [OH-] + [H+]) and sup(TA - [OH-] + [H+])

   ! Argument variables
   INTEGER :: jk
   REAL(wp), DIMENSION(jpoce,jpksed), INTENT(OUT) :: p_alknw_inf
   REAL(wp), DIMENSION(jpoce,jpksed), INTENT(OUT) :: p_alknw_sup

   DO jk = 1, jpksed
      p_alknw_inf(:,jk) =  -pwcp(:,jk,jwpo4) / densSW(:)
      p_alknw_sup(:,jk) =   (2. * pwcp(:,jk,jwdic) + 2. * pwcp(:,jk,jwpo4) + pwcp(:,jk,jwsil)     &
   &                        + borats(:) ) / densSW(:)
   END DO

   END SUBROUTINE anw_infsup_sed


   SUBROUTINE solve_at_general_sed( p_hini, zhi )

   ! Universal pH solver that converges from any given initial value,
   ! determines upper an lower bounds for the solution if required

   ! Argument variables
   !--------------------
   REAL(wp), DIMENSION(jpoce,jpksed), INTENT(IN)   :: p_hini
   REAL(wp), DIMENSION(jpoce,jpksed), INTENT(OUT)  :: zhi

   ! Local variables
   !-----------------
   INTEGER   ::  ji, jk, jn
   REAL(wp)  ::  zh_ini, zh, zh_prev, zh_lnfactor
   REAL(wp)  ::  zdelta, zh_delta
   REAL(wp)  ::  zeqn, zdeqndh, zalka
   REAL(wp)  ::  aphscale
   REAL(wp)  ::  znumer_dic, zdnumer_dic, zdenom_dic, zalk_dic, zdalk_dic
   REAL(wp)  ::  znumer_bor, zdnumer_bor, zdenom_bor, zalk_bor, zdalk_bor
   REAL(wp)  ::  znumer_po4, zdnumer_po4, zdenom_po4, zalk_po4, zdalk_po4
   REAL(wp)  ::  znumer_sil, zdnumer_sil, zdenom_sil, zalk_sil, zdalk_sil
   REAL(wp)  ::  znumer_so4, zdnumer_so4, zdenom_so4, zalk_so4, zdalk_so4
   REAL(wp)  ::  znumer_flu, zdnumer_flu, zdenom_flu, zalk_flu, zdalk_flu
   REAL(wp)  ::  zalk_wat, zdalk_wat
   REAL(wp)  ::  zfact, p_alktot, zdic, zbot, zpt, zst, zft, zsit
   LOGICAL   ::  l_exitnow
   REAL(wp), PARAMETER :: pz_exp_threshold = 1.0
   REAL(wp), DIMENSION(jpoce,jpksed) :: zalknw_inf, zalknw_sup, rmask, zh_min, zh_max, zeqn_absmin

   IF( ln_timing )  CALL timing_start('solve_at_general_sed')
      !  Allocate temporary workspace
   CALL anw_infsup_sed( zalknw_inf, zalknw_sup )

   rmask(:,:) = 1.0
   zhi(:,:)   = 0.

   ! TOTAL H+ scale: conversion factor for Htot = aphscale * Hfree
   DO jk = 1, jpksed
      DO ji = 1, jpoce
         IF (rmask(ji,jk) == 1.) THEN
            p_alktot = pwcp(ji,jk,jwalk) / densSW(ji)
            aphscale = 1. + sulfats(ji)/aks3s(ji)
            zh_ini = p_hini(ji,jk)

            zdelta = (p_alktot-zalknw_inf(ji,jk))**2 + 4.*akws(ji) / aphscale

            IF(p_alktot >= zalknw_inf(ji,jk)) THEN
               zh_min(ji,jk) = 2.*akws(ji) /( p_alktot-zalknw_inf(ji,jk) + SQRT(zdelta) )
            ELSE
               zh_min(ji,jk) = aphscale * (-(p_alktot-zalknw_inf(ji,jk)) + SQRT(zdelta) ) / 2.
            ENDIF

            zdelta = (p_alktot-zalknw_sup(ji,jk))**2 + 4.*akws(ji) / aphscale

            IF(p_alktot <= zalknw_sup(ji,jk)) THEN
               zh_max(ji,jk) = aphscale * (-(p_alktot-zalknw_sup(ji,jk)) + SQRT(zdelta) ) / 2.
            ELSE
               zh_max(ji,jk) = 2.*akws(ji) /( p_alktot-zalknw_sup(ji,jk) + SQRT(zdelta) )
            ENDIF

            zhi(ji,jk) = MAX(MIN(zh_max(ji,jk), zh_ini), zh_min(ji,jk))
         ENDIF
      END DO
   END DO

   zeqn_absmin(:,:) = HUGE(1._wp)

   DO jn = 1, jp_maxniter_atgen
   DO jk = 1, jpksed
      DO ji = 1, jpoce
         IF (rmask(ji,jk) == 1.) THEN

            p_alktot = pwcp(ji,jk,jwalk) / densSW(ji)
            zdic  = pwcp(ji,jk,jwdic) / densSW(ji)
            zbot  = borats(ji) / densSW(ji)
            zpt =  pwcp(ji,jk,jwpo4) / densSW(ji)
            zsit = pwcp(ji,jk,jwsil) / densSW(ji)
            zst = sulfats(ji)
            zft = fluorids(ji)
            aphscale = 1. + sulfats(ji)/aks3s(ji)
            zh = zhi(ji,jk)
            zh_prev = zh

            ! H2CO3 - HCO3 - CO3 : n=2, m=0
            znumer_dic = 2.*ak1s(ji)*ak2s(ji) + zh*ak1s(ji)
            zdenom_dic = ak1s(ji)*ak2s(ji) + zh*(ak1s(ji) + zh)
            zalk_dic   = zdic * (znumer_dic/zdenom_dic)
            zdnumer_dic = ak1s(ji)*ak1s(ji)*ak2s(ji) + zh     &
                          *(4.*ak1s(ji)*ak2s(ji) + zh*ak1s(ji))
            zdalk_dic   = -zdic*(zdnumer_dic/zdenom_dic**2)


            ! B(OH)3 - B(OH)4 : n=1, m=0
            znumer_bor = akbs(ji)
            zdenom_bor = akbs(ji) + zh
            zalk_bor   = zbot * (znumer_bor/zdenom_bor)
            zdnumer_bor = akbs(ji)
            zdalk_bor   = -zbot*(zdnumer_bor/zdenom_bor**2)


            ! H3PO4 - H2PO4 - HPO4 - PO4 : n=3, m=1
            znumer_po4 = 3.*ak1ps(ji)*ak2ps(ji)*ak3ps(ji)  &
            &            + zh*(2.*ak1ps(ji)*ak2ps(ji) + zh* ak1ps(ji))
            zdenom_po4 = ak1ps(ji)*ak2ps(ji)*ak3ps(ji)     &
            &            + zh*( ak1ps(ji)*ak2ps(ji) + zh*(ak1ps(ji) + zh))
            zalk_po4   = zpt * (znumer_po4/zdenom_po4 - 1.) ! Zero level of H3PO4 = 1
            zdnumer_po4 = ak1ps(ji)*ak2ps(ji)*ak1ps(ji)*ak2ps(ji)*ak3ps(ji)  &
            &             + zh*(4.*ak1ps(ji)*ak1ps(ji)*ak2ps(ji)*ak3ps(ji)         &
            &             + zh*(9.*ak1ps(ji)*ak2ps(ji)*ak3ps(ji)                         &
            &             + ak1ps(ji)*ak1ps(ji)*ak2ps(ji)                                &
            &             + zh*(4.*ak1ps(ji)*ak2ps(ji) + zh * ak1ps(ji) ) ) )
            zdalk_po4   = -zpt * (zdnumer_po4/zdenom_po4**2)

            ! H4SiO4 - H3SiO4 : n=1, m=0
            znumer_sil = aksis(ji)
            zdenom_sil = aksis(ji) + zh
            zalk_sil   = zsit * (znumer_sil/zdenom_sil)
            zdnumer_sil = aksis(ji)
            zdalk_sil   = -zsit * (zdnumer_sil/zdenom_sil**2)

            ! HSO4 - SO4 : n=1, m=1
            aphscale = 1.0 + zst/aks3s(ji)
            znumer_so4 = aks3s(ji) * aphscale
            zdenom_so4 = aks3s(ji) * aphscale + zh
            zalk_so4   = zst * (znumer_so4/zdenom_so4 - 1.)
            zdnumer_so4 = aks3s(ji) * aphscale
            zdalk_so4   = -zst * (zdnumer_so4/zdenom_so4**2)

            ! HF - F : n=1, m=1
            znumer_flu =  akf3s(ji)
            zdenom_flu =  akf3s(ji) + zh
            zalk_flu   =  zft * (znumer_flu/zdenom_flu - 1.)
            zdnumer_flu = akf3s(ji)
            zdalk_flu   = -zft * (zdnumer_flu/zdenom_flu**2)

            ! H2O - OH
            zalk_wat   = akws(ji)/zh - zh/aphscale
            zdalk_wat  = -akws(ji)/zh**2 - 1./aphscale

            ! CALCULATE [ALK]([CO3--], [HCO3-])
            zeqn = zalk_dic + zalk_bor + zalk_po4 + zalk_sil   &
            &      + zalk_so4 + zalk_flu                       &
            &      + zalk_wat - p_alktot

            zalka = p_alktot - (zalk_bor + zalk_po4 + zalk_sil   &
            &       + zalk_so4 + zalk_flu + zalk_wat)

            zdeqndh = zdalk_dic + zdalk_bor + zdalk_po4 + zdalk_sil &
            &         + zdalk_so4 + zdalk_flu + zdalk_wat

            ! Adapt bracketing interval
            IF(zeqn > 0._wp) THEN
               zh_min(ji,jk) = zh_prev
            ELSEIF(zeqn < 0._wp) THEN
               zh_max(ji,jk) = zh_prev
            ENDIF

            IF(ABS(zeqn) >= 0.5_wp*zeqn_absmin(ji,jk)) THEN
            ! if the function evaluation at the current point is
            ! not decreasing faster than with a bisection step (at least linearly)
            ! in absolute value take one bisection step on [ph_min, ph_max]
            ! ph_new = (ph_min + ph_max)/2d0
            !
            ! In terms of [H]_new:
            ! [H]_new = 10**(-ph_new)
            !         = 10**(-(ph_min + ph_max)/2d0)
            !         = SQRT(10**(-(ph_min + phmax)))
            !         = SQRT(zh_max * zh_min)
               zh = SQRT(zh_max(ji,jk) * zh_min(ji,jk))
               zh_lnfactor = (zh - zh_prev)/zh_prev ! Required to test convergence below
            ELSE
            ! dzeqn/dpH = dzeqn/d[H] * d[H]/dpH
            !           = -zdeqndh * LOG(10) * [H]
            ! \Delta pH = -zeqn/(zdeqndh*d[H]/dpH) = zeqn/(zdeqndh*[H]*LOG(10))
            !
            ! pH_new = pH_old + \deltapH
            !
            ! [H]_new = 10**(-pH_new)
            !         = 10**(-pH_old - \Delta pH)
            !         = [H]_old * 10**(-zeqn/(zdeqndh*[H]_old*LOG(10)))
            !         = [H]_old * EXP(-LOG(10)*zeqn/(zdeqndh*[H]_old*LOG(10)))
            !         = [H]_old * EXP(-zeqn/(zdeqndh*[H]_old))

               zh_lnfactor = -zeqn/(zdeqndh*zh_prev)

               IF(ABS(zh_lnfactor) > pz_exp_threshold) THEN
                  zh          = zh_prev*EXP(zh_lnfactor)
               ELSE
                  zh_delta    = zh_lnfactor*zh_prev
                  zh          = zh_prev + zh_delta
               ENDIF

               IF( zh < zh_min(ji,jk) ) THEN
               ! if [H]_new < [H]_min
               ! i.e., if ph_new > ph_max then
               ! take one bisection step on [ph_prev, ph_max]
               ! ph_new = (ph_prev + ph_max)/2d0
               ! In terms of [H]_new:
               ! [H]_new = 10**(-ph_new)
               !         = 10**(-(ph_prev + ph_max)/2d0)
               !         = SQRT(10**(-(ph_prev + phmax)))
               !         = SQRT([H]_old*10**(-ph_max))
               !         = SQRT([H]_old * zh_min)
                  zh                = SQRT(zh_prev * zh_min(ji,jk))
                  zh_lnfactor       = (zh - zh_prev)/zh_prev ! Required to test convergence below
               ENDIF

               IF( zh > zh_max(ji,jk) ) THEN
               ! if [H]_new > [H]_max
               ! i.e., if ph_new < ph_min, then
               ! take one bisection step on [ph_min, ph_prev]
               ! ph_new = (ph_prev + ph_min)/2d0
               ! In terms of [H]_new:
               ! [H]_new = 10**(-ph_new)
               !         = 10**(-(ph_prev + ph_min)/2d0)
               !         = SQRT(10**(-(ph_prev + ph_min)))
               !         = SQRT([H]_old*10**(-ph_min))
               !         = SQRT([H]_old * zhmax)
                  zh                = SQRT(zh_prev * zh_max(ji,jk))
                  zh_lnfactor       = (zh - zh_prev)/zh_prev ! Required to test convergence below
               ENDIF
            ENDIF

            zeqn_absmin(ji,jk) = MIN( ABS(zeqn), zeqn_absmin(ji,jk))

            ! Stop iterations once |\delta{[H]}/[H]| < rdel
            ! <=> |(zh - zh_prev)/zh_prev| = |EXP(-zeqn/(zdeqndh*zh_prev)) -1| < rdel
            ! |EXP(-zeqn/(zdeqndh*zh_prev)) -1| ~ |zeqn/(zdeqndh*zh_prev)|
            ! Alternatively:
            ! |\Delta pH| = |zeqn/(zdeqndh*zh_prev*LOG(10))|
            !             ~ 1/LOG(10) * |\Delta [H]|/[H]
            !             < 1/LOG(10) * rdel

            ! Hence |zeqn/(zdeqndh*zh)| < rdel

            ! rdel <-- pp_rdel_ah_target
            l_exitnow = (ABS(zh_lnfactor) < pp_rdel_ah_target)

            IF(l_exitnow) THEN
               rmask(ji,jk) = 0.
            ENDIF

            zhi(ji,jk) =  zh

            IF(jn >= jp_maxniter_atgen) THEN
               zhi(ji,jk) = -1._wp
            ENDIF

         ENDIF
      END DO
   END DO
   END DO
   !
   IF( ln_timing )  CALL timing_stop('solve_at_general_sed')

   END SUBROUTINE solve_at_general_sed

   SUBROUTINE sed_chem_cst
      !!---------------------------------------------------------------------
      !!                     ***  ROUTINE sed_chem_cst  ***
      !!
      !! ** Purpose :   Sea water chemistry computed following MOCSY protocol
      !!                Computation is done at the bottom of the ocean only
      !!
      !! ** Method  : - ...
      !!---------------------------------------------------------------------
      INTEGER  ::   ji
      REAL(wp), DIMENSION(jpoce) :: saltprac, temps
      REAL(wp) ::   ztkel, ztkel1, zt , zsal  , zsal2 , zbuf1 , zbuf2
      REAL(wp) ::   ztgg , ztgg2, ztgg3 , ztgg4 , ztgg5
      REAL(wp) ::   zpres, ztc  , zcl   , zcpexp, zoxy  , zcpexp2
      REAL(wp) ::   zsqrt, ztr  , zlogt , zcek1, zc1, zplat
      REAL(wp) ::   zis  , zis2 , zsal15, zisqrt, za1, za2
      REAL(wp) ::   zckb , zck1 , zck2  , zckw  , zak1 , zak2  , zakb , zaksp0, zakw
      REAL(wp) ::   zck1p, zck2p, zck3p, zcksi, zak1p, zak2p, zak3p, zaksi
      REAL(wp) ::   zst  , zft  , zcks  , zckf  , zaksp1
      REAL(wp) ::   total2free, free2SWS, total2SWS, SWS2total
      !!---------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('sed_chem_cst')
      !
      ! Computation of chemical constants require practical salinity
      ! Thus, when TEOS08 is used, absolute salinity is converted to
      ! practical salinity
      ! -------------------------------------------------------------
      IF (neos == -1) THEN
         saltprac(:) = salt(:) * 35.0 / 35.16504
      ELSE
         saltprac(:) = salt(:)
      ENDIF

      !
      ! Computations of chemical constants require in situ temperature
      ! Here a quite simple formulation is used to convert
      ! potential temperature to in situ temperature. The errors is less than
      ! 0.04°C relative to an exact computation
      ! ---------------------------------------------------------------------
         DO ji = 1, jpoce
            zpres = zkbot(ji) / 1000.
            za1 = 0.04 * ( 1.0 + 0.185 * temp(ji) + 0.035 * (saltprac(ji) - 35.0) )
            za2 = 0.0075 * ( 1.0 - temp(ji) / 30.0 )
            temps(ji) = temp(ji) - za1 * zpres + za2 * zpres**2
         END DO

      ! CHEMICAL CONSTANTS - DEEP OCEAN
      ! -------------------------------
      DO ji = 1, jpoce
         ! SET PRESSION ACCORDING TO SAUNDER (1980)
         zc1 = 5.92E-3 
         zpres = ((1-zc1)-SQRT(((1-zc1)**2)-(8.84E-6*zkbot(ji)))) / 4.42E-6
         zpres = zpres / 10.0

         ! SET ABSOLUTE TEMPERATURE
         ztkel   = temps(ji) + 273.15
         zsal    = saltprac(ji)
         zsqrt  = SQRT( zsal )
         zsal15  = zsqrt * zsal
         zlogt  = LOG( ztkel )
         ztr    = 1. / ztkel
         zis    = 19.924 * zsal / ( 1000.- 1.005 * zsal )
         zis2   = zis * zis
         zisqrt = SQRT( zis )
         ztc    = temps(ji)

         ! CHLORINITY (WOOSTER ET AL., 1969)
         zcl     = zsal / 1.80655

         ! TOTAL SULFATE CONCENTR. [MOLES/kg soln]
         zst     = 0.14 * zcl /96.062

         ! TOTAL FLUORIDE CONCENTR. [MOLES/kg soln]
         zft     = 0.000067 * zcl /18.9984

         ! DISSOCIATION CONSTANT FOR SULFATES on free H scale (Dickson 1990)
         zcks    = EXP(-4276.1 * ztr + 141.328 - 23.093 * zlogt         &
         &         + (-13856. * ztr + 324.57 - 47.986 * zlogt) * zisqrt &
         &         + (35474. * ztr - 771.54 + 114.723 * zlogt) * zis    &
         &         - 2698. * ztr * zis**1.5 + 1776.* ztr * zis2         &
         &         + LOG(1.0 - 0.001005 * zsal))

         ! DISSOCIATION CONSTANT FOR FLUORIDES on free H scale (Dickson and Riley 79)
         zckf    = EXP( 1590.2*ztr - 12.641 + 1.525*zisqrt   &
         &         + LOG(1.0d0 - 0.001005d0*zsal)            &
         &         + LOG(1.0d0 + zst/zcks))

         ! DISSOCIATION CONSTANT FOR CARBONATE AND BORATE
         zckb=  (-8966.90 - 2890.53*zsqrt - 77.942*zsal        &
         &      + 1.728*zsal15 - 0.0996*zsal*zsal)*ztr         &
         &      + (148.0248 + 137.1942*zsqrt + 1.62142*zsal)   &
         &      + (-24.4344 - 25.085*zsqrt - 0.2474*zsal)      &
         &      * zlogt + 0.053105*zsqrt*ztkel

         ! DISSOCIATION COEFFICIENT FOR CARBONATE ACCORDING TO
         ! MEHRBACH (1973) REFIT BY MILLERO (1995), seawater scale
         zck1    = -1.0*(3633.86*ztr - 61.2172 + 9.6777*zlogt  &
                   - 0.011555*zsal + 0.0001152*zsal*zsal)
         zck2    = -1.0*(471.78*ztr + 25.9290 - 3.16967*zlogt      &
                   - 0.01781*zsal + 0.0001122*zsal*zsal)

         ! PKW (H2O) (MILLERO, 1995) from composite data
         zckw    = -13847.26 * ztr + 148.9652 - 23.6521 * zlogt + ( 118.67 * ztr    &
                   - 5.977 + 1.0495 * zlogt ) * zsqrt - 0.01615 * zsal

         ! CONSTANTS FOR PHOSPHATE (MILLERO, 1995)
         zck1p    = -4576.752*ztr + 115.540 - 18.453*zlogt   &
         &          + (-106.736*ztr + 0.69171) * zsqrt       &
         &          + (-0.65643*ztr - 0.01844) * zsal

         zck2p    = -8814.715*ztr + 172.1033 - 27.927*zlogt  &
         &          + (-160.340*ztr + 1.3566)*zsqrt          &
         &          + (0.37335*ztr - 0.05778)*zsal

         zck3p    = -3070.75*ztr - 18.126                    &
         &          + (17.27039*ztr + 2.81197) * zsqrt       &
         &          + (-44.99486*ztr - 0.09984) * zsal

         ! CONSTANT FOR SILICATE, MILLERO (1995)
         zcksi    = -8904.2*ztr  + 117.400 - 19.334*zlogt   &
         &          + (-458.79*ztr + 3.5913) * zisqrt       &
         &          + (188.74*ztr - 1.5998) * zis           &
         &          + (-12.1652*ztr + 0.07871) * zis2       &
         &          + LOG(1.0 - 0.001005*zsal)

         ! APPARENT SOLUBILITY PRODUCT K'SP OF CALCITE IN SEAWATER
         !       (S=27-43, T=2-25 DEG C) at pres =0 (atmos. pressure) (MUCCI 1983)
         zaksp0  = -171.9065 -0.077993*ztkel + 2839.319*ztr + 71.595*LOG10( ztkel )   &
         &         + (-0.77712 + 0.00284263*ztkel + 178.34*ztr) * zsqrt  &
         &         - 0.07711*zsal + 0.0041249*zsal15

         ! CONVERT FROM DIFFERENT PH SCALES
         total2free  = 1.0/(1.0 + zst/zcks)
         free2SWS    = 1. + zst/zcks + zft/(zckf*total2free)
         total2SWS   = total2free * free2SWS
         SWS2total   = 1.0 / total2SWS


         ! K1, K2 OF CARBONIC ACID, KB OF BORIC ACID, KW (H2O) (LIT.?)
         zak1    = 10**(zck1) * total2SWS
         zak2    = 10**(zck2) * total2SWS
         zakb    = EXP( zckb ) * total2SWS
         zakw    = EXP( zckw )
         zaksp1  = 10**(zaksp0)
         zak1p   = exp( zck1p )
         zak2p   = exp( zck2p )
         zak3p   = exp( zck3p )
         zaksi   = exp( zcksi )
         zckf    = zckf * total2SWS

         ! FORMULA FOR CPEXP AFTER EDMOND & GIESKES (1970)
         !        (REFERENCE TO CULBERSON & PYTKOQICZ (1968) AS MADE
         !        IN BROECKER ET AL. (1982) IS INCORRECT; HERE RGAS IS
         !        TAKEN TENFOLD TO CORRECT FOR THE NOTATION OF pres  IN
         !        DBAR INSTEAD OF BAR AND THE EXPRESSION FOR CPEXP IS
         !        MULTIPLIED BY LN(10.) TO ALLOW USE OF EXP-FUNCTION
         !        WITH BASIS E IN THE FORMULA FOR AKSPP (CF. EDMOND
         !        & GIESKES (1970), P. 1285-1286 (THE SMALL
         !        FORMULA ON P. 1286 IS RIGHT AND CONSISTENT WITH THE
         !        SIGN IN PARTIAL MOLAR VOLUME CHANGE AS SHOWN ON P. 1285))
         zcpexp  = zpres / (rgas*ztkel)
         zcpexp2 = zpres * zcpexp

         ! KB OF BORIC ACID, K1,K2 OF CARBONIC ACID PRESSURE
         !        CORRECTION AFTER CULBERSON AND PYTKOWICZ (1968)
         !        (CF. BROECKER ET AL., 1982)

         zbuf1  = -     ( devk10 + devk20 * ztc + devk30 * ztc * ztc )
         zbuf2  = 0.5 * ( devk40 + devk50 * ztc )
         ak1s(ji) = zak1 * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

         zbuf1  =     - ( devk11 + devk21 * ztc + devk31 * ztc * ztc )
         zbuf2  = 0.5 * ( devk41 + devk51 * ztc )
         ak2s(ji) = zak2 * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

         zbuf1  =     - ( devk12 + devk22 * ztc + devk32 * ztc * ztc )
         zbuf2  = 0.5 * ( devk42 + devk52 * ztc )
         akbs(ji) = zakb * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

         zbuf1  =     - ( devk13 + devk23 * ztc + devk33 * ztc * ztc )
         zbuf2  = 0.5 * ( devk43 + devk53 * ztc )
         akws(ji) = zakw * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

         zbuf1  =     - ( devk14 + devk24 * ztc + devk34 * ztc * ztc )
         zbuf2  = 0.5 * ( devk44 + devk54 * ztc )
         aks3s(ji) = zcks * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

         zbuf1  =     - ( devk15 + devk25 * ztc + devk35 * ztc * ztc )
         zbuf2  = 0.5 * ( devk45 + devk55 * ztc )
         akf3s(ji) = zckf * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

         zbuf1  =     - ( devk17 + devk27 * ztc + devk37 * ztc * ztc )
         zbuf2  = 0.5 * ( devk47 + devk57 * ztc )
         ak1ps(ji) = zak1p * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

         zbuf1  =     - ( devk18 + devk28 * ztc + devk38 * ztc * ztc )
         zbuf2  = 0.5 * ( devk48 + devk58 * ztc )
         ak2ps(ji) = zak2p * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

         zbuf1  =     - ( devk110 + devk210 * ztc + devk310 * ztc * ztc )
         zbuf2  = 0.5 * ( devk410 + devk510 * ztc )
         aksis(ji) = zaksi * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

         ! Convert to total scale
         ak1s(ji)  = ak1s(ji)  * SWS2total
         ak2s(ji)  = ak2s(ji)  * SWS2total
         akbs(ji)  = akbs(ji)  * SWS2total
         akws(ji)  = akws(ji)  * SWS2total
         ak1ps(ji) = ak1ps(ji) * SWS2total
         ak2ps(ji) = ak2ps(ji) * SWS2total
         ak3ps(ji) = ak3ps(ji) * SWS2total
         aksis(ji) = aksis(ji) * SWS2total
         akf3s(ji) = akf3s(ji) / total2free

         ! APPARENT SOLUBILITY PRODUCT K'SP OF CALCITE
         !        AS FUNCTION OF PRESSURE FOLLOWING MILLERO
         !        (P. 1285) AND BERNER (1976)
         zbuf1  =     - ( devk16 + devk26 * ztc + devk36 * ztc * ztc )
         zbuf2  = 0.5 * ( devk46 + devk56 * ztc )
         aksps(ji) = zaksp1 * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

         ! TOTAL F, S, and BORATE CONCENTR. [MOLES/L]
         borats(ji)   = 0.0002414 * zcl / 10.811
         sulfats(ji)  = zst
         fluorids(ji) = zft

         ! Iron and SIO3 saturation concentration from ...
         sieqs(ji) = EXP(  LOG( 10.) * ( 6.44 - 968. / ztkel )  ) * 1.e-6
      END DO
      !
      IF( ln_timing )  CALL timing_stop('sed_chem_cst')
      !
   END SUBROUTINE sed_chem_cst


END MODULE sedchem