Newer
Older
MODULE dynadv_ubs
!!======================================================================
!! *** MODULE dynadv_ubs ***
!! Ocean dynamics: Update the momentum trend with the flux form advection
!! trend using a 3rd order upstream biased scheme
!!======================================================================
!! History : 2.0 ! 2006-08 (R. Benshila, L. Debreu) Original code
!! 3.2 ! 2009-07 (R. Benshila) Suppression of rigid-lid option
!! 4.5 ! 2022-06 (S. Techene, G, Madec) refactorization to reduce local memory usage
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! dyn_adv_ubs : flux form momentum advection using (ln_dynadv=T)
!! an 3rd order Upstream Biased Scheme or Quick scheme
!! combined with 2nd or 4th order finite differences
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and tracers
USE dom_oce ! ocean space and time domain
USE trd_oce ! trends: ocean variables
USE trddyn ! trend manager: dynamics
!
USE in_out_manager ! I/O manager
USE prtctl ! Print control
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
USE lib_mpp ! MPP library
IMPLICIT NONE
PRIVATE
REAL(wp), PARAMETER :: gamma1 = 1._wp/3._wp ! =1/4 quick ; =1/3 3rd order UBS
REAL(wp), PARAMETER :: gamma2 = 1._wp/32._wp ! =0 2nd order ; =1/32 4th order centred
PUBLIC dyn_adv_ubs ! routine called by dynadv.F90
PUBLIC dyn_adv_ubs_hls1 ! routine called by dynadv.F90
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: dynadv_ubs.F90 14419 2021-02-09 12:22:16Z techene $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
SUBROUTINE dyn_adv_ubs( kt, Kbb, Kmm, puu, pvv, Krhs, pau, pav, paw )
!!----------------------------------------------------------------------
!! *** ROUTINE dyn_adv_ubs ***
!!
!! ** Purpose : Compute the now momentum advection trend in flux form
!! and the general trend of the momentum equation.
!!
!! ** Method : The scheme is the one implemeted in ROMS. It depends
!! on two parameter gamma1 and gamma2. The former control the
!! upstream baised part of the scheme and the later the centred
!! part: gamma1 = 0 pure centered (no diffusive part)
!! = 1/4 Quick scheme
!! = 1/3 3rd order Upstream biased scheme
!! gamma2 = 0 2nd order finite differencing
!! = 1/32 4th order finite differencing
!! For stability reasons, the first term of the fluxes which cor-
!! responds to a second order centered scheme is evaluated using
!! the now velocity (centered in time) while the second term which
!! is the diffusive part of the scheme, is evaluated using the
!! before velocity (forward in time).
!! Default value (hard coded in the begining of the module) are
!! gamma1=1/3 and gamma2=1/32.
!!
!! In RK3 time stepping case, the optional arguments
!! (pau,pav,paw) are present. They are used as advective velocity
!! while the advected velocity remains (puu,pvv).
!!
!! ** Action : (puu,pvv)(:,:,:,Krhs) updated with the advective trend
!!
!! Reference : Shchepetkin & McWilliams, 2005, Ocean Modelling.
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt , Kbb, Kmm, Krhs ! ocean time-step and level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), TARGET, INTENT(inout) :: puu, pvv ! ocean velocities and RHS of momentum equation
REAL(wp), DIMENSION(:,:,:), OPTIONAL, TARGET, INTENT(in ) :: pau, pav, paw ! advective velocity
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zzu, zui, zfuj, zl_u, zzfu_kp1 ! local scalars
REAL(wp) :: zzv, zvj, zfvi, zl_v, zzfv_kp1 ! - -
REAL(wp), DIMENSION(A2D(2)) :: zfu_t, zfu_f, zfu
REAL(wp), DIMENSION(A2D(2)) :: zfv_t, zfv_f, zfv
REAL(wp), DIMENSION(A2D(2),2) :: zlu_uu, zlu_uv
REAL(wp), DIMENSION(A2D(2),2) :: zlv_vv, zlv_vu
REAL(wp), DIMENSION(:,:,:) , POINTER :: zpt_u, zpt_v, zpt_w
REAL(wp), DIMENSION(:,:,:) , ALLOCATABLE :: zu_trd, zv_trd
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn_adv_ubs : UBS flux form momentum advection'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
ENDIF
ENDIF
!
IF( l_trddyn ) THEN ! trends: send trend to trddyn for diagnostic
ALLOCATE( zu_trd(A2D(0),jpkm1), zv_trd(A2D(0),jpkm1) )
zu_trd(A2D(0),:) = puu(A2D(0),:,Krhs)
zv_trd(A2D(0),:) = pvv(A2D(0),:,Krhs)
ENDIF
!
IF( PRESENT( pau ) ) THEN ! RK3: advective velocity (pau,pav,paw) /= advected velocity (puu,pvv,ww)
zpt_u => pau(:,:,:)
zpt_v => pav(:,:,:)
zpt_w => paw(:,:,:)
ELSE ! MLF: advective velocity = (puu,pvv,ww)
zpt_u => puu(:,:,:,Kmm)
zpt_v => pvv(:,:,:,Kmm)
zpt_w => ww (:,:,: )
ENDIF
!
! ! =========================== !
DO jk = 1, jpkm1 ! Laplacian of the velocity !
! ! =========================== !
! ! horizontal volume fluxes
DO_2D( 2, 2, 2, 2 )
zfu(ji,jj) = e2u(ji,jj) * e3u(ji,jj,jk,Kmm) * zpt_u(ji,jj,jk)
zfv(ji,jj) = e1v(ji,jj) * e3v(ji,jj,jk,Kmm) * zpt_v(ji,jj,jk)
END_2D
!
DO_2D( 1, 1, 1, 1 ) ! laplacian
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility (north fold)
!! zlu_uu(ji,jj,1) = ( ( puu(ji+1,jj ,jk,Kbb) + puu(ji-1,jj ,jk,Kbb) ) - 2._wp * puu(ji,jj,jk,Kbb) ) * umask(ji,jj,jk)
!! zlv_vv(ji,jj,1) = ( ( pvv(ji ,jj+1,jk,Kbb) + pvv(ji ,jj-1,jk,Kbb) ) - 2._wp * pvv(ji,jj,jk,Kbb) ) * vmask(ji,jj,jk)
zlu_uu(ji,jj,1) = ( ( puu (ji+1,jj ,jk,Kbb) - puu (ji ,jj ,jk,Kbb) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( puu (ji-1,jj ,jk,Kbb) - puu (ji ,jj ,jk,Kbb) &
& ) ) * umask(ji ,jj ,jk)
zlv_vv(ji,jj,1) = ( ( pvv (ji ,jj+1,jk,Kbb) - pvv (ji ,jj ,jk,Kbb) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( pvv (ji ,jj-1,jk,Kbb) - pvv (ji ,jj ,jk,Kbb) &
& ) ) * vmask(ji ,jj ,jk)
zlu_uv(ji,jj,1) = ( puu(ji ,jj+1,jk,Kbb) - puu(ji ,jj ,jk,Kbb) ) * fmask(ji ,jj ,jk) &
& - ( puu(ji ,jj ,jk,Kbb) - puu(ji ,jj-1,jk,Kbb) ) * fmask(ji ,jj-1,jk)
zlv_vu(ji,jj,1) = ( pvv(ji+1,jj ,jk,Kbb) - pvv(ji ,jj ,jk,Kbb) ) * fmask(ji ,jj ,jk) &
& - ( pvv(ji ,jj ,jk,Kbb) - pvv(ji-1,jj ,jk,Kbb) ) * fmask(ji-1,jj ,jk)
!
!! zlu_uu(ji,jj,2) = ( ( zfu(ji+1,jj ) + zfu(ji-1,jj ) ) - 2._wp * zfu(ji,jj) ) * umask(ji ,jj ,jk)
!! zlv_vv(ji,jj,2) = ( ( zfv(ji ,jj+1) + zfv(ji ,jj-1) ) - 2._wp * zfv(ji,jj) ) * vmask(ji ,jj ,jk)
zlu_uu(ji,jj,2) = ( ( zfu(ji+1,jj ) - zfu(ji ,jj ) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( zfu(ji-1,jj ) - zfu(ji ,jj ) &
& ) ) * umask(ji ,jj ,jk)
zlv_vv(ji,jj,2) = ( ( zfv(ji ,jj+1) - zfv(ji ,jj ) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( zfv(ji ,jj-1) - zfv(ji ,jj ) &
& ) ) * vmask(ji ,jj ,jk)
zlu_uv(ji,jj,2) = ( zfu(ji ,jj+1) - zfu(ji ,jj ) ) * fmask(ji ,jj ,jk) &
& - ( zfu(ji ,jj ) - zfu(ji ,jj-1) ) * fmask(ji ,jj-1,jk)
zlv_vu(ji,jj,2) = ( zfv(ji+1,jj ) - zfv(ji ,jj ) ) * fmask(ji ,jj ,jk) &
& - ( zfv(ji ,jj ) - zfv(ji-1,jj ) ) * fmask(ji-1,jj ,jk)
END_2D
!
! ! ====================== !
! ! Horizontal advection !
! ! ====================== !
! ! horizontal volume fluxes
DO_2D( 1, 1, 1, 1 )
zfu(ji,jj) = 0.25_wp * zfu(ji,jj)
zfv(ji,jj) = 0.25_wp * zfv(ji,jj)
END_2D
!
DO_2D( 1, 0, 1, 0 ) ! horizontal momentum fluxes at T- and F-point
zui = ( puu(ji,jj,jk,Kmm) + puu(ji+1,jj ,jk,Kmm) )
zvj = ( pvv(ji,jj,jk,Kmm) + pvv(ji ,jj+1,jk,Kmm) )
!
IF( zui > 0 ) THEN ; zl_u = zlu_uu(ji ,jj,1)
ELSE ; zl_u = zlu_uu(ji+1,jj,1)
ENDIF
IF( zvj > 0 ) THEN ; zl_v = zlv_vv(ji,jj ,1)
ELSE ; zl_v = zlv_vv(ji,jj+1,1)
ENDIF
!
zfu_t(ji+1,jj ) = ( zfu(ji,jj) + zfu(ji+1,jj ) - gamma2 * ( zlu_uu(ji,jj,2) + zlu_uu(ji+1,jj ,2) ) ) &
& * ( zui - gamma1 * zl_u )
zfv_t(ji ,jj+1) = ( zfv(ji,jj) + zfv(ji ,jj+1) - gamma2 * ( zlv_vv(ji,jj,2) + zlv_vv(ji ,jj+1,2) ) ) &
& * ( zvj - gamma1 * zl_v )
!
zfuj = ( zfu(ji,jj) + zfu(ji ,jj+1) )
zfvi = ( zfv(ji,jj) + zfv(ji+1,jj ) )
IF( zfuj > 0 ) THEN ; zl_v = zlv_vu(ji ,jj,1)
ELSE ; zl_v = zlv_vu(ji+1,jj,1)
ENDIF
IF( zfvi > 0 ) THEN ; zl_u = zlu_uv(ji,jj ,1)
ELSE ; zl_u = zlu_uv(ji,jj+1,1)
ENDIF
!
zfv_f(ji ,jj ) = ( zfvi - gamma2 * ( zlv_vu(ji,jj,2) + zlv_vu(ji+1,jj ,2) ) ) &
& * ( puu(ji,jj,jk,Kmm) + puu(ji ,jj+1,jk,Kmm) - gamma1 * zl_u )
zfu_f(ji ,jj ) = ( zfuj - gamma2 * ( zlu_uv(ji,jj,2) + zlu_uv(ji ,jj+1,2) ) ) &
& * ( pvv(ji,jj,jk,Kmm) + pvv(ji+1,jj ,jk,Kmm) - gamma1 * zl_v )
END_2D
DO_2D( 0, 0, 0, 0 ) ! divergence of horizontal momentum fluxes
puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) - ( zfu_t(ji+1,jj) - zfu_t(ji,jj ) &
& + zfv_f(ji ,jj) - zfv_f(ji,jj-1) ) * r1_e1e2u(ji,jj) &
& / e3u(ji,jj,jk,Kmm)
pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) - ( zfu_f(ji,jj ) - zfu_f(ji-1,jj) &
& + zfv_t(ji,jj+1) - zfv_t(ji ,jj) ) * r1_e1e2v(ji,jj) &
& / e3v(ji,jj,jk,Kmm)
END_2D
END DO
!
IF( l_trddyn ) THEN ! trends: send trend to trddyn for diagnostic
zu_trd(A2D(0),:) = puu(A2D(0),:,Krhs) - zu_trd(A2D(0),:)
zv_trd(A2D(0),:) = pvv(A2D(0),:,Krhs) - zv_trd(A2D(0),:)
CALL trd_dyn( zu_trd, zv_trd, jpdyn_keg, kt, Kmm )
zu_trd(A2D(0),:) = puu(A2D(0),:,Krhs)
zv_trd(A2D(0),:) = pvv(A2D(0),:,Krhs)
ENDIF
! ! ==================== !
! ! Vertical advection !
! ! ==================== !
!
#define zfu_uw zfu_t
#define zfv_vw zfv_t
#define zfw zfu
!
! ! surface vertical fluxes
!
IF( ln_linssh ) THEN ! linear free surface: advection through the surface z=0
DO_2D( 0, 0, 0, 0 )
zfu_uw(ji,jj) = 0.5_wp * ( e1e2t(ji,jj) * zpt_w(ji,jj,1) + e1e2t(ji+1,jj) * zpt_w(ji+1,jj,1) ) * puu(ji,jj,1,Kmm)
zfv_vw(ji,jj) = 0.5_wp * ( e1e2t(ji,jj) * zpt_w(ji,jj,1) + e1e2t(ji,jj+1) * zpt_w(ji,jj+1,1) ) * pvv(ji,jj,1,Kmm)
END_2D
ELSE ! non linear free: surface advective fluxes set to zero
DO_2D( 0, 0, 0, 0 )
zfu_uw(ji,jj) = 0._wp
zfv_vw(ji,jj) = 0._wp
END_2D
ENDIF
!
DO jk = 1, jpk-2 ! divergence of advective fluxes
!
DO_2D( 0, 1, 0, 1 ) ! 1/4 * Vertical transport at level k+1
zfw(ji,jj) = 0.25_wp * e1e2t(ji,jj) * zpt_w(ji,jj,jk+1)
END_2D
DO_2D( 0, 0, 0, 0 )
! ! vertical flux at level k+1
zzfu_kp1 = ( zfw(ji,jj) + zfw(ji+1,jj ) ) * ( puu(ji,jj,jk+1,Kmm) + puu(ji,jj,jk,Kmm) )
zzfv_kp1 = ( zfw(ji,jj) + zfw(ji ,jj+1) ) * ( pvv(ji,jj,jk+1,Kmm) + pvv(ji,jj,jk,Kmm) )
! ! divergence of vertical momentum flux
puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) - ( zfu_uw(ji,jj) - zzfu_kp1 ) * r1_e1e2u(ji,jj) &
& / e3u(ji,jj,jk,Kmm)
pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) - ( zfv_vw(ji,jj) - zzfv_kp1 ) * r1_e1e2v(ji,jj) &
& / e3v(ji,jj,jk,Kmm)
! ! store vertical flux for next level calculation
zfu_uw(ji,jj) = zzfu_kp1
zfv_vw(ji,jj) = zzfv_kp1
END_2D
END DO
!
jk = jpkm1 ! compute last level (zzfu_kp1 = 0)
DO_2D( 0, 0, 0, 0 )
puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) - zfu_uw(ji,jj) * r1_e1e2u(ji,jj) &
& / e3u(ji,jj,jk,Kmm)
pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) - zfv_vw(ji,jj) * r1_e1e2v(ji,jj) &
& / e3v(ji,jj,jk,Kmm)
END_2D
!
IF( l_trddyn ) THEN ! trends: send trend to trddyn for diagnostic
zu_trd(A2D(0),:) = puu(A2D(0),:,Krhs) - zu_trd(A2D(0),:)
zv_trd(A2D(0),:) = pvv(A2D(0),:,Krhs) - zv_trd(A2D(0),:)
CALL trd_dyn( zu_trd, zv_trd, jpdyn_zad, kt, Kmm )
DEALLOCATE( zu_trd, zv_trd )
ENDIF
!
#undef zfu_uw
#undef zfv_vw
#undef zfw
! ! Control print
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=puu(:,:,:,Krhs), clinfo1=' ubs2 adv - Ua: ', mask1=umask, &
& tab3d_2=pvv(:,:,:,Krhs), clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' )
!
END SUBROUTINE dyn_adv_ubs
SUBROUTINE dyn_adv_ubs_hls1( kt, Kbb, Kmm, puu, pvv, Krhs, pau, pav, paw )
!!----------------------------------------------------------------------
!! *** ROUTINE dyn_adv_ubs ***
!!
!! ** Purpose : Compute the now momentum advection trend in flux form
!! and the general trend of the momentum equation.
!!
!! ** Method : The scheme is the one implemeted in ROMS. It depends
!! on two parameter gamma1 and gamma2. The former control the
!! upstream baised part of the scheme and the later the centred
!! part: gamma1 = 0 pure centered (no diffusive part)
!! = 1/4 Quick scheme
!! = 1/3 3rd order Upstream biased scheme
!! gamma2 = 0 2nd order finite differencing
!! = 1/32 4th order finite differencing
!! For stability reasons, the first term of the fluxes which cor-
!! responds to a second order centered scheme is evaluated using
!! the now velocity (centered in time) while the second term which
!! is the diffusive part of the scheme, is evaluated using the
!! before velocity (forward in time).
!! Default value (hard coded in the begining of the module) are
!! gamma1=1/3 and gamma2=1/32.
!!
!! In RK3 time stepping case, the optional arguments
!! (pau,pav,paw) are present. They are used as advective velocity
!! while the advected velocity remains (puu,pvv).
!!
!! ** Action : (puu,pvv)(:,:,:,Krhs) updated with the advective trend
!!
!! Reference : Shchepetkin & McWilliams, 2005, Ocean Modelling.
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt , Kbb, Kmm, Krhs ! ocean time-step and level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), TARGET, INTENT(inout) :: puu, pvv ! ocean velocities and RHS of momentum equation
REAL(wp), DIMENSION(:,:,:), OPTIONAL, TARGET, INTENT(in ) :: pau, pav, paw ! advective velocity
REAL(wp) :: zui, zvj, zfuj, zfvi, zl_u, zl_v, zzu, zzv ! local scalars
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zfu_t, zfu_f, zfu_uw, zfu
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zfv_t, zfv_f, zfv_vw, zfv, zfw
REAL(wp), DIMENSION(A2D(nn_hls),jpk,2) :: zlu_uu, zlu_uv
REAL(wp), DIMENSION(A2D(nn_hls),jpk,2) :: zlv_vv, zlv_vu
REAL(wp), DIMENSION(:,:,:), POINTER :: zpt_u, zpt_v, zpt_w
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn_adv_ubs_hls1 : UBS flux form momentum advection'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
ENDIF
ENDIF
!
zfu_t(:,:,:) = 0._wp
zfv_t(:,:,:) = 0._wp
zfu_f(:,:,:) = 0._wp
zfv_f(:,:,:) = 0._wp
!
zlu_uu(:,:,:,:) = 0._wp
zlv_vv(:,:,:,:) = 0._wp
zlu_uv(:,:,:,:) = 0._wp
zlv_vu(:,:,:,:) = 0._wp
!
IF( l_trddyn ) THEN ! trends: store the input trends
zfu_uw(:,:,:) = puu(:,:,:,Krhs)
zfv_vw(:,:,:) = pvv(:,:,:,Krhs)
ENDIF
!
IF( PRESENT( pau ) ) THEN ! RK3: advective velocity (pau,pav,paw) /= advected velocity (puu,pvv,ww)
zpt_u => pau(:,:,:)
zpt_v => pav(:,:,:)
zpt_w => paw(:,:,:)
ELSE ! MLF: advective velocity = (puu,pvv,ww)
zpt_u => puu(:,:,:,Kmm)
zpt_v => pvv(:,:,:,Kmm)
zpt_w => ww (:,:,: )
ENDIF
!
! ! =========================== !
DO jk = 1, jpkm1 ! Laplacian of the velocity !
! ! =========================== !
! ! horizontal volume fluxes
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zfu(ji,jj,jk) = e2u(ji,jj) * e3u(ji,jj,jk,Kmm) * zpt_u(ji,jj,jk)
zfv(ji,jj,jk) = e1v(ji,jj) * e3v(ji,jj,jk,Kmm) * zpt_v(ji,jj,jk)
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
END_2D
!
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! laplacian
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zlu_uu(ji,jj,jk,1) = ( ( puu (ji+1,jj ,jk,Kbb) - puu (ji ,jj ,jk,Kbb) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( puu (ji-1,jj ,jk,Kbb) - puu (ji ,jj ,jk,Kbb) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& ) * umask(ji ,jj ,jk)
zlv_vv(ji,jj,jk,1) = ( ( pvv (ji ,jj+1,jk,Kbb) - pvv (ji ,jj ,jk,Kbb) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( pvv (ji ,jj-1,jk,Kbb) - pvv (ji ,jj ,jk,Kbb) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& ) * vmask(ji ,jj ,jk)
zlu_uv(ji,jj,jk,1) = ( puu (ji ,jj+1,jk,Kbb) - puu (ji ,jj ,jk,Kbb) ) * fmask(ji ,jj ,jk) &
& - ( puu (ji ,jj ,jk,Kbb) - puu (ji ,jj-1,jk,Kbb) ) * fmask(ji ,jj-1,jk)
zlv_vu(ji,jj,jk,1) = ( pvv (ji+1,jj ,jk,Kbb) - pvv (ji ,jj ,jk,Kbb) ) * fmask(ji ,jj ,jk) &
& - ( pvv (ji ,jj ,jk,Kbb) - pvv (ji-1,jj ,jk,Kbb) ) * fmask(ji-1,jj ,jk)
!
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zlu_uu(ji,jj,jk,2) = ( ( zfu(ji+1,jj ,jk) - zfu(ji ,jj ,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( zfu(ji-1,jj ,jk) - zfu(ji ,jj ,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& ) * umask(ji ,jj ,jk)
zlv_vv(ji,jj,jk,2) = ( ( zfv(ji ,jj+1,jk) - zfv(ji ,jj ,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( zfv(ji ,jj-1,jk) - zfv(ji ,jj ,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& ) * vmask(ji ,jj ,jk)
zlu_uv(ji,jj,jk,2) = ( zfu(ji ,jj+1,jk) - zfu(ji ,jj ,jk) ) * fmask(ji ,jj ,jk) &
& - ( zfu(ji ,jj ,jk) - zfu(ji ,jj-1,jk) ) * fmask(ji ,jj-1,jk)
zlv_vu(ji,jj,jk,2) = ( zfv(ji+1,jj ,jk) - zfv(ji ,jj ,jk) ) * fmask(ji ,jj ,jk) &
& - ( zfv(ji ,jj ,jk) - zfv(ji-1,jj ,jk) ) * fmask(ji-1,jj ,jk)
END_2D
END DO
IF( nn_hls == 1 ) CALL lbc_lnk( 'dynadv_ubs', zlu_uu(:,:,:,1), 'U', -1.0_wp , zlu_uv(:,:,:,1), 'U', -1.0_wp, &
& zlu_uu(:,:,:,2), 'U', -1.0_wp , zlu_uv(:,:,:,2), 'U', -1.0_wp, &
& zlv_vv(:,:,:,1), 'V', -1.0_wp , zlv_vu(:,:,:,1), 'V', -1.0_wp, &
& zlv_vv(:,:,:,2), 'V', -1.0_wp , zlv_vu(:,:,:,2), 'V', -1.0_wp )
!
! ! ====================== !
! ! Horizontal advection !
DO jk = 1, jpkm1 ! ====================== !
! ! horizontal volume fluxes
DO_2D( 1, 1, 1, 1 )
zfu(ji,jj,jk) = 0.25_wp * e2u(ji,jj) * e3u(ji,jj,jk,Kmm) * zpt_u(ji,jj,jk)
zfv(ji,jj,jk) = 0.25_wp * e1v(ji,jj) * e3v(ji,jj,jk,Kmm) * zpt_v(ji,jj,jk)
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
END_2D
!
DO_2D( 1, 0, 1, 0 ) ! horizontal momentum fluxes at T- and F-point
zui = ( puu(ji,jj,jk,Kmm) + puu(ji+1,jj ,jk,Kmm) )
zvj = ( pvv(ji,jj,jk,Kmm) + pvv(ji ,jj+1,jk,Kmm) )
!
IF( zui > 0 ) THEN ; zl_u = zlu_uu(ji ,jj,jk,1)
ELSE ; zl_u = zlu_uu(ji+1,jj,jk,1)
ENDIF
IF( zvj > 0 ) THEN ; zl_v = zlv_vv(ji,jj ,jk,1)
ELSE ; zl_v = zlv_vv(ji,jj+1,jk,1)
ENDIF
!
zfu_t(ji+1,jj ,jk) = ( zfu(ji,jj,jk) + zfu(ji+1,jj ,jk) &
& - gamma2 * ( zlu_uu(ji,jj,jk,2) + zlu_uu(ji+1,jj ,jk,2) ) ) &
& * ( zui - gamma1 * zl_u)
zfv_t(ji ,jj+1,jk) = ( zfv(ji,jj,jk) + zfv(ji ,jj+1,jk) &
& - gamma2 * ( zlv_vv(ji,jj,jk,2) + zlv_vv(ji ,jj+1,jk,2) ) ) &
& * ( zvj - gamma1 * zl_v)
!
zfuj = ( zfu(ji,jj,jk) + zfu(ji ,jj+1,jk) )
zfvi = ( zfv(ji,jj,jk) + zfv(ji+1,jj ,jk) )
IF( zfuj > 0 ) THEN ; zl_v = zlv_vu( ji ,jj ,jk,1)
ELSE ; zl_v = zlv_vu( ji+1,jj,jk,1)
ENDIF
IF( zfvi > 0 ) THEN ; zl_u = zlu_uv( ji,jj ,jk,1)
ELSE ; zl_u = zlu_uv( ji,jj+1,jk,1)
ENDIF
!
zfv_f(ji ,jj ,jk) = ( zfvi - gamma2 * ( zlv_vu(ji,jj,jk,2) + zlv_vu(ji+1,jj ,jk,2) ) ) &
& * ( puu(ji,jj,jk,Kmm) + puu(ji ,jj+1,jk,Kmm) - gamma1 * zl_u )
zfu_f(ji ,jj ,jk) = ( zfuj - gamma2 * ( zlu_uv(ji,jj,jk,2) + zlu_uv(ji ,jj+1,jk,2) ) ) &
& * ( pvv(ji,jj,jk,Kmm) + pvv(ji+1,jj ,jk,Kmm) - gamma1 * zl_v )
END_2D
DO_2D( 0, 0, 0, 0 ) ! divergence of horizontal momentum fluxes
puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) - ( zfu_t(ji+1,jj,jk) - zfu_t(ji,jj ,jk) &
& + zfv_f(ji ,jj,jk) - zfv_f(ji,jj-1,jk) ) * r1_e1e2u(ji,jj) &
& / e3u(ji,jj,jk,Kmm)
pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) - ( zfu_f(ji,jj ,jk) - zfu_f(ji-1,jj,jk) &
& + zfv_t(ji,jj+1,jk) - zfv_t(ji ,jj,jk) ) * r1_e1e2v(ji,jj) &
& / e3v(ji,jj,jk,Kmm)
END_2D
END DO
IF( l_trddyn ) THEN ! trends: send trends to trddyn for diagnostic
zfu_uw(:,:,:) = puu(:,:,:,Krhs) - zfu_uw(:,:,:)
zfv_vw(:,:,:) = pvv(:,:,:,Krhs) - zfv_vw(:,:,:)
CALL trd_dyn( zfu_uw, zfv_vw, jpdyn_keg, kt, Kmm )
zfu_t(:,:,:) = puu(:,:,:,Krhs)
zfv_t(:,:,:) = pvv(:,:,:,Krhs)
ENDIF
! ! ==================== !
! ! Vertical advection !
! ! ==================== !
!
DO_2D( 0, 0, 0, 0 ) ! surface/bottom advective fluxes set to zero
zfu_uw(ji,jj,jpk) = 0._wp
zfv_vw(ji,jj,jpk) = 0._wp
zfu_uw(ji,jj, 1 ) = 0._wp
zfv_vw(ji,jj, 1 ) = 0._wp
END_2D
IF( ln_linssh ) THEN ! constant volume : advection through the surface
DO_2D( 0, 0, 0, 0 )
zfu_uw(ji,jj,1) = 0.5_wp * ( e1e2t(ji,jj) * zpt_w(ji,jj,1) + e1e2t(ji+1,jj) * zpt_w(ji+1,jj,1) ) * puu(ji,jj,1,Kmm)
zfv_vw(ji,jj,1) = 0.5_wp * ( e1e2t(ji,jj) * zpt_w(ji,jj,1) + e1e2t(ji,jj+1) * zpt_w(ji,jj+1,1) ) * pvv(ji,jj,1,Kmm)
DO jk = 2, jpkm1 ! interior fluxes
DO_2D( 0, 1, 0, 1 )
zfw(ji,jj,jk) = 0.25_wp * e1e2t(ji,jj) * zpt_w(ji,jj,jk)
END_2D
DO_2D( 0, 0, 0, 0 )
zfu_uw(ji,jj,jk) = ( zfw(ji,jj,jk)+ zfw(ji+1,jj,jk) ) * ( puu(ji,jj,jk,Kmm) + puu(ji,jj,jk-1,Kmm) )
zfv_vw(ji,jj,jk) = ( zfw(ji,jj,jk)+ zfw(ji,jj+1,jk) ) * ( pvv(ji,jj,jk,Kmm) + pvv(ji,jj,jk-1,Kmm) )
END_2D
END DO
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) ! divergence of vertical momentum flux divergence
puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) - ( zfu_uw(ji,jj,jk) - zfu_uw(ji,jj,jk+1) ) * r1_e1e2u(ji,jj) &
& / e3u(ji,jj,jk,Kmm)
pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) - ( zfv_vw(ji,jj,jk) - zfv_vw(ji,jj,jk+1) ) * r1_e1e2v(ji,jj) &
& / e3v(ji,jj,jk,Kmm)
END_3D
IF( l_trddyn ) THEN ! save the vertical advection trend for diagnostic
zfu_t(:,:,:) = puu(:,:,:,Krhs) - zfu_t(:,:,:)
zfv_t(:,:,:) = pvv(:,:,:,Krhs) - zfv_t(:,:,:)
CALL trd_dyn( zfu_t, zfv_t, jpdyn_zad, kt, Kmm )
ENDIF
! ! Control print
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=puu(:,:,:,Krhs), clinfo1=' ubs2 adv - Ua: ', mask1=umask, &
& tab3d_2=pvv(:,:,:,Krhs), clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' )
!
END SUBROUTINE dyn_adv_ubs_hls1
!!==============================================================================
END MODULE dynadv_ubs