Skip to content
Snippets Groups Projects
ablmod.F90 63.3 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
MODULE ablmod
   !!======================================================================
   !!                       ***  MODULE  ablmod  ***
   !! Surface module :  ABL computation to provide atmospheric data
   !!                   for surface fluxes computation
   !!======================================================================
   !! History :  3.6  ! 2019-03  (F. Lemarié & G. Samson)  Original code
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   abl_stp       : ABL single column model
   !!   abl_zdf_tke   : atmospheric vertical closure
   !!----------------------------------------------------------------------
   USE abl            ! ABL dynamics and tracers
   USE par_abl        ! ABL constants

   USE phycst         ! physical constants
   USE dom_oce, ONLY  : tmask
   USE sbc_oce, ONLY  : ght_abl, ghw_abl, e3t_abl, e3w_abl, jpka, jpkam1, rhoa
   USE sbcblk         ! use rn_efac
   USE sbc_phy        ! Catalog of functions for physical/meteorological parameters in the marine boundary layer
   !
   USE prtctl         ! Print control                    (prt_ctl routine)
   USE iom            ! IOM library
   USE in_out_manager ! I/O manager
   USE lib_mpp        ! MPP library
   USE timing         ! Timing

   IMPLICIT NONE

   PUBLIC   abl_stp   ! called by sbcabl.F90
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   ustar2, zrough
   !! * Substitutions
#  include "do_loop_substitute.h90"

CONTAINS


!===================================================================================================
   SUBROUTINE abl_stp( kt, psst, pssu, pssv, pssq,            &     ! in
              &            pu_dta, pv_dta, pt_dta, pq_dta,    &
              &            pslp_dta, pgu_dta, pgv_dta,        &
              &            pcd_du, psen, pevp, plat,          &     ! in/out
              &            pwndm, ptaui, ptauj, ptaum         &
#if defined key_si3
              &          , ptm_su, pssu_ice, pssv_ice         &
              &          , pssq_ice, pcd_du_ice, psen_ice     &
              &          , pevp_ice, pwndm_ice, pfrac_oce     &
              &          , ptaui_ice, ptauj_ice               &
#endif
              &      )
!---------------------------------------------------------------------------------------------------

      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE abl_stp ***
      !!
      !! ** Purpose :   Time-integration of the ABL model
      !!
      !! ** Method  :   Compute atmospheric variables : vertical turbulence
      !!                             + Coriolis term + newtonian relaxation
      !!
      !! ** Action  : - Advance TKE to time n+1 and compute Avm_abl, Avt_abl, PBLh
      !!              - Advance tracers to time n+1 (Euler backward scheme)
      !!              - Compute Coriolis term with forward-backward scheme (possibly with geostrophic guide)
      !!              - Advance u,v to time n+1 (Euler backward scheme)
      !!              - Apply newtonian relaxation on the dynamics and the tracers
      !!              - Finalize flux computation in psen, pevp, pwndm, ptaui, ptauj, ptaum
      !!
      !!----------------------------------------------------------------------
      INTEGER  , INTENT(in   )                   ::   kt         ! time step index
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   psst       ! sea-surface temperature [Celsius]
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pssu       ! sea-surface u (U-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pssv       ! sea-surface v (V-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pssq       ! sea-surface humidity
      REAL(wp) , INTENT(in   ), DIMENSION(:,:,:) ::   pu_dta     ! large-scale windi
      REAL(wp) , INTENT(in   ), DIMENSION(:,:,:) ::   pv_dta     ! large-scale windj
      REAL(wp) , INTENT(in   ), DIMENSION(:,:,:) ::   pgu_dta    ! large-scale hpgi
      REAL(wp) , INTENT(in   ), DIMENSION(:,:,:) ::   pgv_dta    ! large-scale hpgj
      REAL(wp) , INTENT(in   ), DIMENSION(:,:,:) ::   pt_dta     ! large-scale pot. temp.
      REAL(wp) , INTENT(in   ), DIMENSION(:,:,:) ::   pq_dta     ! large-scale humidity
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pslp_dta   ! sea-level pressure
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pcd_du     ! Cd x Du (T-point)
      REAL(wp) , INTENT(inout), DIMENSION(:,:  ) ::   psen       ! Ch x Du
      REAL(wp) , INTENT(inout), DIMENSION(:,:  ) ::   pevp       ! Ce x Du
      REAL(wp) , INTENT(inout), DIMENSION(:,:  ) ::   pwndm      ! ||uwnd||
      REAL(wp) , INTENT(  out), DIMENSION(:,:  ) ::   plat       ! latent heat flux
      REAL(wp) , INTENT(  out), DIMENSION(:,:  ) ::   ptaui      ! taux
      REAL(wp) , INTENT(  out), DIMENSION(:,:  ) ::   ptauj      ! tauy
      REAL(wp) , INTENT(  out), DIMENSION(:,:  ) ::   ptaum      ! ||tau||
      !
#if defined key_si3
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   ptm_su       ! ice-surface temperature [K]
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pssu_ice     ! ice-surface u (U-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pssv_ice     ! ice-surface v (V-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pssq_ice     ! ice-surface humidity
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pcd_du_ice   ! Cd x Du over ice (T-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   psen_ice     ! Ch x Du over ice (T-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pevp_ice     ! Ce x Du over ice (T-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pwndm_ice    ! ||uwnd - uice||
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pfrac_oce    ! ocean fraction
      REAL(wp) , INTENT(  out), DIMENSION(:,:  ) ::   ptaui_ice    ! ice-surface taux stress (U-point)
      REAL(wp) , INTENT(  out), DIMENSION(:,:  ) ::   ptauj_ice    ! ice-surface tauy stress (V-point)
#endif
      !
      REAL(wp), DIMENSION(1:jpi,1:jpj       )    ::   zwnd_i, zwnd_j
      REAL(wp), DIMENSION(1:jpi      ,2:jpka)    ::   zCF
      !
      REAL(wp), DIMENSION(1:jpi      ,1:jpka)    ::   z_elem_a
      REAL(wp), DIMENSION(1:jpi      ,1:jpka)    ::   z_elem_b
      REAL(wp), DIMENSION(1:jpi      ,1:jpka)    ::   z_elem_c
      !
      INTEGER             ::   ji, jj, jk, jtra, jbak               ! dummy loop indices
      REAL(wp)            ::   zztmp, zcff, ztemp, zhumi, zcff1, zztmp1, zztmp2
      REAL(wp)            ::   zcff2, zfcor, zmsk, zsig, zcffu, zcffv, zzice,zzoce
      LOGICAL             ::   SemiImp_Cor = .TRUE.
      !
      !!---------------------------------------------------------------------
      !
      IF(lwp .AND. kt == nit000) THEN                  ! control print
         WRITE(numout,*)
         WRITE(numout,*) 'abl_stp : ABL time stepping'
         WRITE(numout,*) '~~~~~~'
      ENDIF
      !
      IF( kt == nit000 ) ALLOCATE ( ustar2( 1:jpi, 1:jpj ) )
      IF( kt == nit000 ) ALLOCATE ( zrough( 1:jpi, 1:jpj ) )
      !! Compute ustar squared as Cd || Uatm-Uoce ||^2
      !! needed for surface boundary condition of TKE
      !! pwndm contains | U10m - U_oce | (see blk_oce_1 in sbcblk)
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         zzoce         = pCd_du    (ji,jj) * pwndm    (ji,jj)
#if defined key_si3
         zzice         = pCd_du_ice(ji,jj) * pwndm_ice(ji,jj)
         ustar2(ji,jj) = zzoce * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * zzice
#else
         ustar2(ji,jj) = zzoce
#endif
         !#LB: sorry Cdn_oce is gone:
         !zrough(ji,jj) = ght_abl(2) * EXP( - vkarmn / SQRT( MAX( Cdn_oce(ji,jj), 1.e-4 ) ) ) !<-- recover the value of z0 from Cdn_oce
      END_2D

      zrough(:,:) = z0_from_Cd( ght_abl(2), pCd_du(:,:) / MAX( pwndm(:,:), 0.5_wp ) ) ! #LB: z0_from_Cd is define in sbc_phy.F90...

      !
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  1 *** Advance TKE to time n+1 and compute Avm_abl, Avt_abl, PBLh
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

      CALL abl_zdf_tke( )                       !--> Avm_abl, Avt_abl, pblh defined on (1,jpi) x (1,jpj)

      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  2 *** Advance tracers to time n+1
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

      !-------------
      DO jj = 1, jpj    ! outer loop             !--> tq_abl computed on (1:jpi) x (1:jpj)
      !-------------
         ! Compute matrix elements for interior points
         DO jk = 3, jpkam1
            DO ji = 1, jpi   ! vector opt.
               z_elem_a( ji, jk ) = - rDt_abl * Avt_abl( ji, jj, jk-1 ) / e3w_abl( jk-1 )   ! lower-diagonal
               z_elem_c( ji, jk ) = - rDt_abl * Avt_abl( ji, jj, jk   ) / e3w_abl( jk   )   ! upper-diagonal
               z_elem_b( ji, jk ) = e3t_abl(jk) - z_elem_a( ji, jk ) - z_elem_c( ji, jk )   !       diagonal
            END DO
         END DO
         ! Boundary conditions
         DO ji = 1, jpi   ! vector opt.
            ! Neumann at the bottom
            z_elem_a( ji,    2 ) = 0._wp
            z_elem_c( ji,    2 ) = - rDt_abl * Avt_abl( ji, jj,    2 ) / e3w_abl(    2 )
            ! Homogeneous Neumann at the top
            z_elem_a( ji, jpka ) = - rDt_abl * Avt_abl( ji, jj, jpka ) / e3w_abl( jpka )
            z_elem_c( ji, jpka ) = 0._wp
            z_elem_b( ji, jpka ) = e3t_abl( jpka ) - z_elem_a( ji, jpka )
         END DO

         DO jtra = 1,jptq  ! loop on active tracers

            DO jk = 3, jpkam1
               !DO ji = 2, jpim1
               DO ji = 1,jpi  !!GS: to be checked if needed
                  tq_abl( ji, jj, jk, nt_a, jtra ) = e3t_abl(jk) * tq_abl( ji, jj, jk, nt_n, jtra )   ! initialize right-hand-side
               END DO
            END DO

            IF(jtra == jp_ta) THEN
               DO ji = 1,jpi  ! surface boundary condition for temperature
                  zztmp1 = psen(ji, jj)
                  zztmp2 = psen(ji, jj) * ( psst(ji, jj) + rt0 )
#if defined key_si3
                  zztmp1 = zztmp1 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * psen_ice(ji,jj)
                  zztmp2 = zztmp2 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * psen_ice(ji,jj) * ptm_su(ji,jj)
#endif
                  z_elem_b( ji,        2             ) = e3t_abl(    2 ) - z_elem_c( ji,        2             ) + rDt_abl * zztmp1
                  tq_abl  ( ji, jj,    2, nt_a, jtra ) = e3t_abl(    2 ) * tq_abl  ( ji, jj,    2, nt_n, jtra ) + rDt_abl * zztmp2
                  tq_abl  ( ji, jj, jpka, nt_a, jtra ) = e3t_abl( jpka ) * tq_abl  ( ji, jj, jpka, nt_n, jtra )
               END DO
            ELSE ! jp_qa
               DO ji = 1,jpi  ! surface boundary condition for humidity
                  zztmp1 = pevp(ji, jj)
                  zztmp2 = pevp(ji, jj) * pssq(ji, jj)
#if defined key_si3
                  zztmp1 = zztmp1 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * pevp_ice(ji,jj)
                  zztmp2 = zztmp2 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * pevp_ice(ji, jj) * pssq_ice(ji, jj)
#endif
                  z_elem_b( ji,     2                ) = e3t_abl(    2 ) - z_elem_c( ji,        2             ) + rDt_abl * zztmp1
                  tq_abl  ( ji, jj, 2   , nt_a, jtra ) = e3t_abl(    2 ) * tq_abl  ( ji, jj,    2, nt_n, jtra ) + rDt_abl * zztmp2
                  tq_abl  ( ji, jj, jpka, nt_a, jtra ) = e3t_abl( jpka ) * tq_abl  ( ji, jj, jpka, nt_n, jtra )
               END DO
            END IF
            !!
            !! Matrix inversion
            !! ----------------------------------------------------------
            DO ji = 1,jpi
               zcff                            =  1._wp / z_elem_b( ji, 2 )
               zCF   ( ji,     2             ) = - zcff * z_elem_c( ji, 2 )
               tq_abl( ji, jj, 2, nt_a, jtra ) =   zcff * tq_abl( ji, jj, 2, nt_a, jtra )
            END DO

            DO jk = 3, jpka
               DO ji = 1,jpi
                  zcff = 1._wp / ( z_elem_b( ji, jk ) + z_elem_a( ji, jk ) * zCF( ji, jk-1 ) )
                  zCF(ji,jk) = - zcff * z_elem_c( ji, jk )
                  tq_abl(ji,jj,jk,nt_a,jtra) = zcff * ( tq_abl(ji,jj,jk  ,nt_a,jtra)   &
                     &           - z_elem_a(ji, jk) *   tq_abl(ji,jj,jk-1,nt_a,jtra) )
               END DO
            END DO
            !!FL at this point we could check positivity of tq_abl(:,:,:,nt_a,jp_qa) ... test to do ...
            DO jk = jpkam1,2,-1
               DO ji = 1,jpi
                  tq_abl(ji,jj,jk,nt_a,jtra) = tq_abl(ji,jj,jk,nt_a,jtra) +    &
                     &                        zCF(ji,jk) * tq_abl(ji,jj,jk+1,nt_a,jtra)
               END DO
            END DO

         END DO   !<-- loop on tracers
         !!
      !-------------
      END DO             ! end outer loop
      !-------------

      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  3 *** Compute Coriolis term with geostrophic guide
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      IF( SemiImp_Cor ) THEN

         !-------------
         DO jk = 2, jpka    ! outer loop
         !-------------
            !
            ! Advance u_abl & v_abl to time n+1
            DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
               zcff = ( fft_abl(ji,jj) * rDt_abl )*( fft_abl(ji,jj) * rDt_abl )  ! (f dt)**2

               u_abl( ji, jj, jk, nt_a ) = e3t_abl(jk) *(                                          &
                  &        (1._wp-gamma_Cor*(1._wp-gamma_Cor)*zcff) * u_abl( ji, jj, jk, nt_n )    &
                  &                     + rDt_abl * fft_abl(ji, jj) * v_abl( ji, jj, jk, nt_n ) )  &
                  &                               / (1._wp + gamma_Cor*gamma_Cor*zcff)

               v_abl( ji, jj, jk, nt_a ) =  e3t_abl(jk) *(                                         &
                  &        (1._wp-gamma_Cor*(1._wp-gamma_Cor)*zcff) * v_abl( ji, jj, jk, nt_n )    &
                  &                     - rDt_abl * fft_abl(ji, jj) * u_abl( ji, jj, jk, nt_n ) )  &
                  &                               / (1._wp + gamma_Cor*gamma_Cor*zcff)
            END_2D
            !
         !-------------
         END DO             ! end outer loop  !<-- u_abl and v_abl are properly updated on (1:jpi) x (1:jpj)
         !-------------
         !
         IF( ln_geos_winds ) THEN
            DO jj = 1, jpj    ! outer loop
               DO jk = 1, jpka
                  DO ji = 1, jpi
                     u_abl( ji, jj, jk, nt_a ) = u_abl( ji, jj, jk, nt_a )   &
                        &                      - rDt_abl * e3t_abl(jk) * fft_abl(ji  , jj) * pgv_dta(ji  ,jj  ,jk)
                     v_abl( ji, jj, jk, nt_a ) = v_abl( ji, jj, jk, nt_a )   &
                        &                      + rDt_abl * e3t_abl(jk) * fft_abl(ji, jj  ) * pgu_dta(ji  ,jj  ,jk)
                  END DO
               END DO
            END DO
         END IF
         !
         IF( ln_hpgls_frc ) THEN
            DO jj = 1, jpj    ! outer loop
               DO jk = 1, jpka
                  DO ji = 1, jpi
                     u_abl( ji, jj, jk, nt_a ) = u_abl( ji, jj, jk, nt_a ) - rDt_abl * e3t_abl(jk) * pgu_dta(ji,jj,jk)
                     v_abl( ji, jj, jk, nt_a ) = v_abl( ji, jj, jk, nt_a ) - rDt_abl * e3t_abl(jk) * pgv_dta(ji,jj,jk)
                  ENDDO
               ENDDO
            ENDDO
         END IF

      ELSE ! SemiImp_Cor = .FALSE.

         IF( ln_geos_winds ) THEN

            !-------------
            DO jk = 2, jpka    ! outer loop
            !-------------
               !
               IF( MOD( kt, 2 ) == 0 ) then
                  ! Advance u_abl & v_abl to time n+1
                  DO jj = 1, jpj
                     DO ji = 1, jpi
                        zcff = fft_abl(ji,jj) * ( v_abl ( ji , jj  , jk, nt_n ) - pgv_dta(ji  ,jj  ,jk)  )
                        u_abl( ji, jj, jk, nt_a ) =                u_abl( ji, jj, jk, nt_n ) + rDt_abl * zcff
                        zcff = fft_abl(ji,jj) * ( u_abl ( ji , jj  , jk, nt_a ) - pgu_dta(ji  ,jj  ,jk)  )
                        v_abl( ji, jj, jk, nt_a ) = e3t_abl(jk) *( v_abl( ji, jj, jk, nt_n ) - rDt_abl * zcff )
                        u_abl( ji, jj, jk, nt_a ) = e3t_abl(jk) *  u_abl( ji, jj, jk, nt_a )
                     END DO
                  END DO
               ELSE
                  DO jj = 1, jpj
                     DO ji = 1, jpi
                        zcff = fft_abl(ji,jj) * ( u_abl ( ji , jj  , jk, nt_n ) - pgu_dta(ji  ,jj  ,jk)  )
                        v_abl( ji, jj, jk, nt_a ) =                v_abl( ji, jj, jk, nt_n ) - rDt_abl * zcff
                        zcff = fft_abl(ji,jj) * ( v_abl ( ji , jj  , jk, nt_a ) - pgv_dta(ji  ,jj  ,jk)  )
                        u_abl( ji, jj, jk, nt_a ) = e3t_abl(jk) *( u_abl( ji, jj, jk, nt_n ) + rDt_abl * zcff )
                        v_abl( ji, jj, jk, nt_a ) = e3t_abl(jk) *  v_abl( ji, jj, jk, nt_a )
                     END DO
                  END DO
               END IF
               !
            !-------------
            END DO             ! end outer loop  !<-- u_abl and v_abl are properly updated on (1:jpi) x (1:jpj)
            !-------------

         ENDIF ! ln_geos_winds

      ENDIF ! SemiImp_Cor
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  4 *** Advance u,v to time n+1
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !
      !  Vertical diffusion for u_abl
      !-------------
      DO jj = 1, jpj    ! outer loop
      !-------------

         DO jk = 3, jpkam1
            DO ji = 1, jpi
               z_elem_a( ji, jk ) = - rDt_abl * Avm_abl( ji, jj, jk-1 ) / e3w_abl( jk-1 )  ! lower-diagonal
               z_elem_c( ji, jk ) = - rDt_abl * Avm_abl( ji, jj, jk   ) / e3w_abl( jk   )  ! upper-diagonal
               z_elem_b( ji, jk ) = e3t_abl(jk) - z_elem_a( ji, jk ) - z_elem_c( ji, jk )  !       diagonal
            END DO
         END DO

         DO ji = 2, jpi   ! boundary conditions   (Avm_abl and pcd_du must be available at ji=jpi)
            !++ Surface boundary condition
            z_elem_a( ji, 2 ) = 0._wp
            z_elem_c( ji, 2 ) = - rDt_abl * Avm_abl( ji, jj, 2 ) / e3w_abl( 2 )
            !
            zztmp1  = pcd_du(ji, jj)
            zztmp2  = 0.5_wp * pcd_du(ji, jj) * ( pssu(ji-1, jj) + pssu(ji,jj) )
#if defined key_si3
            zztmp1 = zztmp1 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * pcd_du_ice(ji, jj)
            zzice  = 0.5_wp * ( pssu_ice(ji-1, jj) + pssu_ice(ji, jj) )
            zztmp2 = zztmp2 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * pcd_du_ice(ji, jj) * zzice
#endif
            z_elem_b( ji,     2       ) = e3t_abl( 2 ) - z_elem_c( ji, 2 ) + rDt_abl * zztmp1
            u_abl( ji, jj,    2, nt_a ) =      u_abl( ji, jj,    2, nt_a ) + rDt_abl * zztmp2

            ! idealized test cases only
            !IF( ln_topbc_neumann ) THEN
            !   !++ Top Neumann B.C.
            !   z_elem_a( ji,     jpka ) = - rDt_abl * Avm_abl( ji, jj, jpka ) / e3w_abl( jpka )
            !   z_elem_c( ji,     jpka ) = 0._wp
            !   z_elem_b( ji,     jpka ) = e3t_abl( jpka ) - z_elem_a( ji,     jpka )
            !   !u_abl   ( ji, jj, jpka, nt_a ) = e3t_abl( jpka ) * u_abl   ( ji, jj, jpka, nt_a )
            !ELSE
               !++ Top Dirichlet B.C.
               z_elem_a( ji,     jpka )       = 0._wp
               z_elem_c( ji,     jpka )       = 0._wp
               z_elem_b( ji,     jpka )       = e3t_abl( jpka )
               u_abl   ( ji, jj, jpka, nt_a ) = e3t_abl( jpka ) * pu_dta(ji,jj,jk)
            !ENDIF

         END DO
         !!
         !! Matrix inversion
         !! ----------------------------------------------------------
         !DO ji = 2, jpi
         DO ji = 1, jpi  !!GS: TBI
            zcff                 =   1._wp / z_elem_b( ji, 2 )
            zCF   (ji,   2     ) =  - zcff * z_elem_c( ji, 2 )
            u_abl (ji,jj,2,nt_a) =    zcff * u_abl(ji,jj,2,nt_a)
         END DO

         DO jk = 3, jpka
            DO ji = 2, jpi
               zcff = 1._wp / ( z_elem_b( ji, jk ) + z_elem_a( ji, jk ) * zCF   (ji, jk-1 ) )
               zCF(ji,jk) = - zcff * z_elem_c( ji, jk )
               u_abl(ji,jj,jk,nt_a) = zcff * ( u_abl(ji,jj,jk  ,nt_a)   &
               &          - z_elem_a(ji, jk) * u_abl(ji,jj,jk-1,nt_a) )
            END DO
         END DO

         DO jk = jpkam1,2,-1
            DO ji = 2, jpi
               u_abl(ji,jj,jk,nt_a) = u_abl(ji,jj,jk,nt_a) + zCF(ji,jk) * u_abl(ji,jj,jk+1,nt_a)
            END DO
         END DO

      !-------------
      END DO             ! end outer loop
      !-------------

      !
      !  Vertical diffusion for v_abl
      !-------------
      DO jj = 2, jpj   ! outer loop
      !-------------
         !
         DO jk = 3, jpkam1
            DO ji = 1, jpi
               z_elem_a( ji, jk ) = -rDt_abl * Avm_abl( ji, jj, jk-1 ) / e3w_abl( jk-1 )   ! lower-diagonal
               z_elem_c( ji, jk ) = -rDt_abl * Avm_abl( ji, jj, jk   ) / e3w_abl( jk   )   ! upper-diagonal
               z_elem_b( ji, jk ) = e3t_abl(jk) - z_elem_a( ji, jk ) - z_elem_c( ji, jk )                              !       diagonal
            END DO
         END DO

         DO ji = 1, jpi   ! boundary conditions (Avm_abl and pcd_du must be available at jj=jpj)
            !++ Surface boundary condition
            z_elem_a( ji, 2 ) = 0._wp
            z_elem_c( ji, 2 ) = - rDt_abl * Avm_abl( ji, jj, 2 ) / e3w_abl( 2 )
            !
            zztmp1 = pcd_du(ji, jj)
            zztmp2 = 0.5_wp * pcd_du(ji, jj) * ( pssv(ji, jj) + pssv(ji, jj-1) )
#if defined key_si3
            zztmp1 = zztmp1 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * pcd_du_ice(ji, jj)
            zzice  = 0.5_wp * ( pssv_ice(ji, jj) + pssv_ice(ji, jj-1) )
            zztmp2 = zztmp2 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * pcd_du_ice(ji, jj) * zzice
#endif
            z_elem_b( ji,     2       ) = e3t_abl( 2 ) - z_elem_c( ji, 2 ) + rDt_abl * zztmp1
            v_abl( ji, jj,    2, nt_a ) =         v_abl( ji, jj, 2, nt_a ) + rDt_abl * zztmp2

            ! idealized test cases only
            !IF( ln_topbc_neumann ) THEN
            !   !++ Top Neumann B.C.
            !   z_elem_a( ji,     jpka ) = - rDt_abl * Avm_abl( ji, jj, jpka ) / e3w_abl( jpka )
            !   z_elem_c( ji,     jpka ) = 0._wp
            !   z_elem_b( ji,     jpka ) = e3t_abl( jpka ) - z_elem_a( ji,     jpka )
            !   !v_abl   ( ji, jj, jpka, nt_a ) = e3t_abl( jpka ) * v_abl   ( ji, jj, jpka, nt_a )
            !ELSE
               !++ Top Dirichlet B.C.
               z_elem_a( ji,     jpka )       = 0._wp
               z_elem_c( ji,     jpka )       = 0._wp
               z_elem_b( ji,     jpka )       = e3t_abl( jpka )
               v_abl   ( ji, jj, jpka, nt_a ) = e3t_abl( jpka ) * pv_dta(ji,jj,jk)
            !ENDIF

         END DO
         !!
         !! Matrix inversion
         !! ----------------------------------------------------------
         DO ji = 1, jpi
            zcff                 =  1._wp / z_elem_b( ji, 2 )
            zCF   (ji,   2     ) =   - zcff * z_elem_c( ji,     2       )
            v_abl (ji,jj,2,nt_a) =     zcff * v_abl   ( ji, jj, 2, nt_a )
         END DO

         DO jk = 3, jpka
            DO ji = 1, jpi
               zcff = 1._wp / ( z_elem_b( ji, jk ) + z_elem_a( ji, jk ) * zCF   (ji, jk-1 ) )
               zCF(ji,jk) = - zcff * z_elem_c( ji, jk )
               v_abl(ji,jj,jk,nt_a) = zcff * ( v_abl(ji,jj,jk  ,nt_a)   &
               &          - z_elem_a(ji, jk) * v_abl(ji,jj,jk-1,nt_a) )
            END DO
         END DO

         DO jk = jpkam1,2,-1
            DO ji = 1, jpi
               v_abl(ji,jj,jk,nt_a) = v_abl(ji,jj,jk,nt_a) + zCF(ji,jk) * v_abl(ji,jj,jk+1,nt_a)
            END DO
         END DO
         !
      !-------------
      END DO             ! end outer loop
      !-------------

      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  5 *** Apply nudging on the dynamics and the tracers
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

      IF( nn_dyn_restore > 0  ) THEN
         !-------------
         DO jk = 2, jpka    ! outer loop
         !-------------
            DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls )
               zcff1 = pblh( ji, jj )
               zsig  = ght_abl(jk) / MAX( jp_pblh_min,  MIN(  jp_pblh_max, zcff1  ) )
               zsig  =               MIN( jp_bmax    ,  MAX(         zsig, jp_bmin) )
               zmsk  = msk_abl(ji,jj)
               zcff2 = jp_alp3_dyn * zsig**3 + jp_alp2_dyn * zsig**2   &
                  &  + jp_alp1_dyn * zsig    + jp_alp0_dyn
               zcff  = (1._wp-zmsk) + zmsk * zcff2 * rn_Dt   ! zcff = 1 for masked points
                                                             ! rn_Dt = rDt_abl / nn_fsbc
               zcff  = zcff * rest_eq(ji,jj)
               u_abl( ji, jj, jk, nt_a ) = (1._wp - zcff ) *  u_abl( ji, jj, jk, nt_a )   &
                  &                               + zcff   * pu_dta( ji, jj, jk       )
               v_abl( ji, jj, jk, nt_a ) = (1._wp - zcff ) *  v_abl( ji, jj, jk, nt_a )   &
                  &                               + zcff   * pv_dta( ji, jj, jk       )
            END_2D
         !-------------
         END DO             ! end outer loop
         !-------------
      END IF

      !-------------
      DO jk = 2, jpka    ! outer loop
      !-------------
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            zcff1 = pblh( ji, jj )
            zsig  = ght_abl(jk) / MAX( jp_pblh_min,  MIN(  jp_pblh_max, zcff1  ) )
            zsig  =               MIN( jp_bmax    ,  MAX(         zsig, jp_bmin) )
            zmsk  = msk_abl(ji,jj)
            zcff2 = jp_alp3_tra * zsig**3 + jp_alp2_tra * zsig**2   &
               &  + jp_alp1_tra * zsig    + jp_alp0_tra
            zcff  = (1._wp-zmsk) + zmsk * zcff2 * rn_Dt   ! zcff = 1 for masked points
                                                          ! rn_Dt = rDt_abl / nn_fsbc
            tq_abl( ji, jj, jk, nt_a, jp_ta ) = (1._wp - zcff ) * tq_abl( ji, jj, jk, nt_a, jp_ta )   &
               &                                       + zcff   * pt_dta( ji, jj, jk )

            tq_abl( ji, jj, jk, nt_a, jp_qa ) = (1._wp - zcff ) * tq_abl( ji, jj, jk, nt_a, jp_qa )   &
               &                                       + zcff   * pq_dta( ji, jj, jk )

         END_2D
      !-------------
      END DO             ! end outer loop
      !-------------
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  6 *** MPI exchanges & IOM outputs
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !
      CALL lbc_lnk( 'ablmod',  u_abl(:,:,:,nt_a      ), 'T', -1._wp,  v_abl(:,:,:,nt_a)      , 'T', -1._wp                            )
      CALL lbc_lnk( 'ablmod', tq_abl(:,:,:,nt_a,jp_ta), 'T', 1._wp , tq_abl(:,:,:,nt_a,jp_qa), 'T',  1._wp , kfillmode = jpfillnothing )   ! ++++ this should not be needed...
      !
#if defined key_xios
      ! 2D & first ABL level
      IF ( iom_use("pblh"   ) ) CALL iom_put (    "pblh",    pblh(:,:             ) )
      IF ( iom_use("uz1_abl") ) CALL iom_put ( "uz1_abl",   u_abl(:,:,2,nt_a      ) )
      IF ( iom_use("vz1_abl") ) CALL iom_put ( "vz1_abl",   v_abl(:,:,2,nt_a      ) )
      IF ( iom_use("tz1_abl") ) CALL iom_put ( "tz1_abl",  tq_abl(:,:,2,nt_a,jp_ta) )
      IF ( iom_use("qz1_abl") ) CALL iom_put ( "qz1_abl",  tq_abl(:,:,2,nt_a,jp_qa) )
      IF ( iom_use("uz1_dta") ) CALL iom_put ( "uz1_dta",  pu_dta(:,:,2           ) )
      IF ( iom_use("vz1_dta") ) CALL iom_put ( "vz1_dta",  pv_dta(:,:,2           ) )
      IF ( iom_use("tz1_dta") ) CALL iom_put ( "tz1_dta",  pt_dta(:,:,2           ) )
      IF ( iom_use("qz1_dta") ) CALL iom_put ( "qz1_dta",  pq_dta(:,:,2           ) )
      ! debug 2D
      IF( ln_geos_winds ) THEN
         IF ( iom_use("uz1_geo") ) CALL iom_put ( "uz1_geo", pgu_dta(:,:,2) )
         IF ( iom_use("vz1_geo") ) CALL iom_put ( "vz1_geo", pgv_dta(:,:,2) )
      END IF
      IF( ln_hpgls_frc ) THEN
         IF ( iom_use("uz1_geo") ) CALL iom_put ( "uz1_geo",  pgu_dta(:,:,2)/MAX(fft_abl(:,:),2.5e-5_wp) )
         IF ( iom_use("vz1_geo") ) CALL iom_put ( "vz1_geo", -pgv_dta(:,:,2)/MAX(fft_abl(:,:),2.5e-5_wp) )
      END IF
      ! 3D (all ABL levels)
      IF ( iom_use("u_abl"   ) ) CALL iom_put ( "u_abl"   ,    u_abl(:,:,2:jpka,nt_a      ) )
      IF ( iom_use("v_abl"   ) ) CALL iom_put ( "v_abl"   ,    v_abl(:,:,2:jpka,nt_a      ) )
      IF ( iom_use("t_abl"   ) ) CALL iom_put ( "t_abl"   ,   tq_abl(:,:,2:jpka,nt_a,jp_ta) )
      IF ( iom_use("q_abl"   ) ) CALL iom_put ( "q_abl"   ,   tq_abl(:,:,2:jpka,nt_a,jp_qa) )
      IF ( iom_use("tke_abl" ) ) CALL iom_put ( "tke_abl" ,  tke_abl(:,:,2:jpka,nt_a      ) )
      IF ( iom_use("avm_abl" ) ) CALL iom_put ( "avm_abl" ,  avm_abl(:,:,2:jpka           ) )
      IF ( iom_use("avt_abl" ) ) CALL iom_put ( "avt_abl" ,  avt_abl(:,:,2:jpka           ) )
      IF ( iom_use("mxlm_abl") ) CALL iom_put ( "mxlm_abl", mxlm_abl(:,:,2:jpka           ) )
      IF ( iom_use("mxld_abl") ) CALL iom_put ( "mxld_abl", mxld_abl(:,:,2:jpka           ) )
      ! debug 3D
      IF ( iom_use("u_dta") ) CALL iom_put ( "u_dta",  pu_dta(:,:,2:jpka) )
      IF ( iom_use("v_dta") ) CALL iom_put ( "v_dta",  pv_dta(:,:,2:jpka) )
      IF ( iom_use("t_dta") ) CALL iom_put ( "t_dta",  pt_dta(:,:,2:jpka) )
      IF ( iom_use("q_dta") ) CALL iom_put ( "q_dta",  pq_dta(:,:,2:jpka) )
      IF( ln_geos_winds ) THEN
         IF ( iom_use("u_geo") ) CALL iom_put ( "u_geo", pgu_dta(:,:,2:jpka) )
         IF ( iom_use("v_geo") ) CALL iom_put ( "v_geo", pgv_dta(:,:,2:jpka) )
      END IF
      IF( ln_hpgls_frc ) THEN
         IF ( iom_use("u_geo") ) CALL iom_put ( "u_geo",  pgu_dta(:,:,2:jpka)/MAX( RESHAPE( fft_abl(:,:), (/jpi,jpj,jpka-1/), fft_abl(:,:)), 2.5e-5_wp) )
         IF ( iom_use("v_geo") ) CALL iom_put ( "v_geo", -pgv_dta(:,:,2:jpka)/MAX( RESHAPE( fft_abl(:,:), (/jpi,jpj,jpka-1/), fft_abl(:,:)), 2.5e-5_wp) )
      END IF
#endif
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  7 *** Finalize flux computation
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         ztemp          =  tq_abl( ji, jj, 2, nt_a, jp_ta )
         zhumi          =  tq_abl( ji, jj, 2, nt_a, jp_qa )
         zcff           = rho_air( ztemp, zhumi, pslp_dta( ji, jj ) )
         psen( ji, jj ) =    - cp_air(zhumi) * zcff * psen(ji,jj) * ( psst(ji,jj) + rt0 - ztemp )   !GS: negative sign to respect aerobulk convention
         pevp( ji, jj ) = rn_efac*MAX( 0._wp,  zcff * pevp(ji,jj) * ( pssq(ji,jj)       - zhumi ) )
         plat( ji, jj ) = - L_vap( psst(ji,jj) ) * pevp( ji, jj )
         rhoa( ji, jj ) = zcff
      END_2D

      DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls )
         zwnd_i(ji,jj) = u_abl(ji  ,jj,2,nt_a) - 0.5_wp * ( pssu(ji  ,jj) + pssu(ji-1,jj) )
         zwnd_j(ji,jj) = v_abl(ji,jj  ,2,nt_a) - 0.5_wp * ( pssv(ji,jj  ) + pssv(ji,jj-1) )
      END_2D
      !
      CALL lbc_lnk( 'ablmod', zwnd_i(:,:) , 'T', -1.0_wp, zwnd_j(:,:) , 'T', -1.0_wp )
      !
      ! ... scalar wind ( = | U10m - U_oce | ) at T-point (masked)
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         zcff          = SQRT(  zwnd_i(ji,jj) * zwnd_i(ji,jj)   &
            &                 + zwnd_j(ji,jj) * zwnd_j(ji,jj) )   ! * msk_abl(ji,jj)
         zztmp         = rhoa(ji,jj) * pcd_du(ji,jj)

         pwndm (ji,jj) =         zcff
         ptaum (ji,jj) = zztmp * zcff
         zwnd_i(ji,jj) = zztmp * zwnd_i(ji,jj)
         zwnd_j(ji,jj) = zztmp * zwnd_j(ji,jj)
      END_2D
      ! ... utau, vtau at U- and V_points, resp.
      !     Note the use of 0.5*(2-umask) in order to unmask the stress along coastlines
      !     Note the use of MAX(tmask(i,j),tmask(i+1,j) is to mask tau over ice shelves
      DO_2D( 0, 0, 0, 0 )
         zcff  = 0.5_wp * ( 2._wp - msk_abl(ji,jj)*msk_abl(ji+1,jj) )
         zztmp = MAX(msk_abl(ji,jj),msk_abl(ji+1,jj))
         ptaui(ji,jj) = zcff * zztmp * ( zwnd_i(ji,jj) + zwnd_i(ji+1,jj  ) )
         zcff  = 0.5_wp * ( 2._wp - msk_abl(ji,jj)*msk_abl(ji,jj+1) )
         zztmp = MAX(msk_abl(ji,jj),msk_abl(ji,jj+1))
         ptauj(ji,jj) = zcff * zztmp * ( zwnd_j(ji,jj) + zwnd_j(ji  ,jj+1) )
      END_2D
      !
      CALL lbc_lnk( 'ablmod', ptaui(:,:), 'U', -1.0_wp, ptauj(:,:), 'V', -1.0_wp )

      CALL iom_put( "taum_oce", ptaum )

      IF(sn_cfctl%l_prtctl) THEN
         CALL prt_ctl( tab2d_1=ptaui , clinfo1=' abl_stp: utau   : ', mask1=umask,   &
            &          tab2d_2=ptauj , clinfo2='          vtau   : ', mask2=vmask )
         CALL prt_ctl( tab2d_1=pwndm , clinfo1=' abl_stp: wndm   : ' )
      ENDIF

#if defined key_si3
      ! ------------------------------------------------------------ !
      !    Wind stress relative to the moving ice ( U10m - U_ice )   !
      ! ------------------------------------------------------------ !
      DO_2D( 0, 0, 0, 0 )
         ptaui_ice(ji,jj) = 0.5_wp * ( rhoa(ji+1,jj) * pCd_du_ice(ji+1,jj) + rhoa(ji,jj) * pCd_du_ice(ji,jj)      )   &
            &                      * ( 0.5_wp * ( u_abl(ji+1,jj,2,nt_a) + u_abl(ji,jj,2,nt_a) ) - pssu_ice(ji,jj) )
         ptauj_ice(ji,jj) = 0.5_wp * ( rhoa(ji,jj+1) * pCd_du_ice(ji,jj+1) + rhoa(ji,jj) * pCd_du_ice(ji,jj)      )   &
            &                      * ( 0.5_wp * ( v_abl(ji,jj+1,2,nt_a) + v_abl(ji,jj,2,nt_a) ) - pssv_ice(ji,jj) )
      END_2D
      CALL lbc_lnk( 'ablmod', ptaui_ice, 'U', -1.0_wp, ptauj_ice, 'V', -1.0_wp )
      !
      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab2d_1=ptaui_ice  , clinfo1=' abl_stp: putaui : '   &
         &                                , tab2d_2=ptauj_ice  , clinfo2='          pvtaui : ' )
      ! ------------------------------------------------------------ !
      !    Wind stress relative to the moving ice ( U10m - U_ice )   !
      ! ------------------------------------------------------------ !
      DO_2D( 0, 0, 0, 0 )

         zztmp1 = 0.5_wp * ( u_abl(ji+1,jj  ,2,nt_a) + u_abl(ji,jj,2,nt_a) )
         zztmp2 = 0.5_wp * ( v_abl(ji  ,jj+1,2,nt_a) + v_abl(ji,jj,2,nt_a) )

         ptaui_ice(ji,jj) = 0.5_wp * (  rhoa(ji+1,jj) * pCd_du_ice(ji+1,jj)             &
            &                      +    rhoa(ji  ,jj) * pCd_du_ice(ji  ,jj)  )          &
            &         * ( zztmp1 - pssu_ice(ji,jj) )
         ptauj_ice(ji,jj) = 0.5_wp * (  rhoa(ji,jj+1) * pCd_du_ice(ji,jj+1)             &
            &                      +    rhoa(ji,jj  ) * pCd_du_ice(ji,jj  )  )          &
            &         * ( zztmp2 - pssv_ice(ji,jj) )
      END_2D
      CALL lbc_lnk( 'ablmod', ptaui_ice, 'U', -1.0_wp, ptauj_ice,'V', -1.0_wp )
      !
      IF(sn_cfctl%l_prtctl) THEN
         CALL prt_ctl( tab2d_1=ptaui_ice , clinfo1=' abl_stp: utau_ice : ', mask1=umask,   &
            &          tab2d_2=ptauj_ice , clinfo2='          vtau_ice : ', mask2=vmask )
      END IF
#endif
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  8 *** Swap time indices for the next timestep
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      nt_n = 1 + MOD( nt_n, 2)
      nt_a = 1 + MOD( nt_a, 2)
      !
!---------------------------------------------------------------------------------------------------
   END SUBROUTINE abl_stp
!===================================================================================================




!===================================================================================================
   SUBROUTINE abl_zdf_tke( )
!---------------------------------------------------------------------------------------------------

      !!----------------------------------------------------------------------
      !!                   ***  ROUTINE abl_zdf_tke  ***
      !!
      !! ** Purpose :   Time-step Turbulente Kinetic Energy (TKE) equation
      !!
      !! ** Method  : - source term due to shear
      !!              - source term due to stratification
      !!              - resolution of the TKE equation by inverting
      !!                a tridiagonal linear system
      !!
      !! ** Action  : - en : now turbulent kinetic energy)
      !!              - avmu, avmv : production of TKE by shear at u and v-points
      !!                (= Kz dz[Ub] * dz[Un] )
      !! ---------------------------------------------------------------------
      INTEGER                                 ::   ji, jj, jk, tind, jbak, jkup, jkdwn
      INTEGER, DIMENSION(1:jpi          )     ::   ikbl
      REAL(wp)                                ::   zcff, zcff2, ztken, zesrf, zetop, ziRic, ztv
      REAL(wp)                                ::   zdU , zdV , zcff1, zshear, zbuoy, zsig, zustar2
      REAL(wp)                                ::   zdU2, zdV2, zbuoy1, zbuoy2    ! zbuoy for BL89
      REAL(wp)                                ::   zwndi, zwndj
      REAL(wp), DIMENSION(1:jpi,      1:jpka) ::   zsh2
      REAL(wp), DIMENSION(1:jpi,1:jpj,1:jpka) ::   zbn2
      REAL(wp), DIMENSION(1:jpi,1:jpka  )     ::   zFC, zRH, zCF
      REAL(wp), DIMENSION(1:jpi,1:jpka  )     ::   z_elem_a
      REAL(wp), DIMENSION(1:jpi,1:jpka  )     ::   z_elem_b
      REAL(wp), DIMENSION(1:jpi,1:jpka  )     ::   z_elem_c
      LOGICAL                                 ::   ln_Patankar    = .FALSE.
      LOGICAL                                 ::   ln_dumpvar     = .FALSE.
      LOGICAL , DIMENSION(1:jpi         )     ::   ln_foundl
      !
      tind  = nt_n
      ziRic = 1._wp / rn_Ric
      ! if tind = nt_a it is required to apply lbc_lnk on u_abl(nt_a) and v_abl(nt_a)
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  Advance TKE equation to time n+1
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !-------------
      DO jj = 1, jpj    ! outer loop
      !-------------
         !
         ! Compute vertical shear
         DO jk = 2, jpkam1
            DO ji = 1, jpi
               zcff        = 1.0_wp / e3w_abl( jk )**2
               zdU         = zcff* Avm_abl(ji,jj,jk) * (u_abl( ji, jj, jk+1, tind)-u_abl( ji, jj, jk  , tind) )**2
               zdV         = zcff* Avm_abl(ji,jj,jk) * (v_abl( ji, jj, jk+1, tind)-v_abl( ji, jj, jk  , tind) )**2
               zsh2(ji,jk) = zdU+zdV   !<-- zsh2 = Km ( ( du/dz )^2 + ( dv/dz )^2 )
            END DO
         END DO
         !
         ! Compute brunt-vaisala frequency
         DO jk = 2, jpkam1
            DO ji = 1,jpi
               zcff  = grav * itvref / e3w_abl( jk )
               zcff1 =  tq_abl( ji, jj, jk+1, tind, jp_ta) - tq_abl( ji, jj, jk  , tind, jp_ta)
               zcff2 =  tq_abl( ji, jj, jk+1, tind, jp_ta) * tq_abl( ji, jj, jk+1, tind, jp_qa)        &
                  &   - tq_abl( ji, jj, jk  , tind, jp_ta) * tq_abl( ji, jj, jk  , tind, jp_qa)
               zbn2(ji,jj,jk) = zcff * ( zcff1 + rctv0 * zcff2 )  !<-- zbn2 defined on (2,jpi)
            END DO
         END DO
         !
         ! Terms for the tridiagonal problem
         DO jk = 2, jpkam1
            DO ji = 1, jpi
               zshear      = zsh2( ji, jk )                           ! zsh2 is already multiplied by Avm_abl at this point
               zsh2(ji,jk) = zsh2( ji, jk ) / Avm_abl( ji, jj, jk )   ! reformulate zsh2 as a 'true' vertical shear for PBLH computation
               zbuoy       = - Avt_abl( ji, jj, jk ) * zbn2( ji, jj, jk )

               z_elem_a( ji, jk ) = - 0.5_wp * rDt_abl * rn_Sch * ( Avm_abl( ji, jj, jk ) + Avm_abl( ji, jj, jk-1 ) ) / e3t_abl( jk   ) ! lower-diagonal
               z_elem_c( ji, jk ) = - 0.5_wp * rDt_abl * rn_Sch * ( Avm_abl( ji, jj, jk ) + Avm_abl( ji, jj, jk+1 ) ) / e3t_abl( jk+1 ) ! upper-diagonal
               IF( (zbuoy + zshear) .gt. 0.) THEN    ! Patankar trick to avoid negative values of TKE
                  z_elem_b( ji, jk ) = e3w_abl(jk) - z_elem_a( ji, jk ) - z_elem_c( ji, jk )   &
                     &               + e3w_abl(jk) * rDt_abl * rn_Ceps * sqrt(tke_abl( ji, jj, jk, nt_n )) / mxld_abl(ji,jj,jk)    ! diagonal
                  tke_abl( ji, jj, jk, nt_a ) = e3w_abl(jk) * ( tke_abl( ji, jj, jk, nt_n ) + rDt_abl * ( zbuoy + zshear ) )       ! right-hand-side
               ELSE
                  z_elem_b( ji, jk ) = e3w_abl(jk) - z_elem_a( ji, jk ) - z_elem_c( ji, jk )   &
                     &               + e3w_abl(jk) * rDt_abl * rn_Ceps * sqrt(tke_abl( ji, jj, jk, nt_n )) / mxld_abl(ji,jj,jk)   &  ! diagonal
                     &               - e3w_abl(jk) * rDt_abl * zbuoy
                  tke_abl( ji, jj, jk, nt_a ) = e3w_abl(jk) * ( tke_abl( ji, jj, jk, nt_n ) + rDt_abl *  zshear )                    ! right-hand-side
               END IF
            END DO
         END DO

         DO ji = 1,jpi    ! vector opt.
            zesrf = MAX( rn_Esfc * ustar2(ji,jj), tke_min )
            zetop = tke_min

            z_elem_a ( ji,     1       ) = 0._wp
            z_elem_c ( ji,     1       ) = 0._wp
            z_elem_b ( ji,     1       ) = 1._wp
            tke_abl  ( ji, jj, 1, nt_a ) = zesrf

            !++ Top Neumann B.C.
            !z_elem_a ( ji,     jpka       ) = - 0.5 * rDt_abl * rn_Sch * (Avm_abl(ji,jj, jpka-1 )+Avm_abl(ji,jj, jpka ))  / e3t_abl( jpka )
            !z_elem_c ( ji,     jpka       ) = 0._wp
            !z_elem_b ( ji,     jpka       ) = e3w_abl(jpka) - z_elem_a(ji, jpka )
            !tke_abl  ( ji, jj, jpka, nt_a ) = e3w_abl(jpka) * tke_abl( ji,jj, jpka, nt_n )

            !++ Top Dirichlet B.C.
            z_elem_a ( ji,     jpka       ) = 0._wp
            z_elem_c ( ji,     jpka       ) = 0._wp
            z_elem_b ( ji,     jpka       ) = 1._wp
            tke_abl  ( ji, jj, jpka, nt_a ) = zetop

            zbn2 ( ji, jj,    1 ) = zbn2 ( ji, jj,      2 )
            zsh2 ( ji,        1 ) = zsh2 ( ji,          2 )
            zbn2 ( ji, jj, jpka ) = zbn2 ( ji, jj, jpkam1 )
            zsh2 ( ji,     jpka ) = zsh2 ( ji    , jpkam1 )
         END DO
         !!
         !! Matrix inversion
         !! ----------------------------------------------------------
         DO ji = 1,jpi
            zcff                  =  1._wp / z_elem_b( ji, 1 )
            zCF    (ji,   1     ) = - zcff * z_elem_c( ji,     1       )
            tke_abl(ji,jj,1,nt_a) =   zcff * tke_abl ( ji, jj, 1, nt_a )
         END DO

         DO jk = 2, jpka
            DO ji = 1,jpi
               zcff = 1._wp / ( z_elem_b( ji, jk ) + z_elem_a( ji, jk ) * zCF(ji, jk-1 ) )
               zCF(ji,jk) = - zcff * z_elem_c( ji, jk )
               tke_abl(ji,jj,jk,nt_a) =   zcff * ( tke_abl(ji,jj,jk  ,nt_a)   &
               &          - z_elem_a(ji, jk) * tke_abl(ji,jj,jk-1,nt_a) )
            END DO
         END DO

         DO jk = jpkam1,1,-1
            DO ji = 1,jpi
               tke_abl(ji,jj,jk,nt_a) = tke_abl(ji,jj,jk,nt_a) + zCF(ji,jk) * tke_abl(ji,jj,jk+1,nt_a)
            END DO
         END DO

!!FL should not be needed because of Patankar procedure
         tke_abl(2:jpi,jj,1:jpka,nt_a) = MAX( tke_abl(2:jpi,jj,1:jpka,nt_a), tke_min )

         !!
         !! Diagnose PBL height
         !! ----------------------------------------------------------


         !
         ! arrays zRH, zFC and zCF are available at this point
         ! and zFC(:, 1 ) = 0.
         ! diagnose PBL height based on zsh2 and zbn2
         zFC (  :  ,1) = 0._wp
         ikbl( 1:jpi ) = 0

         DO jk = 2,jpka
            DO ji = 1, jpi
               zcff  = ghw_abl( jk-1 )
               zcff1 = zcff / ( zcff + rn_epssfc * pblh ( ji, jj ) )
               zcff  = ghw_abl( jk   )
               zcff2 = zcff / ( zcff + rn_epssfc * pblh ( ji, jj ) )
               zFC( ji, jk ) = zFC( ji, jk-1) + 0.5_wp * e3t_abl( jk )*(                 &
                               zcff2 * ( zsh2( ji, jk  ) - ziRic * zbn2( ji, jj, jk   ) &
                           - rn_Cek  * ( fft_abl( ji, jj  ) * fft_abl( ji, jj ) ) ) &
                             + zcff1 * ( zsh2( ji, jk-1) - ziRic * zbn2( ji, jj, jk-1 ) &
                           - rn_Cek  * ( fft_abl( ji, jj  ) * fft_abl( ji, jj ) ) ) &
                           &                                                 )
               IF( ikbl(ji) == 0 .and. zFC( ji, jk ).lt.0._wp ) ikbl(ji)=jk
            END DO
         END DO
         !
         ! finalize the computation of the PBL height
         DO ji = 1, jpi
            jk = ikbl(ji)
            IF( jk > 2 ) THEN ! linear interpolation to get subgrid value of pblh
               pblh( ji, jj ) =  (  ghw_abl( jk-1 ) * zFC( ji, jk   )       &
                  &              -  ghw_abl( jk   ) * zFC( ji, jk-1 )       &
                  &              ) / ( zFC( ji, jk   ) - zFC( ji, jk-1 ) )
            ELSE IF( jk==2 ) THEN
               pblh( ji, jj ) = ghw_abl(2   )
            ELSE
               pblh( ji, jj ) = ghw_abl(jpka)
            END IF
         END DO
      !-------------
      END DO
      !-------------
      !
      ! Optional : could add pblh smoothing if pblh is noisy horizontally ...
      IF(ln_smth_pblh) THEN
         CALL lbc_lnk( 'ablmod', pblh, 'T', 1.0_wp) !, kfillmode = jpfillnothing)
         CALL smooth_pblh( pblh, msk_abl )
         CALL lbc_lnk( 'ablmod', pblh, 'T', 1.0_wp) !, kfillmode = jpfillnothing)
      ENDIF
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  Diagnostic mixing length computation
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !
      SELECT CASE ( nn_amxl )
      !
      CASE ( 0 )           ! Deardroff 80 length-scale bounded by the distance to surface and bottom
#   define zlup zRH
#   define zldw zFC
         DO jj = 1, jpj     ! outer loop
            !
            DO ji = 1, jpi
               mxld_abl( ji, jj,    1 ) = mxl_min
               mxld_abl( ji, jj, jpka ) = mxl_min
               mxlm_abl( ji, jj,    1 ) = mxl_min
               mxlm_abl( ji, jj, jpka ) = mxl_min
               zldw    ( ji,        1 ) = zrough(ji,jj) * rn_Lsfc
               zlup    ( ji,     jpka ) = mxl_min
            END DO
            !
            DO jk = 2, jpkam1
               DO ji = 1, jpi
                  zbuoy = MAX( zbn2(ji, jj, jk), rsmall )
                  mxlm_abl( ji, jj, jk ) = MAX( mxl_min,  &
                     &               SQRT( 2._wp * tke_abl( ji, jj, jk, nt_a ) / zbuoy ) )
               END DO
            END DO
            !
            ! Limit mxl
            DO jk = jpkam1,1,-1
               DO ji = 1, jpi
                  zlup(ji,jk) = MIN( zlup(ji,jk+1) + (ghw_abl(jk+1)-ghw_abl(jk)) , mxlm_abl(ji, jj, jk) )
               END DO
            END DO
            !
            DO jk = 2, jpka
               DO ji = 1, jpi
                  zldw(ji,jk) = MIN( zldw(ji,jk-1) + (ghw_abl(jk)-ghw_abl(jk-1)) , mxlm_abl(ji, jj, jk) )
               END DO
            END DO
            !
!            DO jk = 1, jpka
!               DO ji = 1, jpi
!                  mxlm_abl( ji, jj, jk ) = SQRT( zldw( ji, jk ) * zlup( ji, jk ) )
!                  mxld_abl( ji, jj, jk ) = MIN ( zldw( ji, jk ),  zlup( ji, jk ) )
!               END DO
!            END DO
            !
            DO jk = 1, jpka
               DO ji = 1, jpi
!                  zcff = 2.*SQRT(2.)*(  zldw( ji, jk )**(-2._wp/3._wp) + zlup( ji, jk )**(-2._wp/3._wp)  )**(-3._wp/2._wp)
                  zcff = SQRT( zldw( ji, jk ) * zlup( ji, jk ) )
                  mxlm_abl( ji, jj, jk ) = MAX( zcff, mxl_min )
                  mxld_abl( ji, jj, jk ) = MAX( MIN( zldw( ji, jk ),  zlup( ji, jk ) ), mxl_min )
               END DO
            END DO
            !
         END DO
#   undef zlup
#   undef zldw
         !
         !
      CASE ( 1 )           ! Modified Deardroff 80 length-scale bounded by the distance to surface and bottom
#   define zlup zRH
#   define zldw zFC
         DO jj = 1, jpj     ! outer loop
            !
            DO jk = 2, jpkam1
               DO ji = 1,jpi
                              zcff        = 1.0_wp / e3w_abl( jk )**2
                  zdU         = zcff* (u_abl( ji, jj, jk+1, tind)-u_abl( ji, jj, jk  , tind) )**2
                  zdV         = zcff* (v_abl( ji, jj, jk+1, tind)-v_abl( ji, jj, jk  , tind) )**2
                  zsh2(ji,jk) = SQRT(zdU+zdV)   !<-- zsh2 = SQRT ( ( du/dz )^2 + ( dv/dz )^2 )
                           ENDDO
                        ENDDO
                        !
            DO ji = 1, jpi
               zcff                      = zrough(ji,jj) * rn_Lsfc
               mxld_abl ( ji, jj,    1 ) = zcff
               mxld_abl ( ji, jj, jpka ) = mxl_min
               mxlm_abl ( ji, jj,    1 ) = zcff
               mxlm_abl ( ji, jj, jpka ) = mxl_min
               zldw     ( ji,        1 ) = zcff
               zlup     ( ji,     jpka ) = mxl_min
            END DO
            !
            DO jk = 2, jpkam1
               DO ji = 1, jpi
                  zbuoy    = MAX( zbn2(ji, jj, jk), rsmall )
                  zcff     = 2.0_wp*SQRT(tke_abl( ji, jj, jk, nt_a )) / ( rn_Rod*zsh2(ji,jk) &
                                &             + SQRT(rn_Rod*rn_Rod*zsh2(ji,jk)*zsh2(ji,jk)+2.0_wp*zbuoy ) )
                                  mxlm_abl( ji, jj, jk ) = MAX( mxl_min, zcff )
               END DO
            END DO
            !
            ! Limit mxl
            DO jk = jpkam1,1,-1
               DO ji = 1, jpi
                  zlup(ji,jk) = MIN( zlup(ji,jk+1) + (ghw_abl(jk+1)-ghw_abl(jk)) , mxlm_abl(ji, jj, jk) )
               END DO
            END DO
            !
            DO jk = 2, jpka
               DO ji = 1, jpi
                  zldw(ji,jk) = MIN( zldw(ji,jk-1) + (ghw_abl(jk)-ghw_abl(jk-1)) , mxlm_abl(ji, jj, jk) )
               END DO
            END DO
            !
            DO jk = 1, jpka
               DO ji = 1, jpi
                  !mxlm_abl( ji, jj, jk ) = SQRT( zldw( ji, jk ) * zlup( ji, jk ) )
                  !zcff = 2.*SQRT(2.)*(  zldw( ji, jk )**(-2._wp/3._wp) + zlup( ji, jk )**(-2._wp/3._wp)  )**(-3._wp/2._wp)
                  zcff = SQRT( zldw( ji, jk ) * zlup( ji, jk ) )
                  mxlm_abl( ji, jj, jk ) = MAX( zcff, mxl_min )
                  !mxld_abl( ji, jj, jk ) = MIN( zldw( ji, jk ), zlup( ji, jk ) )
                  mxld_abl( ji, jj, jk ) = MAX( MIN( zldw( ji, jk ),  zlup( ji, jk ) ), mxl_min )
               END DO
            END DO
 !
         END DO
#   undef zlup
#   undef zldw
         !
      CASE ( 2 )           ! Bougeault & Lacarrere 89 length-scale