Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
MODULE icedyn_rhg_vp
!!======================================================================
!! *** MODULE icedyn_rhg_vp ***
!! Sea-Ice dynamics : Viscous-plastic rheology with LSR technique
!!======================================================================
!!
!! History : - ! 1997-20 (J. Zhang, M. Losch) Original code, implementation into mitGCM
!! 4.0 ! 2020-09 (M. Vancoppenolle) Adaptation to SI3
!!
!!----------------------------------------------------------------------
#if defined key_si3
!!----------------------------------------------------------------------
!! 'key_si3' SI3 sea-ice model
!!----------------------------------------------------------------------
!! ice_dyn_rhg_vp : computes ice velocities from VP rheolog with LSR solvery
!!----------------------------------------------------------------------
USE phycst ! Physical constants
USE dom_oce ! Ocean domain
USE sbc_oce , ONLY : ln_ice_embd, nn_fsbc, ssh_m
USE sbc_ice , ONLY : utau_ice, vtau_ice, snwice_mass, snwice_mass_b
USE ice ! sea-ice: ice variables
USE icevar ! ice_var_sshdyn
USE icedyn_rdgrft ! sea-ice: ice strength
USE bdy_oce , ONLY : ln_bdy
USE bdyice
#if defined key_agrif
USE agrif_ice_interp
#endif
!
USE in_out_manager ! I/O manager
USE iom ! I/O manager library
USE lib_mpp ! MPP library
USE lib_fortran ! fortran utilities (glob_sum + no signed zero)
USE lbclnk ! lateral boundary conditions (or mpp links)
USE prtctl ! Print control
USE netcdf ! NetCDF library for convergence test
IMPLICIT NONE
PRIVATE
PUBLIC ice_dyn_rhg_vp ! called by icedyn_rhg.F90
INTEGER :: nn_nvp ! total number of VP iterations (n_out_vp*n_inn_vp)
LOGICAL :: lp_zebra_vp =.TRUE. ! activate zebra (solve the linear system problem every odd j-band, then one every even one)
REAL(wp) :: zrelaxu_vp=0.95 ! U-relaxation factor (MV: can probably be merged with V-factor once ok)
REAL(wp) :: zrelaxv_vp=0.95 ! V-relaxation factor
REAL(wp) :: zuerr_max_vp=0.80 ! maximum velocity error, above which a forcing error is considered and solver is stopped
REAL(wp) :: zuerr_min_vp=1.e-04 ! minimum velocity error, beyond which convergence is assumed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
!! for convergence tests
INTEGER :: ncvgid ! netcdf file id
INTEGER :: nvarid_ures, nvarid_vres, nvarid_velres
INTEGER :: nvarid_uerr_max, nvarid_verr_max, nvarid_velerr_max
INTEGER :: nvarid_umad, nvarid_vmad, nvarid_velmad
INTEGER :: nvarid_umad_outer, nvarid_vmad_outer, nvarid_velmad_outer
INTEGER :: nvarid_mke
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fimask ! mask at F points for the ice
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/ICE 4.0 , NEMO Consortium (2018)
!! $Id: icedyn_rhg_vp.F90 13279 2020-07-09 10:39:43Z clem $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE ice_dyn_rhg_vp( kt, pshear_i, pdivu_i, pdelta_i )
!!-------------------------------------------------------------------
!!
!! *** SUBROUTINE ice_dyn_rhg_vp ***
!! VP-LSR-C-grid
!!
!! ** Purpose : determines sea ice drift from wind stress, ice-ocean
!! stress and sea-surface slope. Internal forces assume viscous-plastic rheology (Hibler, 1979)
!!
!! ** Method
!!
!! The resolution algorithm follows from Zhang and Hibler (1997) and Losch (2010)
!! with elements from Lemieux and Tremblay (2008) and Lemieux and Tremblay (2009)
!!
!! The components of the momentum equations are arranged following the ideas of Zhang and Hibler (1997)
!!
!! f1(u) = g1(v)
!! f2(v) = g2(u)
!!
!! The right-hand side (RHS) is explicit
!! The left-hand side (LHS) is implicit
!! Coriolis is part of explicit terms, whereas ice-ocean drag is implicit
!!
!! Two iteration levels (outer and inner loops) are used to solve the equations
!!
!! The outer loop (OL, typically 10 iterations) is there to deal with the (strong) non-linearities in the equation
!!
!! The inner loop (IL, typically 1500 iterations) is there to solve the linear problem with a line-successive-relaxation algorithm
!!
!! The velocity used in the non-linear terms uses a "modified euler time step" (not sure its the correct term),
!!! with uk = ( uk-1 + uk-2 ) / 2.
!!
!! * Spatial discretization
!!
!! Assumes a C-grid
!!
!! The points in the C-grid look like this, my darling
!!
!! (ji,jj)
!! |
!! |
!! (ji-1,jj) | (ji,jj)
!! ---------
!! | |
!! | (ji,jj) |------(ji,jj)
!! | |
!! ---------
!! (ji-1,jj-1) (ji,jj-1)
!!
!! ** Inputs : - wind forcing (stress), oceanic currents
!! ice total volume (vt_i) per unit area
!! snow total volume (vt_s) per unit area
!!
!! ** Action :
!!
!! ** Steps :
!!
!! ** Notes :
!!
!! References : Zhang and Hibler, JGR 1997; Losch et al., OM 2010., Lemieux et al., 2008, 2009, ...
!!
!!
!!-------------------------------------------------------------------
!!
INTEGER , INTENT(in ) :: kt ! time step
REAL(wp), DIMENSION(:,:), INTENT( out) :: pshear_i , pdivu_i , pdelta_i !
!!
LOGICAL :: ll_u_iterate, ll_v_iterate ! continue iteration or not
!
INTEGER :: ji, ji2, jj, jj2, jn ! dummy loop indices
INTEGER :: i_out, i_inn, i_inn_tot !
INTEGER :: ji_min, jj_min !
INTEGER :: nn_zebra_vp ! number of zebra steps
!
REAL(wp) :: zrhoco ! rho0 * rn_cio
REAL(wp) :: ecc2, z1_ecc2 ! square of yield ellipse eccenticity
REAL(wp) :: zglob_area ! global ice area for diagnostics
REAL(wp) :: zkt ! isotropic tensile strength for landfast ice
REAL(wp) :: zm1, zm2, zm3, zmassU, zmassV ! ice/snow mass and volume
REAL(wp) :: zds2, zdt, zdt2, zdiv, zdiv2 ! temporary scalars
REAL(wp) :: zp_delstar_f !
REAL(wp) :: zu_cV, zv_cU !
REAL(wp) :: zfac, zfac1, zfac2, zfac3
REAL(wp) :: zt12U, zt11U, zt22U, zt21U, zt122U, zt121U
REAL(wp) :: zt12V, zt11V, zt22V, zt21V, zt122V, zt121V
REAL(wp) :: zAA3, zw, ztau, zuerr_max, zverr_max
!
REAL(wp), DIMENSION(jpi,jpj) :: za_iU , za_iV ! ice fraction on U/V points
REAL(wp), DIMENSION(jpi,jpj) :: zmU_t, zmV_t ! Acceleration term contribution to RHS
REAL(wp), DIMENSION(jpi,jpj) :: zmassU_t, zmassV_t ! Mass per unit area divided by time step
!
REAL(wp), DIMENSION(jpi,jpj) :: zdeltat, zdelstar_t ! Delta & Delta* at T-points
REAL(wp), DIMENSION(jpi,jpj) :: ztens, zshear ! Tension, shear
REAL(wp), DIMENSION(jpi,jpj) :: zp_delstar_t ! P/delta* at T points
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
REAL(wp), DIMENSION(jpi,jpj) :: zzt, zet ! Viscosity pre-factors at T points
REAL(wp), DIMENSION(jpi,jpj) :: zef ! Viscosity pre-factor at F point
!
REAL(wp), DIMENSION(jpi,jpj) :: zmt ! Mass per unit area at t-point
REAL(wp), DIMENSION(jpi,jpj) :: zmf ! Coriolis factor (m*f) at t-point
REAL(wp), DIMENSION(jpi,jpj) :: v_oceU, u_oceV, v_iceU, u_iceV ! ocean/ice u/v component on V/U points
REAL(wp), DIMENSION(jpi,jpj) :: zu_c, zv_c ! "current" ice velocity (m/s), average of previous two OL iterates
REAL(wp), DIMENSION(jpi,jpj) :: zu_b, zv_b ! velocity at previous sub-iterate
REAL(wp), DIMENSION(jpi,jpj) :: zuerr, zverr ! absolute U/Vvelocity difference between current and previous sub-iterates
!
REAL(wp), DIMENSION(jpi,jpj) :: zds ! shear
REAL(wp), DIMENSION(jpi,jpj) :: zsshdyn ! array used for the calculation of ice surface slope:
! ! ocean surface (ssh_m) if ice is not embedded
! ! ice bottom surface if ice is embedded
REAL(wp), DIMENSION(jpi,jpj) :: zCwU, zCwV ! ice-ocean drag pre-factor (rho*c*module(u))
REAL(wp), DIMENSION(jpi,jpj) :: zspgU, zspgV ! surface pressure gradient at U/V points
REAL(wp), DIMENSION(jpi,jpj) :: zCorU, zCorV ! Coriolis stress array
REAL(wp), DIMENSION(jpi,jpj) :: ztaux_ai, ztauy_ai ! ice-atm. stress at U-V points
REAL(wp), DIMENSION(jpi,jpj) :: ztaux_oi_rhsu, ztauy_oi_rhsv ! ice-ocean stress RHS contribution at U-V points
REAL(wp), DIMENSION(jpi,jpj) :: zs1_rhsu, zs2_rhsu, zs12_rhsu ! internal stress contributions to RHSU
REAL(wp), DIMENSION(jpi,jpj) :: zs1_rhsv, zs2_rhsv, zs12_rhsv ! internal stress contributions to RHSV
REAL(wp), DIMENSION(jpi,jpj) :: zf_rhsu, zf_rhsv ! U- and V- components of internal force RHS contributions
REAL(wp), DIMENSION(jpi,jpj) :: zrhsu, zrhsv ! U and V RHS
REAL(wp), DIMENSION(jpi,jpj) :: zAU, zBU, zCU, zDU, zEU ! Linear system coefficients, U equation
REAL(wp), DIMENSION(jpi,jpj) :: zAV, zBV, zCV, zDV, zEV ! Linear system coefficients, V equation
REAL(wp), DIMENSION(jpi,jpj) :: zFU, zFU_prime, zBU_prime ! Rearranged linear system coefficients, U equation
REAL(wp), DIMENSION(jpi,jpj) :: zFV, zFV_prime, zBV_prime ! Rearranged linear system coefficients, V equation
!!! REAL(wp), DIMENSION(jpi,jpj) :: ztaux_bi, ztauy_bi ! ice-OceanBottom stress at U-V points (landfast)
!!! REAL(wp), DIMENSION(jpi,jpj) :: ztaux_base, ztauy_base ! ice-bottom stress at U-V points (landfast)
!
REAL(wp), DIMENSION(jpi,jpj) :: zmsk00
REAL(wp), DIMENSION(jpi,jpj) :: zmsk01x, zmsk01y ! mask for lots of ice (1), little ice (0)
REAL(wp), DIMENSION(jpi,jpj) :: zmsk00x, zmsk00y ! mask for ice presence (1), no ice (0)
!
REAL(wp), PARAMETER :: zepsi = 1.0e-20_wp ! tolerance parameter
REAL(wp), PARAMETER :: zmmin = 1._wp ! ice mass (kg/m2) below which ice velocity becomes very small
REAL(wp), PARAMETER :: zamin = 0.001_wp ! ice concentration below which ice velocity becomes very small
!! --- diags
REAL(wp) :: zsig1, zsig2, zsig12, zdelta, z1_strength, zfac_x, zfac_y
REAL(wp), DIMENSION(jpi,jpj) :: zs1, zs2, zs12, zs12f ! stress tensor components
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zsig_I, zsig_II, zsig1_p, zsig2_p
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: ztaux_oi, ztauy_oi
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xmtrp_ice, zdiag_ymtrp_ice ! X/Y-component of ice mass transport (kg/s, SIMIP)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xmtrp_snw, zdiag_ymtrp_snw ! X/Y-component of snow mass transport (kg/s, SIMIP)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xatrp, zdiag_yatrp ! X/Y-component of area transport (m2/s, SIMIP)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zvel_res ! Residual of the linear system at last iteration
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zvel_diff ! Absolute velocity difference @last outer iteration
!!----------------------------------------------------------------------------------------------------------------------
IF( kt == nit000 .AND. lwp ) WRITE(numout,*) '-- ice_dyn_rhg_vp: VP sea-ice rheology (LSR solver)'
IF( lwp ) WRITE(numout,*) '-- ice_dyn_rhg_vp: VP sea-ice rheology (LSR solver)'
!------------------------------------------------------------------------------!
!
! --- Initialization
!
!------------------------------------------------------------------------------!
! for diagnostics and convergence tests
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zmsk00(ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi06 ) ) ! 1 if ice , 0 if no ice
END_2D
IF ( lp_zebra_vp ) THEN; nn_zebra_vp = 2
ELSE; nn_zebra_vp = 1; ENDIF
nn_nvp = nn_vp_nout * nn_vp_ninn ! maximum number of iterations
IF( lwp ) WRITE(numout,*) ' lp_zebra_vp : ', lp_zebra_vp
IF( lwp ) WRITE(numout,*) ' nn_zebra_vp : ', nn_zebra_vp
IF( lwp ) WRITE(numout,*) ' nn_nvp : ', nn_nvp
zrhoco = rho0 * rn_cio
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
! ecc2: square of yield ellipse eccentricity
ecc2 = rn_ecc * rn_ecc
z1_ecc2 = 1._wp / ecc2
! Initialise convergence checks
IF( nn_rhg_chkcvg /= 0 ) THEN
! ice area for global mean kinetic energy (m2)
zglob_area = glob_sum( 'ice_rhg_vp', at_i(:,:) * e1e2t(:,:) * tmask(:,:,1) )
ENDIF
! Landfast param from Lemieux(2016): add isotropic tensile strength (following Konig Beatty and Holland, 2010)
! MV: Not working yet...
IF( ln_landfast_L16 ) THEN ; zkt = rn_lf_tensile
ELSE ; zkt = 0._wp
ENDIF
zs1_rhsu(:,:) = 0._wp; zs2_rhsu(:,:) = 0._wp; zs1_rhsv(:,:) = 0._wp; zs2_rhsv(:,:) = 0._wp
zrhsu (:,:) = 0._wp; zrhsv (:,:) = 0._wp; zf_rhsu(:,:) = 0._wp; zf_rhsv(:,:) = 0._wp
zAU(:,:) = 0._wp; zBU(:,:) = 0._wp; zCU(:,:) = 0._wp; zDU(:,:) = 0._wp; zEU(:,:) = 0._wp
zAV(:,:) = 0._wp; zBV(:,:) = 0._wp; zCV(:,:) = 0._wp; zDV(:,:) = 0._wp; zEV(:,:) = 0._wp
!------------------------------------------------------------------------------!
!
! --- Time-independent quantities
!
!------------------------------------------------------------------------------!
CALL ice_strength ! strength at T points
!---------------------------
! -- F-mask (code from EVP)
!---------------------------
IF( kt == nit000 ) THEN
! MartinV:
! In EVP routine, fimask is applied on shear at F-points, in order to enforce the lateral boundary condition (no-slip, ..., free-slip)
! I am not sure the same recipe applies here
! - ocean/land mask
ALLOCATE( fimask(jpi,jpj) )
IF( rn_ishlat == 0._wp ) THEN
DO_2D( 0, 0, 0, 0 )
fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
END_2D
ELSE
DO_2D( 0, 0, 0, 0 )
fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
! Lateral boundary conditions on velocity (modify fimask)
IF( fimask(ji,jj) == 0._wp ) THEN
fimask(ji,jj) = rn_ishlat * MIN( 1._wp , MAX( umask(ji,jj,1), umask(ji,jj+1,1), &
& vmask(ji,jj,1), vmask(ji+1,jj,1) ) )
ENDIF
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', fimask, 'F', 1._wp )
ENDIF
!----------------------------------------------------------------------------------------------------------
! -- Time-independent pre-factors for acceleration, ocean drag, coriolis, atmospheric drag, surface tilt
!----------------------------------------------------------------------------------------------------------
! Compute all terms & factors independent of velocities, or only depending on velocities at previous time step
! sea surface height
! embedded sea ice: compute representative ice top surface
! non-embedded sea ice: use ocean surface for slope calculation
zsshdyn(:,:) = ice_var_sshdyn( ssh_m, snwice_mass, snwice_mass_b)
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zmt(ji,jj) = rhos * vt_s(ji,jj) + rhoi * vt_i(ji,jj) ! Snow and ice mass at T-point
zmf(ji,jj) = zmt(ji,jj) * ff_t(ji,jj) ! Coriolis factor at T points (m*f)
END_2D
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
! Ice fraction at U-V points
za_iU(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji+1,jj) * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
za_iV(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji,jj+1) * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)
! Snow and ice mass at U-V points
zm1 = zmt(ji,jj)
zm2 = zmt(ji+1,jj)
zmassU = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm2 * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
zmassV = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm3 * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)
! Mass per unit area divided by time step
zmassU_t(ji,jj) = zmassU * r1_Dt_ice
zmassV_t(ji,jj) = zmassV * r1_Dt_ice
! Acceleration term contribution to RHS (depends on velocity at previous time step)
zmU_t(ji,jj) = zmassU_t(ji,jj) * u_ice(ji,jj)
zmV_t(ji,jj) = zmassV_t(ji,jj) * v_ice(ji,jj)
v_oceU(ji,jj) = 0.25_wp * ( v_oce(ji,jj) + v_oce(ji,jj-1) + v_oce(ji+1,jj) + v_oce(ji+1,jj-1) ) * umask(ji,jj,1)
u_oceV(ji,jj) = 0.25_wp * ( u_oce(ji,jj) + u_oce(ji-1,jj) + u_oce(ji,jj+1) + u_oce(ji-1,jj+1) ) * vmask(ji,jj,1)
! Wind stress
ztaux_ai(ji,jj) = za_iU(ji,jj) * utau_ice(ji,jj)
ztauy_ai(ji,jj) = za_iV(ji,jj) * vtau_ice(ji,jj)
! Force due to sea surface tilt(- m*g*GRAD(ssh))
zspgU(ji,jj) = - zmassU * grav * ( zsshdyn(ji+1,jj) - zsshdyn(ji,jj) ) * r1_e1u(ji,jj)
zspgV(ji,jj) = - zmassV * grav * ( zsshdyn(ji,jj+1) - zsshdyn(ji,jj) ) * r1_e2v(ji,jj)
! Mask for ice presence (1) or absence (0)
zmsk00x(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassU ) ) ! 0 if no ice
zmsk00y(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassV ) ) ! 0 if no ice
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
! Mask for lots of ice (1) or little ice (0)
IF ( zmassU <= zmmin .AND. za_iU(ji,jj) <= zamin ) THEN ; zmsk01x(ji,jj) = 0._wp
ELSE ; zmsk01x(ji,jj) = 1._wp ; ENDIF
IF ( zmassV <= zmmin .AND. za_iV(ji,jj) <= zamin ) THEN ; zmsk01y(ji,jj) = 0._wp
ELSE ; zmsk01y(ji,jj) = 1._wp ; ENDIF
END_2D
!------------------------------------------------------------------------------!
!
! --- Start outer loop
!
!------------------------------------------------------------------------------!
zu_c(:,:) = u_ice(:,:)
zv_c(:,:) = v_ice(:,:)
i_inn_tot = 0
DO i_out = 1, nn_vp_nout
! Velocities used in the non linear terms are the average of the past two iterates
! u_it = 0.5 * ( u_{it-1} + u_{it-2} )
! Also used in Hibler and Ackley (1983); Zhang and Hibler (1997); Lemieux and Tremblay (2009)
zu_c(:,:) = 0.5_wp * ( u_ice(:,:) + zu_c(:,:) )
zv_c(:,:) = 0.5_wp * ( v_ice(:,:) + zv_c(:,:) )
!------------------------------------------------------------------------------!
!
! --- Right-hand side (RHS) of the linear problem
!
!------------------------------------------------------------------------------!
! In the outer loop, one needs to update all RHS terms
! with explicit velocity dependencies (viscosities, coriolis, ocean stress)
! as a function of "current" velocities (uc, vc)
!------------------------------------------
! -- Strain rates, viscosities and P/Delta
!------------------------------------------
! --- divergence, tension & shear (Appendix B of Hunke & Dukowicz, 2002) --- !
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 ) ! 1->jpi-1
! loops start at 1 since there is no boundary condition (lbc_lnk) at i=1 and j=1 for F points
! shear at F points
zds(ji,jj) = ( ( zu_c(ji,jj+1) * r1_e1u(ji,jj+1) - zu_c(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) &
& + ( zv_c(ji+1,jj) * r1_e2v(ji+1,jj) - zv_c(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) &
& ) * r1_e1e2f(ji,jj) * fimask(ji,jj)
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', zds, 'F', 1. ) ! necessary, zds2 uses jpi/jpj values for zds
DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) ! 2 -> jpj; 2,jpi !!! CHECK !!!
! loop to jpi,jpj to avoid making a communication for zs1,zs2,zs12
! shear**2 at T points (doc eq. A16)
zds2 = ( zds(ji,jj ) * zds(ji,jj ) * e1e2f(ji,jj ) + zds(ji-1,jj ) * zds(ji-1,jj ) * e1e2f(ji-1,jj ) &
& + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1) &
& ) * 0.25_wp * r1_e1e2t(ji,jj)
! divergence at T points
zdiv = ( e2u(ji,jj) * zu_c(ji,jj) - e2u(ji-1,jj) * zu_c(ji-1,jj) &
& + e1v(ji,jj) * zv_c(ji,jj) - e1v(ji,jj-1) * zv_c(ji,jj-1) &
& ) * r1_e1e2t(ji,jj)
zdiv2 = zdiv * zdiv
! tension at T points
zdt = ( ( zu_c(ji,jj) * r1_e2u(ji,jj) - zu_c(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj) &
& - ( zv_c(ji,jj) * r1_e1v(ji,jj) - zv_c(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj) &
& ) * r1_e1e2t(ji,jj)
zdt2 = zdt * zdt
! delta at T points
zdeltat(ji,jj) = SQRT( zdiv2 + ( zdt2 + zds2 ) * z1_ecc2 )
! delta* at T points (following Lemieux and Dupont, GMD 2020)
zdelstar_t(ji,jj) = zdeltat(ji,jj) + rn_creepl ! OPT zdelstar_t can be totally removed and put into next line directly. Could change results
! P/delta* at T-points
zp_delstar_t(ji,jj) = strength(ji,jj) / zdelstar_t(ji,jj)
zzt(ji,jj) = zp_delstar_t(ji,jj) * r1_e1e2t(ji,jj)
zet(ji,jj) = zzt(ji,jj) * z1_ecc2
CALL lbc_lnk( 'icedyn_rhg_vp', zp_delstar_t , 'T', 1. ) ! necessary, used for ji = 1 and jj = 1
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )! 1-> jpj-1; 1->jpi-1
! P/delta* at F points
zp_delstar_f = 0.25_wp * ( zp_delstar_t(ji,jj) + zp_delstar_t(ji+1,jj) + zp_delstar_t(ji,jj+1) + zp_delstar_t(ji+1,jj+1) )
! Temporary zef factor at F-point
zef(ji,jj) = zp_delstar_f * r1_e1e2f(ji,jj) * z1_ecc2 * fimask(ji,jj) * 0.5_wp
END_2D
!---------------------------------------------------
! -- Ocean-ice drag and Coriolis RHS contributions
!---------------------------------------------------
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
!--- ice u-velocity @V points, v-velocity @U points (for non-linear drag computation)
zu_cV = 0.25_wp * ( zu_c(ji,jj) + zu_c(ji-1,jj) + zu_c(ji,jj+1) + zu_c(ji-1,jj+1) ) * vmask(ji,jj,1)
zv_cU = 0.25_wp * ( zv_c(ji,jj) + zv_c(ji,jj-1) + zv_c(ji+1,jj) + zv_c(ji+1,jj-1) ) * umask(ji,jj,1)
!--- non-linear drag coefficients (need to be updated at each outer loop, see Lemieux and Tremblay JGR09, p.3, beginning of Section 3)
zCwU(ji,jj) = za_iU(ji,jj) * zrhoco * SQRT( ( zu_c (ji,jj) - u_oce (ji,jj) ) * ( zu_c (ji,jj) - u_oce (ji,jj) ) &
& + ( zv_cU - v_oceU(ji,jj) ) * ( zv_cU - v_oceU(ji,jj) ) )
zCwV(ji,jj) = za_iV(ji,jj) * zrhoco * SQRT( ( zv_c (ji,jj) - v_oce (ji,jj) ) * ( zv_c (ji,jj) - v_oce (ji,jj) ) &
& + ( zu_cV - u_oceV(ji,jj) ) * ( zu_cV - u_oceV(ji,jj) ) )
!--- Ocean-ice drag contributions to RHS
ztaux_oi_rhsu(ji,jj) = zCwU(ji,jj) * u_oce(ji,jj)
ztauy_oi_rhsv(ji,jj) = zCwV(ji,jj) * v_oce(ji,jj)
!--- U-component of Coriolis Force (energy conserving formulation)
zCorU(ji,jj) = 0.25_wp * r1_e1u(ji,jj) * &
& ( zmf(ji ,jj) * ( e1v(ji ,jj) * zv_c(ji ,jj) + e1v(ji ,jj-1) * zv_c(ji ,jj-1) ) &
& + zmf(ji+1,jj) * ( e1v(ji+1,jj) * zv_c(ji+1,jj) + e1v(ji+1,jj-1) * zv_c(ji+1,jj-1) ) )
!--- V-component of Coriolis Force (energy conserving formulation)
zCorV(ji,jj) = - 0.25_wp * r1_e2v(ji,jj) * &
& ( zmf(ji,jj ) * ( e2u(ji,jj ) * zu_c(ji,jj ) + e2u(ji-1,jj ) * zu_c(ji-1,jj ) ) &
& + zmf(ji,jj+1) * ( e2u(ji,jj+1) * zu_c(ji,jj+1) + e2u(ji-1,jj+1) * zu_c(ji-1,jj+1) ) )
END_2D
!-------------------------------------
! -- Internal stress RHS contribution
!-------------------------------------
! --- Stress contributions at T-points
DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) ! 2 -> jpj; 2,jpi !!! CHECK !!!
! loop to jpi,jpj to avoid making a communication for zs1 & zs2
! sig1 contribution to RHS of U-equation at T-points
zs1_rhsu(ji,jj) = zzt(ji,jj) * ( e1v(ji,jj) * zv_c(ji,jj) - e1v(ji,jj-1) * zv_c(ji,jj-1) ) &
& - zp_delstar_t(ji,jj) * zdeltat(ji,jj)
! sig2 contribution to RHS of U-equation at T-points
zs2_rhsu(ji,jj) = - zet(ji,jj) * ( r1_e1v(ji,jj) * zv_c(ji,jj) - r1_e1v(ji,jj-1) * zv_c(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj)
! sig1 contribution to RHS of V-equation at T-points
zs1_rhsv(ji,jj) = zzt(ji,jj) * ( e2u(ji,jj) * zu_c(ji,jj) - e2u(ji-1,jj) * zu_c(ji-1,jj) ) &
& - zp_delstar_t(ji,jj) * zdeltat(ji,jj)
! sig2 contribution to RHS of V-equation at T-points
zs2_rhsv(ji,jj) = zet(ji,jj) * ( r1_e2u(ji,jj) * zu_c(ji,jj) - r1_e2u(ji-1,jj) * zu_c(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj)
END_2D
! --- Stress contributions at F-points
! MV NOTE: I applied fimask on zds, by mimetism on EVP, but without deep understanding of what I was doing
! My guess is that this is the way to enforce boundary conditions on strain rate tensor
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 ) ! 1->jpi-1
! sig12 contribution to RHS of U equation at F-points
zs12_rhsu(ji,jj) = zef(ji,jj) * ( r1_e2v(ji+1,jj) * zv_c(ji+1,jj) + r1_e2v(ji,jj) * zv_c(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) * fimask(ji,jj)
! sig12 contribution to RHS of V equation at F-points
zs12_rhsv(ji,jj) = zef(ji,jj) * ( r1_e1u(ji,jj+1) * zu_c(ji,jj+1) + r1_e1u(ji,jj) * zu_c(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) * fimask(ji,jj)
END_2D
! --- Internal force contributions to RHS, taken as divergence of stresses (Appendix C of Hunke and Dukowicz, 2002)
! OPT: merge with next loop and use intermediate scalars for zf_rhsu
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
! --- U component of internal force contribution to RHS at U points
zf_rhsu(ji,jj) = 0.5_wp * r1_e1e2u(ji,jj) * &
( e2u(ji,jj) * ( zs1_rhsu(ji+1,jj) - zs1_rhsu(ji,jj) ) &
& + r1_e2u(ji,jj) * ( e2t(ji+1,jj) * e2t(ji+1,jj) * zs2_rhsu(ji+1,jj) - e2t(ji,jj) * e2t(ji,jj) * zs2_rhsu(ji,jj) ) &
& + 2._wp * r1_e1u(ji,jj) * ( e1f(ji,jj) * e1f(ji,jj) * zs12_rhsu(ji,jj) - e1f(ji,jj-1) * e1f(ji,jj-1) * zs12_rhsu(ji,jj-1) ) )
! --- V component of internal force contribution to RHS at V points
zf_rhsv(ji,jj) = 0.5_wp * r1_e1e2v(ji,jj) * &
& ( e1v(ji,jj) * ( zs1_rhsv(ji,jj+1) - zs1_rhsv(ji,jj) ) &
& - r1_e1v(ji,jj) * ( e1t(ji,jj+1) * e1t(ji,jj+1) * zs2_rhsv(ji,jj+1) - e1t(ji,jj) * e1t(ji,jj) * zs2_rhsv(ji,jj) ) &
& + 2._wp * r1_e2v(ji,jj) * ( e2f(ji,jj) * e2f(ji,jj) * zs12_rhsv(ji,jj) - e2f(ji-1,jj) * e2f(ji-1,jj) * zs12_rhsv(ji-1,jj) ) )
END_2D
!---------------------------
! -- Sum RHS contributions
!---------------------------
! OPT: could use intermediate scalars to reduce memory access
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zrhsu(ji,jj) = zmU_t(ji,jj) + ztaux_ai(ji,jj) + ztaux_oi_rhsu(ji,jj) + zspgU(ji,jj) + zCorU(ji,jj) + zf_rhsu(ji,jj)
zrhsv(ji,jj) = zmV_t(ji,jj) + ztauy_ai(ji,jj) + ztauy_oi_rhsv(ji,jj) + zspgV(ji,jj) + zCorV(ji,jj) + zf_rhsv(ji,jj)
END_2D
!---------------------------------------------------------------------------------------!
!
! --- Linear system matrix
!
!---------------------------------------------------------------------------------------!
! Linear system matrix contains all implicit contributions
! 1) internal forces, 2) acceleration, 3) ice-ocean drag
! The linear system equation is written as follows
! AU * u_{i-1,j} + BU * u_{i,j} + CU * u_{i+1,j}
! = DU * u_{i,j-1} + EU * u_{i,j+1} + RHS (! my convention, not the same as ZH97 )
! MV Note 1: martin losch applies boundary condition to BU in mitGCM - check whether it is necessary here ?
! MV Note 2: "T" factor calculations can be optimized by putting things out of the loop
! only zzt and zet are iteration-dependent, other only depend on scale factors
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
!-------------------------------------
! -- Internal forces LHS contribution
!-------------------------------------
!
! --- U-component
!
! "T" factors (intermediate results)
!
zfac = 0.5_wp * r1_e1e2u(ji,jj)
zfac1 = zfac * e2u(ji,jj)
zfac2 = zfac * r1_e2u(ji,jj)
zfac3 = 2._wp * zfac * r1_e1u(ji,jj)
zt11U = zfac1 * zzt(ji,jj)
zt12U = zfac1 * zzt(ji+1,jj)
zt21U = zfac2 * zet(ji,jj) * e2t(ji,jj) * e2t(ji,jj) * e2t(ji,jj) * e2t(ji,jj)
zt22U = zfac2 * zet(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj)
zt121U = zfac3 * zef(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1)
zt122U = zfac3 * zef(ji,jj) * e1f(ji,jj) * e1f(ji,jj) * e1f(ji,jj) * e1f(ji,jj)
!
! Linear system coefficients
!
zAU(ji,jj) = - zt11U * e2u(ji-1,jj) - zt21U * r1_e2u(ji-1,jj)
zBU(ji,jj) = ( zt11U + zt12U ) * e2u(ji,jj) + ( zt21U + zt22U ) * r1_e2u(ji,jj) + ( zt121U + zt122U ) * r1_e1u(ji,jj)
zCU(ji,jj) = - zt12U * e2u(ji+1,jj) - zt22U * r1_e2u(ji+1,jj)
zDU(ji,jj) = zt121U * r1_e1u(ji,jj-1)
zEU(ji,jj) = zt122U * r1_e1u(ji,jj+1)
!
! --- V-component
!
! "T" factors (intermediate results)
!
zfac = 0.5_wp * r1_e1e2v(ji,jj)
zfac1 = zfac * e1v(ji,jj)
zfac2 = zfac * r1_e1v(ji,jj)
zfac3 = 2._wp * zfac * r1_e2v(ji,jj)
zt11V = zfac1 * zzt(ji,jj)
zt12V = zfac1 * zzt(ji,jj+1)
zt21V = zfac2 * zet(ji,jj) * e1t(ji,jj) * e1t(ji,jj) * e1t(ji,jj) * e1t(ji,jj)
zt22V = zfac2 * zet(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1)
zt121V = zfac3 * zef(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj)
zt122V = zfac3 * zef(ji,jj) * e2f(ji,jj) * e2f(ji,jj) * e2f(ji,jj) * e2f(ji,jj)
!
! Linear system coefficients
!
zAV(ji,jj) = - zt11V * e1v(ji,jj-1) - zt21V * r1_e1v(ji,jj-1)
zBV(ji,jj) = ( zt11V + zt12V ) * e1v(ji,jj) + ( zt21V + zt22V ) * r1_e1v(ji,jj) + ( zt122V + zt121V ) * r1_e2v(ji,jj)
zCV(ji,jj) = - zt12V * e1v(ji,jj+1) - zt22V * r1_e1v(ji,jj+1)
zDV(ji,jj) = zt121V * r1_e2v(ji-1,jj)
zEV(ji,jj) = zt122V * r1_e2v(ji+1,jj)
!-----------------------------------------------------
! -- Ocean-ice drag and acceleration LHS contribution
!-----------------------------------------------------
zBU(ji,jj) = zBU(ji,jj) + zCwU(ji,jj) + zmassU_t(ji,jj)
zBV(ji,jj) = zBV(ji,jj) + zCwV(ji,jj) + zmassV_t(ji,jj)
END_2D
!------------------------------------------------------------------------------!
!
! --- Inner loop: solve linear system, check convergence
!
!------------------------------------------------------------------------------!
! Inner loop solves the linear problem .. requires 1500 iterations
ll_u_iterate = .TRUE.
ll_v_iterate = .TRUE.
DO i_inn = 1, nn_vp_ninn ! inner loop iterations
!--- mitgcm computes initial value of residual here...
i_inn_tot = i_inn_tot + 1
! l_full_nf_update = i_inn_tot == nn_nvp ! false: disable full North fold update (performances) for iter = 1 to nn_nevp-1
zu_b(:,:) = u_ice(:,:) ! velocity at previous inner-iterate
zv_b(:,:) = v_ice(:,:)
IF ( ll_u_iterate .OR. ll_v_iterate ) THEN
! ---------------------------- !
IF ( ll_u_iterate ) THEN ! --- Solve for u-velocity --- !
! ---------------------------- !
! What follows could be subroutinized...
! Thomas Algorithm for tridiagonal solver
! A*u(i-1,j)+B*u(i,j)+C*u(i+1,j) = F
zFU(:,:) = 0._wp ; zFU_prime(:,:) = 0._wp ; zBU_prime(:,:) = 0._wp;
DO jn = 1, nn_zebra_vp ! "zebra" loop (! red-black-sor!!! )
! OPT: could be even better optimized with a true red-black SOR
IF ( jn == 1 ) THEN ; jj_min = 2
ELSE ; jj_min = 3
!------------------------
! Independent term (zFU)
!------------------------
! note: these are key lines linking information between processors
! u_ice/v_ice need to be lbc_linked
! sub-domain boundary condition substitution
! see Zhang and Hibler, 1997, Appendix B
zAA3 = 0._wp
IF ( ji == 2 ) zAA3 = zAA3 - zAU(ji,jj) * u_ice(ji-1,jj)
IF ( ji == jpi - 1 ) zAA3 = zAA3 - zCU(ji,jj) * u_ice(ji+1,jj)
! right hand side
zFU(ji,jj) = ( zrhsu(ji,jj) & ! right-hand side terms
& + zAA3 & ! boundary condition translation
& + zDU(ji,jj) * u_ice(ji,jj-1) & ! internal force, j-1
& + zEU(ji,jj) * u_ice(ji,jj+1) ) * umask(ji,jj,1) ! internal force, j+1
END DO
END DO
!---------------
! Forward sweep
!---------------
DO jj = jj_min, jpj - 1, nn_zebra_vp
zBU_prime(2,jj) = zBU(2,jj)
zFU_prime(2,jj) = zFU(2,jj)
zfac = SIGN( 1._wp , zBU(ji-1,jj) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBU(ji-1,jj) ) - epsi20 ) )
zw = zfac * zAU(ji,jj) / MAX ( ABS( zBU(ji-1,jj) ) , epsi20 )
zBU_prime(ji,jj) = zBU(ji,jj) - zw * zCU(ji-1,jj)
zFU_prime(ji,jj) = zFU(ji,jj) - zw * zFU(ji-1,jj)
END DO
END DO
!-----------------------------
! Backward sweep & relaxation
!-----------------------------
DO jj = jj_min, jpj - 1, nn_zebra_vp
! --- Backward sweep
! last row
zfac = SIGN( 1._wp , zBU_prime(jpi-1,jj) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBU_prime(jpi-1,jj) ) - epsi20 ) )
u_ice(jpi-1,jj) = zfac * zFU_prime(jpi-1,jj) / MAX( ABS ( zBU_prime(jpi-1,jj) ) , epsi20 ) &
& * umask(jpi-1,jj,1)
DO ji = jpi - 2 , 2, -1 ! all other rows ! ---> original backward loop
zfac = SIGN( 1._wp , zBU_prime(ji,jj) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBU_prime(ji,jj) ) - epsi20 ) )
u_ice(ji,jj) = zfac * ( zFU_prime(ji,jj) - zCU(ji,jj) * u_ice(ji+1,jj) ) * umask(ji,jj,1) &
& / MAX ( ABS ( zBU_prime(ji,jj) ) , epsi20 )
END DO
!--- Relaxation and masking (for low-ice/no-ice cases)
DO ji = 2, jpi - 1
u_ice(ji,jj) = zu_b(ji,jj) + zrelaxu_vp * ( u_ice(ji,jj) - zu_b(ji,jj) ) ! relaxation
u_ice(ji,jj) = zmsk00x(ji,jj) & ! masking
& * ( zmsk01x(ji,jj) * u_ice(ji,jj) &
& + ( 1._wp - zmsk01x(ji,jj) ) * u_oce(ji,jj) * 0.01_wp ) * umask(ji,jj,1)
END DO
END DO ! jj
CALL lbc_lnk( 'icedyn_rhg_vp', u_ice, 'U', -1. )
END DO ! zebra loop
ENDIF ! ll_u_iterate
! ! ---------------------------- !
IF ( ll_v_iterate ) THEN ! --- Solve for V-velocity --- !
! ! ---------------------------- !
! MV OPT: what follows could be subroutinized...
! Thomas Algorithm for tridiagonal solver
! A*v(i,j-1)+B*v(i,j)+C*v(i,j+1) = F
! It is intentional to have a ji then jj loop for V-velocity
!!! ZH97 explain it is critical for convergence speed
zFV(:,:) = 0._wp ; zFV_prime(:,:) = 0._wp ; zBV_prime(:,:) = 0._wp;
IF ( jn == 1 ) THEN ; ji_min = 2
ELSE ; ji_min = 3
ENDIF
DO ji = ji_min, jpi - 1, nn_zebra_vp
!------------------------
! Independent term (zFV)
!------------------------
! subdomain boundary condition substitution (check it is correctly applied !!!)
! see Zhang and Hibler, 1997, Appendix B
zAA3 = 0._wp
IF ( jj == 2 ) zAA3 = zAA3 - zAV(ji,jj) * v_ice(ji,jj-1)
IF ( jj == jpj - 1 ) zAA3 = zAA3 - zCV(ji,jj) * v_ice(ji,jj+1)
! right hand side
zFV(ji,jj) = ( zrhsv(ji,jj) & ! right-hand side terms
& + zAA3 & ! boundary condition translation
& + zDV(ji,jj) * v_ice(ji-1,jj) & ! internal force, j-1
& + zEV(ji,jj) * v_ice(ji+1,jj) ) * vmask(ji,jj,1) ! internal force, j+1
END DO
END DO
!---------------
! Forward sweep
!---------------
DO ji = ji_min, jpi - 1, nn_zebra_vp
zBV_prime(ji,2) = zBV(ji,2)
zFV_prime(ji,2) = zFV(ji,2)
zfac = SIGN( 1._wp , zBV(ji,jj-1) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBV(ji,jj-1) ) - epsi20 ) )
zw = zfac * zAV(ji,jj) / MAX ( ABS( zBV(ji,jj-1) ) , epsi20 )
zBV_prime(ji,jj) = zBV(ji,jj) - zw * zCV(ji,jj-1)
zFV_prime(ji,jj) = zFV(ji,jj) - zw * zFV(ji,jj-1)
END DO
END DO
!-----------------------------
! Backward sweep & relaxation
!-----------------------------
DO ji = ji_min, jpi - 1, nn_zebra_vp
! --- Backward sweep
! last row
zfac = SIGN( 1._wp , zBV_prime(ji,jpj-1) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBV_prime(ji,jpj-1) ) - epsi20 ) )
v_ice(ji,jpj-1) = zfac * zFV_prime(ji,jpj-1) / MAX ( ABS(zBV_prime(ji,jpj-1) ) , epsi20 ) &
& * vmask(ji,jpj-1,1) ! last row
DO jj = jpj-2, 2, -1 ! original back loop
zfac = SIGN( 1._wp , zBV_prime(ji,jj) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBV_prime(ji,jj) ) - epsi20 ) )
v_ice(ji,jj) = zfac * ( zFV_prime(ji,jj) - zCV(ji,jj) * v_ice(ji,jj+1) ) * vmask(ji,jj,1) &
& / MAX ( ABS( zBV_prime(ji,jj) ) , epsi20 )
END DO
! --- Relaxation & masking
DO jj = 2, jpj - 1
v_ice(ji,jj) = zv_b(ji,jj) + zrelaxv_vp * ( v_ice(ji,jj) - zv_b(ji,jj) ) ! relaxation
v_ice(ji,jj) = zmsk00y(ji,jj) & ! masking
& * ( zmsk01y(ji,jj) * v_ice(ji,jj) &
& + ( 1._wp - zmsk01y(ji,jj) ) * v_oce(ji,jj) * 0.01_wp ) * vmask(ji,jj,1)
END DO ! jj
END DO ! ji
CALL lbc_lnk( 'icedyn_rhg_vp', v_ice, 'V', -1. )
END DO ! zebra loop
ENDIF ! ll_v_iterate
! I suspect the communication should go into the zebra loop if we want reproducibility
!--------------------------------------------------------------------------------------
! -- Check convergence based on maximum velocity difference, continue or stop the loop
!--------------------------------------------------------------------------------------
!------
! on U
!------
! MV OPT: if the number of iterations to convergence is really variable, and keep the convergence check
! then we must optimize the use of the mpp_max, which is prohibitive
zuerr_max = 0._wp
IF ( ll_u_iterate .AND. MOD ( i_inn, nn_vp_chkcvg ) == 0 ) THEN
! - Maximum U-velocity difference
zuerr(:,:) = 0._wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zuerr(ji,jj) = ABS ( ( u_ice(ji,jj) - zu_b(ji,jj) ) ) * umask(ji,jj,1)
END_2D
zuerr_max = MAXVAL( zuerr )
CALL mpp_max( 'icedyn_rhg_evp', zuerr_max ) ! max over the global domain - damned!
! - Stop if max error is too large ("safeguard against bad forcing" of original Zhang routine)
IF ( i_inn > 1 .AND. zuerr_max > zuerr_max_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology error was too large : ", zuerr_max, " in outer U-iteration ", i_out, " after ", i_inn, " iterations, we stopped "
ll_u_iterate = .FALSE.
ENDIF
! - Stop if error small enough
IF ( zuerr_max < zuerr_min_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology nicely done in outer U-iteration ", i_out, " after ", i_inn, " iterations, finished! "
ll_u_iterate = .FALSE.
ENDIF
ENDIF ! ll_u_iterate
!------
! on V
!------
zverr_max = 0._wp
IF ( ll_v_iterate .AND. MOD ( i_inn, nn_vp_chkcvg ) == 0 ) THEN
! - Maximum V-velocity difference
zverr(:,:) = 0._wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zverr(ji,jj) = ABS ( ( v_ice(ji,jj) - zv_b(ji,jj) ) ) * vmask(ji,jj,1)
END_2D
zverr_max = MAXVAL( zverr )
CALL mpp_max( 'icedyn_rhg_evp', zverr_max ) ! max over the global domain - damned!
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
! - Stop if error is too large ("safeguard against bad forcing" of original Zhang routine)
IF ( i_inn > 1 .AND. zverr_max > zuerr_max_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology error was too large : ", zverr_max, " in outer V-iteration ", i_out, " after ", i_inn, " iterations, we stopped "
ll_v_iterate = .FALSE.
ENDIF
! - Stop if error small enough
IF ( zverr_max < zuerr_min_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology nicely done in outer V-iteration ", i_out, " after ", i_inn, " iterations, finished! "
ll_v_iterate = .FALSE.
ENDIF
ENDIF ! ll_v_iterate
ENDIF ! --- end ll_u_iterate or ll_v_iterate
!---------------------------------------------------------------------------------------
!
! --- Calculate extra convergence diagnostics and save them
!
!---------------------------------------------------------------------------------------
IF( nn_rhg_chkcvg/=0 .AND. MOD ( i_inn - 1, nn_vp_chkcvg ) == 0 ) THEN
CALL rhg_cvg_vp( kt, i_out, i_inn, i_inn_tot, nn_vp_nout, nn_vp_ninn, nn_nvp, &
& u_ice, v_ice, zu_b, zv_b, zu_c, zv_c, &
& zmt, za_iU, za_iV, zuerr_max, zverr_max, zglob_area, &
& zrhsu, zAU, zBU, zCU, zDU, zEU, zFU, &
& zrhsv, zAV, zBV, zCV, zDV, zEV, zFV, &
zvel_res, zvel_diff )
ENDIF
END DO ! i_inn, end of inner loop
END DO ! End of outer loop (i_out) =============================================================================================
IF( nn_rhg_chkcvg/=0 ) THEN
IF( iom_use('velo_res') ) CALL iom_put( 'velo_res', zvel_res ) ! linear system residual @last inner&outer iteration
IF( iom_use('velo_ero') ) CALL iom_put( 'velo_ero', zvel_diff ) ! abs velocity difference @last outer iteration
IF( iom_use('uice_eri') ) CALL iom_put( 'uice_eri', zuerr ) ! abs velocity difference @last inner iteration
IF( iom_use('vice_eri') ) CALL iom_put( 'vice_eri', zverr ) ! abs velocity difference @last inner iteration
DEALLOCATE( zvel_res , zvel_diff )
ENDIF ! nn_rhg_chkcvg
!------------------------------------------------------------------------------!
!
! --- Recompute delta, shear and div (inputs for mechanical redistribution)
!
!------------------------------------------------------------------------------!
!
! MV OPT: subroutinize ?
DO_2D( nn_hls, nn_hls, nn_hls-1, nn_hls-1 ) ! 1->jpj-1; 1->jpi-1
! shear at F points
zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) &
& + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) &
& ) * r1_e1e2f(ji,jj) * fimask(ji,jj)
END_2D
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
! tension**2 at T points
zdt = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj) &
& - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj) &
& ) * r1_e1e2t(ji,jj)
zdt2 = zdt * zdt
! shear**2 at T points (doc eq. A16)
zds2 = ( zds(ji,jj ) * zds(ji,jj ) * e1e2f(ji,jj ) + zds(ji-1,jj ) * zds(ji-1,jj ) * e1e2f(ji-1,jj ) &
& + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1) &
& ) * 0.25_wp * r1_e1e2t(ji,jj)
! maximum shear rate at T points (includees tension, output only)
pshear_i(ji,jj) = SQRT( zdt2 + zds2 ) ! i think this is maximum shear rate and not actual shear --- i'm not totally sure here
zshear(ji,jj) = SQRT( zds2 )
! divergence at T points
pdivu_i(ji,jj) = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj) &
& + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1) &
& ) * r1_e1e2t(ji,jj)
zdiv2 = pdivu_i(ji,jj) * pdivu_i(ji,jj)
zdelta = SQRT( zdiv2 + ( zdt2 + zds2 ) * z1_ecc2 )
rswitch = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zdelta ) ) ! 0 if delta=0
pdelta_i(ji,jj) = zdelta + rn_creepl ! * rswitch
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', pshear_i, 'T', 1., pdivu_i, 'T', 1., pdelta_i, 'T', 1. )
!------------------------------------------------------------------------------!
!
! --- Diagnostics
!
!------------------------------------------------------------------------------!
!
! MV OPT: subroutinize ?
!
!----------------------------------
! --- Recompute stresses if needed
!----------------------------------
!
! ---- Sea ice stresses at T-points
IF ( iom_use('normstr') .OR. iom_use('sheastr') .OR. &
& iom_use('intstrx') .OR. iom_use('intstry') .OR. &
& iom_use('sig1_pnorm') .OR. iom_use('sig2_pnorm') ) THEN
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zp_delstar_t(ji,jj) = strength(ji,jj) / pdelta_i(ji,jj)
zfac = zp_delstar_t(ji,jj)
zs1(ji,jj) = zfac * ( pdivu_i(ji,jj) - pdelta_i(ji,jj) )
zs2(ji,jj) = zfac * z1_ecc2 * ztens(ji,jj)
zs12(ji,jj) = zfac * z1_ecc2 * zshear(ji,jj) * 0.5_wp ! Bug 12 nov
CALL lbc_lnk( 'icedyn_rhg_vp', zs1, 'T', 1., zs2, 'T', 1., zs12, 'T', 1. )
! ---- s12 at F-points
IF ( iom_use('intstrx') .OR. iom_use('intstry') ) THEN
DO_2D( nn_hls, nn_hls, nn_hls-1, nn_hls-1 ) ! 1->jpj-1; 1->jpi-1
zp_delstar_f = 0.25_wp * ( zp_delstar_t(ji,jj) + zp_delstar_t(ji+1,jj) + zp_delstar_t(ji,jj+1) + zp_delstar_t(ji+1,jj+1) )
zs12f(ji,jj) = zp_delstar_f * z1_ecc2 * zds(ji,jj)
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', zs12f, 'F', 1. )
ENDIF
!-----------------------
! --- Store diagnostics
!-----------------------
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
!
! --- Ice-ocean, ice-atm. & ice-ocean bottom (landfast) stresses --- !
IF( iom_use('utau_oi') .OR. iom_use('vtau_oi') .OR. iom_use('utau_ai') .OR. iom_use('vtau_ai') .OR. &
& iom_use('utau_bi') .OR. iom_use('vtau_bi') ) THEN
ALLOCATE( ztaux_oi(jpi,jpj) , ztauy_oi(jpi,jpj) )
!--- Recalculate oceanic stress at last inner iteration
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
!--- ice u-velocity @V points, v-velocity @U points (for non-linear drag computation)
zu_cV = 0.25_wp * ( u_ice(ji,jj) + u_ice(ji-1,jj) + u_ice(ji,jj+1) + u_ice(ji-1,jj+1) ) * vmask(ji,jj,1)
zv_cU = 0.25_wp * ( v_ice(ji,jj) + v_ice(ji,jj-1) + v_ice(ji+1,jj) + v_ice(ji+1,jj-1) ) * umask(ji,jj,1)
!--- non-linear drag coefficients (need to be updated at each outer loop, see Lemieux and Tremblay JGR09, p.3, beginning of Section 3)
zCwU(ji,jj) = za_iU(ji,jj) * zrhoco * SQRT( ( u_ice(ji,jj) - u_oce (ji,jj) ) * ( u_ice(ji,jj) - u_oce (ji,jj) ) &
& + ( zv_cU - v_oceU(ji,jj) ) * ( zv_cU - v_oceU(ji,jj) ) )
zCwV(ji,jj) = za_iV(ji,jj) * zrhoco * SQRT( ( v_ice(ji,jj) - v_oce (ji,jj) ) * ( v_ice(ji,jj) - v_oce (ji,jj) ) &
& + ( zu_cV - u_oceV(ji,jj) ) * ( zu_cV - u_oceV(ji,jj) ) )
!--- Ocean-ice stress
ztaux_oi(ji,jj) = zCwU(ji,jj) * ( u_oce(ji,jj) - u_ice(ji,jj) )
ztauy_oi(ji,jj) = zCwV(ji,jj) * ( v_oce(ji,jj) - v_ice(ji,jj) )
END_2D
!
CALL lbc_lnk( 'icedyn_rhg_vp', ztaux_oi, 'U', -1., ztauy_oi, 'V', -1., ztaux_ai, 'U', -1., ztauy_ai, 'V', -1. ) !, &
! & ztaux_bi, 'U', -1., ztauy_bi, 'V', -1. )
!
CALL iom_put( 'utau_oi' , ztaux_oi * zmsk00 )
CALL iom_put( 'vtau_oi' , ztauy_oi * zmsk00 )
CALL iom_put( 'utau_ai' , ztaux_ai * zmsk00 )
CALL iom_put( 'vtau_ai' , ztauy_ai * zmsk00 )
! CALL iom_put( 'utau_bi' , ztaux_bi * zmsk00 )
! CALL iom_put( 'vtau_bi' , ztauy_bi * zmsk00 )
DEALLOCATE( ztaux_oi , ztauy_oi )
ENDIF
! --- Divergence, shear and strength --- !
IF( iom_use('icediv') ) CALL iom_put( 'icediv' , pdivu_i * zmsk00 ) ! divergence
IF( iom_use('iceshe') ) CALL iom_put( 'iceshe' , pshear_i * zmsk00 ) ! maximum shear rate
IF( iom_use('icedlt') ) CALL iom_put( 'icedlt' , pdelta_i * zmsk00 ) ! delta
IF( iom_use('icestr') ) CALL iom_put( 'icestr' , strength * zmsk00 ) ! strength
! --- Stress tensor invariants (SIMIP diags) --- !
IF( iom_use('normstr') .OR. iom_use('sheastr') ) THEN
!
! Stress tensor invariants (normal and shear stress N/m) - SIMIP diags.
! Definitions following Coon (1974) and Feltham (2008)
!
! sigma1, sigma2, sigma12 are useful (Hunke and Dukowicz MWR 2002, Bouillon et al., OM2013)
! however these are NOT stress tensor components, neither stress invariants, nor stress principal components
!
ALLOCATE( zsig_I(jpi,jpj) , zsig_II(jpi,jpj) )
!
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
! Stress invariants
zsig_I(ji,jj) = zs1(ji,jj) * 0.5_wp ! 1st invariant, aka average normal stress aka negative pressure
zsig_II(ji,jj) = 0.5_wp * SQRT ( zs2(ji,jj) * zs2(ji,jj) + 4. * zs12(ji,jj) * zs12(ji,jj) ) ! 2nd invariant, aka maximum shear stress
CALL lbc_lnk( 'icedyn_rhg_vp', zsig_I, 'T', 1., zsig_II, 'T', 1.)
IF( iom_use('normstr') ) CALL iom_put( 'normstr' , zsig_I(:,:) * zmsk00(:,:) ) ! Normal stress
IF( iom_use('sheastr') ) CALL iom_put( 'sheastr' , zsig_II(:,:) * zmsk00(:,:) ) ! Maximum shear stress
DEALLOCATE ( zsig_I, zsig_II )
ENDIF
! --- Normalized stress tensor principal components --- !
! These are used to plot the normalized yield curve (Lemieux & Dupont, GMD 2020)
! To plot the yield curve and evaluate physical convergence, they have two recommendations
! Recommendation 1 : Use ice strength, not replacement pressure
! Recommendation 2 : Need to use deformations at PREVIOUS iterate for viscosities (see p. 1765)
! R2 means we need to recompute stresses
IF( iom_use('sig1_pnorm') .OR. iom_use('sig2_pnorm') ) THEN
!
ALLOCATE( zsig1_p(jpi,jpj) , zsig2_p(jpi,jpj) , zsig_I(jpi,jpj) , zsig_II(jpi,jpj) )
!
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
! Ice stresses computed with **viscosities** (delta, p/delta) at **previous** iterates
! and **deformations** at current iterates
! following Lemieux & Dupont (2020)
zfac = zp_delstar_t(ji,jj)
zsig1 = zfac * ( pdivu_i(ji,jj) - zdeltat(ji,jj) )
zsig2 = zfac * z1_ecc2 * ztens(ji,jj)
zsig12 = zfac * z1_ecc2 * zshear(ji,jj) * 0.5_wp ! Bugfix 12 Nov
! Stress invariants (sigma_I, sigma_II, Coon 1974, Feltham 2008), T-point
zsig_I(ji,jj) = zsig1 * 0.5_wp ! 1st invariant
zsig_II(ji,jj) = 0.5_wp * SQRT ( zsig2 * zsig2 + 4. *zsig12 * zsig12 ) ! 2nd invariant
! Normalized principal stresses (used to display the ellipse)
z1_strength = 1._wp / MAX ( 1._wp , strength(ji,jj) )
zsig1_p(ji,jj) = ( zsig_I(ji,jj) + zsig_II(ji,jj) ) * z1_strength
zsig2_p(ji,jj) = ( zsig_I(ji,jj) - zsig_II(ji,jj) ) * z1_strength
END_2D
!
CALL lbc_lnk( 'icedyn_rhg_vp', zsig1_p, 'T', 1., zsig2_p, 'T', 1.)
!
CALL iom_put( 'sig1_pnorm' , zsig1_p )
CALL iom_put( 'sig2_pnorm' , zsig2_p )
DEALLOCATE( zsig1_p , zsig2_p , zsig_I , zsig_II )
ENDIF
! --- SIMIP, terms of tendency for momentum equation --- !
IF( iom_use('dssh_dx') .OR. iom_use('dssh_dy') .OR. &
& iom_use('corstrx') .OR. iom_use('corstry') ) THEN
! --- Recalculate Coriolis stress at last inner iteration
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
! --- U-component
zCorU(ji,jj) = 0.25_wp * r1_e1u(ji,jj) * &
& ( zmf(ji ,jj) * ( e1v(ji ,jj) * v_ice(ji ,jj) + e1v(ji ,jj-1) * v_ice(ji ,jj-1) ) &
& + zmf(ji+1,jj) * ( e1v(ji+1,jj) * v_ice(ji+1,jj) + e1v(ji+1,jj-1) * v_ice(ji+1,jj-1) ) )
zCorV(ji,jj) = - 0.25_wp * r1_e2v(ji,jj) * &
& ( zmf(ji,jj ) * ( e2u(ji,jj ) * u_ice(ji,jj ) + e2u(ji-1,jj ) * u_ice(ji-1,jj ) ) &
& + zmf(ji,jj+1) * ( e2u(ji,jj+1) * u_ice(ji,jj+1) + e2u(ji-1,jj+1) * u_ice(ji-1,jj+1) ) )
END_2D
!
CALL lbc_lnk( 'icedyn_rhg_vp', zspgU, 'U', -1., zspgV, 'V', -1., &
& zCorU, 'U', -1., zCorV, 'V', -1. )
!
CALL iom_put( 'dssh_dx' , zspgU * zmsk00 ) ! Sea-surface tilt term in force balance (x)
CALL iom_put( 'dssh_dy' , zspgV * zmsk00 ) ! Sea-surface tilt term in force balance (y)
CALL iom_put( 'corstrx' , zCorU * zmsk00 ) ! Coriolis force term in force balance (x)
CALL iom_put( 'corstry' , zCorV * zmsk00 ) ! Coriolis force term in force balance (y)
ENDIF
IF ( iom_use('intstrx') .OR. iom_use('intstry') ) THEN
! Recalculate internal forces (divergence of stress tensor) at last inner iteration
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
zfU(ji,jj) = 0.5_wp * ( ( zs1(ji+1,jj) - zs1(ji,jj) ) * e2u(ji,jj) &
& + ( zs2(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj) - zs2(ji,jj) * e2t(ji,jj) * e2t(ji,jj) &
& ) * r1_e2u(ji,jj) &
& + ( zs12f(ji,jj) * e1f(ji,jj) * e1f(ji,jj) - zs12f(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1) &
& ) * 2._wp * r1_e1u(ji,jj) &
& ) * r1_e1e2u(ji,jj)
zfV(ji,jj) = 0.5_wp * ( ( zs1(ji,jj+1) - zs1(ji,jj) ) * e1v(ji,jj) &
& - ( zs2(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1) - zs2(ji,jj) * e1t(ji,jj) * e1t(ji,jj) &
& ) * r1_e1v(ji,jj) &
& + ( zs12f(ji,jj) * e2f(ji,jj) * e2f(ji,jj) - zs12f(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj) &
& ) * 2._wp * r1_e2v(ji,jj) &
& ) * r1_e1e2v(ji,jj)
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', zfU, 'U', -1., zfV, 'V', -1. )
CALL iom_put( 'intstrx' , zfU * zmsk00 ) ! Internal force term in force balance (x)
CALL iom_put( 'intstry' , zfV * zmsk00 ) ! Internal force term in force balance (y)
ENDIF
! --- Ice & snow mass and ice area transports
IF( iom_use('xmtrpice') .OR. iom_use('ymtrpice') .OR. &
& iom_use('xmtrpsnw') .OR. iom_use('ymtrpsnw') .OR. iom_use('xatrp') .OR. iom_use('yatrp') ) THEN
!
ALLOCATE( zdiag_xmtrp_ice(jpi,jpj) , zdiag_ymtrp_ice(jpi,jpj) , &
& zdiag_xmtrp_snw(jpi,jpj) , zdiag_ymtrp_snw(jpi,jpj) , zdiag_xatrp(jpi,jpj) , zdiag_yatrp(jpi,jpj) )
!
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1 ! 2D ice mass, snow mass, area transport arrays (X, Y)
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
zfac_x = 0.5 * u_ice(ji,jj) * e2u(ji,jj) * zmsk00(ji,jj)
zfac_y = 0.5 * v_ice(ji,jj) * e1v(ji,jj) * zmsk00(ji,jj)
zdiag_xmtrp_ice(ji,jj) = rhoi * zfac_x * ( vt_i(ji+1,jj) + vt_i(ji,jj) ) ! ice mass transport, X-component
zdiag_ymtrp_ice(ji,jj) = rhoi * zfac_y * ( vt_i(ji,jj+1) + vt_i(ji,jj) ) ! '' Y- ''
zdiag_xmtrp_snw(ji,jj) = rhos * zfac_x * ( vt_s(ji+1,jj) + vt_s(ji,jj) ) ! snow mass transport, X-component
zdiag_ymtrp_snw(ji,jj) = rhos * zfac_y * ( vt_s(ji,jj+1) + vt_s(ji,jj) ) ! '' Y- ''
zdiag_xatrp(ji,jj) = zfac_x * ( at_i(ji+1,jj) + at_i(ji,jj) ) ! area transport, X-component
zdiag_yatrp(ji,jj) = zfac_y * ( at_i(ji,jj+1) + at_i(ji,jj) ) ! '' Y- ''
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', zdiag_xmtrp_ice, 'U', -1., zdiag_ymtrp_ice, 'V', -1., &
& zdiag_xmtrp_snw, 'U', -1., zdiag_ymtrp_snw, 'V', -1., &
& zdiag_xatrp , 'U', -1., zdiag_yatrp , 'V', -1. )
CALL iom_put( 'xmtrpice' , zdiag_xmtrp_ice ) ! X-component of sea-ice mass transport (kg/s)
CALL iom_put( 'ymtrpice' , zdiag_ymtrp_ice ) ! Y-component of sea-ice mass transport
CALL iom_put( 'xmtrpsnw' , zdiag_xmtrp_snw ) ! X-component of snow mass transport (kg/s)
CALL iom_put( 'ymtrpsnw' , zdiag_ymtrp_snw ) ! Y-component of snow mass transport
CALL iom_put( 'xatrp' , zdiag_xatrp ) ! X-component of ice area transport
CALL iom_put( 'yatrp' , zdiag_yatrp ) ! Y-component of ice area transport
DEALLOCATE( zdiag_xmtrp_ice , zdiag_ymtrp_ice , &
& zdiag_xmtrp_snw , zdiag_ymtrp_snw , zdiag_xatrp , zdiag_yatrp )
ENDIF
END SUBROUTINE ice_dyn_rhg_vp
SUBROUTINE rhg_cvg_vp( kt, kitout, kitinn, kitinntot, kitoutmax, kitinnmax, kitinntotmax , &
& pu, pv, pub, pvb, pub_outer, pvb_outer , &
& pmt, pat_iu, pat_iv, puerr_max, pverr_max, pglob_area , &
& prhsu, pAU, pBU, pCU, pDU, pEU, pFU , &
& prhsv, pAV, pBV, pCV, pDV, pEV, pFV , &
& pvel_res, pvel_diff )
!!
!!----------------------------------------------------------------------
!! *** ROUTINE rhg_cvg_vp ***
!!
!! ** Purpose : check convergence of VP ice rheology
!!
!! ** Method : create a file ice_cvg.nc containing a few convergence diagnostics
!! This routine is called every sub-iteration, so it is cpu expensive
!!
!! Calculates / stores
!! - maximum absolute U-V difference (uice_cvg, u_dif, v_dif, m/s)
!! - residuals in U, V and UV-mean taken as square-root of area-weighted mean square residual (u_res, v_res, vel_res, N/m2)
!! - mean kinetic energy (mke_ice, J/m2)
!!
!! ** Note : for the first sub-iteration, uice_cvg is set to 0 (too large otherwise)
!!
!!----------------------------------------------------------------------
!!
INTEGER , INTENT(in) :: kt, kitout, kitinn, kitinntot ! ocean model iterate, outer, inner and total n-iterations
INTEGER , INTENT(in) :: kitoutmax, kitinnmax ! max number of outer & inner iterations
INTEGER , INTENT(in) :: kitinntotmax ! max number of total sub-iterations
REAL(wp), DIMENSION(:,:), INTENT(in) :: pu, pv, pub, pvb ! now & sub-iter-before velocities
REAL(wp), DIMENSION(:,:), INTENT(in) :: pub_outer, pvb_outer ! velocities @before outer iterations
REAL(wp), DIMENSION(:,:), INTENT(in) :: pmt, pat_iu, pat_iv ! mass at T-point, ice concentration at U&V
REAL(wp), INTENT(in) :: puerr_max, pverr_max ! absolute mean velocity difference
REAL(wp), INTENT(in) :: pglob_area ! global ice area
REAL(wp), DIMENSION(:,:), INTENT(in) :: prhsu, pAU, pBU, pCU, pDU, pEU, pFU ! linear system coefficients
REAL(wp), DIMENSION(:,:), INTENT(in) :: prhsv, pAV, pBV, pCV, pDV, pEV, pFV
REAL(wp), DIMENSION(:,:), INTENT(inout) :: pvel_res ! velocity residual @last inner iteration
REAL(wp), DIMENSION(:,:), INTENT(inout) :: pvel_diff ! velocity difference @last outer iteration
!!
INTEGER :: idtime, istatus, ix_dim, iy_dim
INTEGER :: ji, jj ! dummy loop indices
INTEGER :: it_inn_file, it_out_file
REAL(wp) :: zu_res_mean, zv_res_mean, zvel_res_mean ! mean residuals of the linear system
REAL(wp) :: zu_mad, zv_mad, zvel_mad ! mean absolute deviation, sub-iterates
REAL(wp) :: zu_mad_outer, zv_mad_outer, zvel_mad_outer ! mean absolute deviation, outer-iterates
REAL(wp) :: zvel_err_max, zmke, zu, zv ! local scalars
REAL(wp) :: z1_pglob_area ! inverse global ice area
REAL(wp), DIMENSION(jpi,jpj) :: zu_res, zv_res, zvel2 ! local arrays
REAL(wp), DIMENSION(jpi,jpj) :: zu_diff, zv_diff ! local arrays
CHARACTER(len=20) :: clname
!!----------------------------------------------------------------------
IF( lwp ) THEN
WRITE(numout,*)
WRITE(numout,*) 'rhg_cvg_vp : ice rheology convergence control'
WRITE(numout,*) '~~~~~~~~~~~'
WRITE(numout,*) ' kt = : ', kt
WRITE(numout,*) ' kitout = : ', kitout
WRITE(numout,*) ' kitinn = : ', kitinn
WRITE(numout,*) ' kitinntot = : ', kitinntot
WRITE(numout,*) ' kitoutmax (nn_vp_nout) = ', kitoutmax
WRITE(numout,*) ' kitinnmax (nn_vp_ninn) = ', kitinnmax
WRITE(numout,*) ' kitinntotmax (nn_nvp) = ', kitinntotmax
WRITE(numout,*)
ENDIF
z1_pglob_area = 1._wp / pglob_area ! inverse global ice area
! create file
IF( kt == nit000 .AND. kitinntot == 1 ) THEN
!
IF( lwm ) THEN
clname = 'ice_cvg.nc'
IF( .NOT. Agrif_Root() ) clname = TRIM(Agrif_CFixed())//"_"//TRIM(clname)
istatus = NF90_CREATE( TRIM(clname), NF90_CLOBBER, ncvgid )
istatus = NF90_DEF_DIM( ncvgid, 'time' , NF90_UNLIMITED, idtime )
istatus = NF90_DEF_DIM( ncvgid, 'x' , jpi, ix_dim )
istatus = NF90_DEF_DIM( ncvgid, 'y' , jpj, iy_dim )
istatus = NF90_DEF_VAR( ncvgid, 'u_res' , NF90_DOUBLE , (/ idtime /), nvarid_ures )
istatus = NF90_DEF_VAR( ncvgid, 'v_res' , NF90_DOUBLE , (/ idtime /), nvarid_vres )
istatus = NF90_DEF_VAR( ncvgid, 'vel_res' , NF90_DOUBLE , (/ idtime /), nvarid_velres )
istatus = NF90_DEF_VAR( ncvgid, 'uerr_max_sub' , NF90_DOUBLE , (/ idtime /), nvarid_uerr_max )
istatus = NF90_DEF_VAR( ncvgid, 'verr_max_sub' , NF90_DOUBLE , (/ idtime /), nvarid_verr_max )
istatus = NF90_DEF_VAR( ncvgid, 'velerr_max_sub', NF90_DOUBLE , (/ idtime /), nvarid_velerr_max )
istatus = NF90_DEF_VAR( ncvgid, 'umad_sub' , NF90_DOUBLE , (/ idtime /), nvarid_umad )
istatus = NF90_DEF_VAR( ncvgid, 'vmad_sub' , NF90_DOUBLE , (/ idtime /), nvarid_vmad )
istatus = NF90_DEF_VAR( ncvgid, 'velmad_sub' , NF90_DOUBLE , (/ idtime /), nvarid_velmad )
istatus = NF90_DEF_VAR( ncvgid, 'umad_outer' , NF90_DOUBLE , (/ idtime /), nvarid_umad_outer )
istatus = NF90_DEF_VAR( ncvgid, 'vmad_outer' , NF90_DOUBLE , (/ idtime /), nvarid_vmad_outer )
istatus = NF90_DEF_VAR( ncvgid, 'velmad_outer' , NF90_DOUBLE , (/ idtime /), nvarid_velmad_outer )
istatus = NF90_DEF_VAR( ncvgid, 'mke_ice', NF90_DOUBLE , (/ idtime /), nvarid_mke )
istatus = NF90_ENDDEF(ncvgid)
ENDIF
!
ENDIF
!------------------------------------------------------------
!
! Max absolute velocity difference with previous sub-iterate
! ( zvel_err_max )
!
!------------------------------------------------------------
!
! This comes from the criterion used to stop the iterative procedure
zvel_err_max = 0.5_wp * ( puerr_max + pverr_max ) ! average of U- and V- maximum error over the whole domain
!----------------------------------------------
!
! Mean-absolute-deviation (sub-iterates)
! ( zu_mad, zv_mad, zvel_mad)
!
!----------------------------------------------
!
! U
zu_diff(:,:) = 0._wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zu_diff(ji,jj) = ABS ( ( pu(ji,jj) - pub(ji,jj) ) ) * e1e2u(ji,jj) * pat_iu(ji,jj) * umask(ji,jj,1) * z1_pglob_area
END_2D
! V
zv_diff(:,:) = 0._wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zv_diff(ji,jj) = ABS ( ( pv(ji,jj) - pvb(ji,jj) ) ) * e1e2v(ji,jj) * pat_iv(ji,jj) * vmask(ji,jj,1) * z1_pglob_area
END_2D
! global sum & U-V average
CALL lbc_lnk( 'icedyn_rhg_cvg_vp', zu_diff, 'U', 1., zv_diff , 'V', 1. )
zu_mad = glob_sum( 'icedyn_rhg_vp : ', zu_diff )
zv_mad = glob_sum( 'icedyn_rhg_vp : ', zv_diff )
zvel_mad = 0.5_wp * ( zu_mad + zv_mad )
!-----------------------------------------------
!
! Mean-absolute-deviation (outer-iterates)
! ( zu_mad_outer, zv_mad_outer, zvel_mad_outer)
!
!-----------------------------------------------
!
IF ( kitinn == kitinnmax ) THEN ! only work at the end of outer iterates
! * U
zu_diff(:,:) = 0._wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zu_diff(ji,jj) = ABS ( ( pu(ji,jj) - pub_outer(ji,jj) ) ) * e1e2u(ji,jj) * pat_iu(ji,jj) * umask(ji,jj,1) * &
& z1_pglob_area
END_2D
! * V
zv_diff(:,:) = 0._wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zv_diff(ji,jj) = ABS ( ( pv(ji,jj) - pvb_outer(ji,jj) ) ) * e1e2v(ji,jj) * pat_iv(ji,jj) * vmask(ji,jj,1) * &
& z1_pglob_area
END_2D
! Global ice-concentration, grid-cell-area weighted mean
CALL lbc_lnk( 'icedyn_rhg_cvg_vp', zu_diff, 'U', 1., zv_diff , 'V', 1. ) ! abs behaves as a scalar no ?
zu_mad_outer = glob_sum( 'icedyn_rhg_vp : ', zu_diff )
zv_mad_outer = glob_sum( 'icedyn_rhg_vp : ', zv_diff )
! Average of both U & V
zvel_mad_outer = 0.5_wp * ( zu_mad_outer + zv_mad_outer )
ENDIF
! --- Spatially-resolved absolute difference to send back to main routine
! (last iteration only, T-point)
IF ( kitinntot == kitinntotmax) THEN
zu_diff(:,:) = 0._wp
zv_diff(:,:) = 0._wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zu_diff(ji,jj) = ( ABS ( ( pu(ji-1,jj) - pub_outer(ji-1,jj) ) ) * umask(ji-1,jj,1) &
& + ABS ( ( pu(ji,jj ) - pub_outer(ji,jj) ) ) * umask(ji,jj,1) ) &
& / ( umask(ji-1,jj,1) + umask(ji,jj,1) )
zv_diff(ji,jj) = ( ABS ( ( pv(ji,jj-1) - pvb_outer(ji,jj-1) ) ) * vmask(ji,jj-1,1) &
& + ABS ( ( pv(ji,jj ) - pvb_outer(ji,jj) ) ) * vmask(ji,jj,1) &
& / ( vmask(ji,jj-1,1) + vmask(ji,jj,1) ) )
END_2D
CALL lbc_lnk( 'icedyn_rhg_cvg_vp', zu_diff, 'T', 1., zv_diff , 'T', 1. )
pvel_diff(:,:) = 0.5_wp * ( zu_diff(:,:) + zv_diff(:,:) )
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
ELSE
pvel_diff(:,:) = 0._wp
ENDIF
!---------------------------------------
!
! --- Mean residual & kinetic energy
!
!---------------------------------------
IF ( kitinntot == 1 ) THEN
zu_res_mean = 0._wp
zv_res_mean = 0._wp
zvel_res_mean = 0._wp
zmke = 0._wp
ELSE
! * Mean residual (N/m2)
! Here we take the residual of the linear system (N/m2),
! We define it as in mitgcm: global area-weighted mean of square-root residual
! Local residual r = Ax - B expresses to which extent the momentum balance is verified
! i.e., how close we are to a solution
zu_res(:,:) = 0._wp; zv_res(:,:) = 0._wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zu_res(ji,jj) = ( prhsu(ji,jj) + pDU(ji,jj) * pu(ji,jj-1) + pEU(ji,jj) * pu(ji,jj+1) &
& - pAU(ji,jj) * pu(ji-1,jj) - pBU(ji,jj) * pu(ji,jj) - pCU(ji,jj) * pu(ji+1,jj) )
zv_res(ji,jj) = ( prhsv(ji,jj) + pDV(ji,jj) * pv(ji-1,jj) + pEV(ji,jj) * pv(ji+1,jj) &
& - pAV(ji,jj) * pv(ji,jj-1) - pBV(ji,jj) * pv(ji,jj) - pCV(ji,jj) * pv(ji,jj+1) )
! zu_res(ji,jj) = pFU(ji,jj) - pAU(ji,jj) * pu(ji-1,jj) - pBU(ji,jj) * pu(ji,jj) - pCU(ji,jj) * pu(ji+1,jj)
! zv_res(ji,jj) = pFV(ji,jj) - pAV(ji,jj) * pv(ji,jj-1) - pBV(ji,jj) * pv(ji,jj) - pCV(ji,jj) * pv(ji,jj+1)
zu_res(ji,jj) = SQRT( zu_res(ji,jj) * zu_res(ji,jj) ) * umask(ji,jj,1) * pat_iu(ji,jj) * e1e2u(ji,jj) * z1_pglob_area
zv_res(ji,jj) = SQRT( zv_res(ji,jj) * zv_res(ji,jj) ) * vmask(ji,jj,1) * pat_iv(ji,jj) * e1e2v(ji,jj) * z1_pglob_area
END_2D
! Global ice-concentration, grid-cell-area weighted mean
CALL lbc_lnk( 'icedyn_rhg_cvg_vp', zu_res, 'U', 1., zv_res , 'V', 1. )
zu_res_mean = glob_sum( 'ice_rhg_vp', zu_res(:,:) )
zv_res_mean = glob_sum( 'ice_rhg_vp', zv_res(:,:) )
zvel_res_mean = 0.5_wp * ( zu_res_mean + zv_res_mean )
! --- Global mean kinetic energy per unit area (J/m2)
zvel2(:,:) = 0._wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zu = 0.5_wp * ( pu(ji-1,jj) + pu(ji,jj) ) ! u-vel at T-point
zv = 0.5_wp * ( pv(ji,jj-1) + pv(ji,jj) )
zvel2(ji,jj) = zu*zu + zv*zv ! square of ice velocity at T-point
END_2D
zmke = 0.5_wp * glob_sum( 'ice_rhg_vp', pmt(:,:) * e1e2t(:,:) * zvel2(:,:) ) / pglob_area
ENDIF ! kitinntot
!--- Spatially-resolved residual at last iteration to send back to main routine (last iteration only)
!--- Calculation @T-point
IF ( kitinntot == kitinntotmax) THEN
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zu_res(ji,jj) = ( prhsu(ji,jj) + pDU(ji,jj) * pu(ji,jj-1) + pEU(ji,jj) * pu(ji,jj+1) &
& - pAU(ji,jj) * pu(ji-1,jj) - pBU(ji,jj) * pu(ji,jj) - pCU(ji,jj) * pu(ji+1,jj) )
zv_res(ji,jj) = ( prhsv(ji,jj) + pDV(ji,jj) * pv(ji-1,jj) + pEV(ji,jj) * pv(ji+1,jj) &
& - pAV(ji,jj) * pv(ji,jj-1) - pBV(ji,jj) * pv(ji,jj) - pCV(ji,jj) * pv(ji,jj+1) )
zu_res(ji,jj) = SQRT( zu_res(ji,jj) * zu_res(ji,jj) ) * umask(ji,jj,1)
zv_res(ji,jj) = SQRT( zv_res(ji,jj) * zv_res(ji,jj) ) * vmask(ji,jj,1)
END_2D
CALL lbc_lnk( 'icedyn_rhg_cvg_vp', zu_res, 'U', 1., zv_res , 'V', 1. )
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
pvel_res(ji,jj) = 0.25_wp * ( zu_res(ji-1,jj) + zu_res(ji,jj) + zv_res(ji,jj-1) + zv_res(ji,jj) )
END_2D
CALL lbc_lnk( 'icedyn_rhg_cvg_vp', pvel_res, 'T', 1. )
ELSE
pvel_res(:,:) = 0._wp
ENDIF
! ! ==================== !
it_inn_file = ( kt - nit000 ) * kitinntotmax + kitinntot ! time step in the file
it_out_file = ( kt - nit000 ) * kitoutmax + kitout
! write variables
IF( lwm ) THEN
istatus = NF90_PUT_VAR( ncvgid, nvarid_ures , (/zu_res_mean/), (/it_inn_file/), (/1/) ) ! Residuals of the linear system, area weighted mean
istatus = NF90_PUT_VAR( ncvgid, nvarid_vres , (/zv_res_mean/), (/it_inn_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_velres, (/zvel_res_mean/), (/it_inn_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_uerr_max , (/puerr_max/), (/it_inn_file/), (/1/) ) ! Max velocit_inn_filey error, sub-it_inn_fileerates
istatus = NF90_PUT_VAR( ncvgid, nvarid_verr_max , (/pverr_max/), (/it_inn_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_velerr_max, (/zvel_err_max/), (/it_inn_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_umad , (/zu_mad/) , (/it_inn_file/), (/1/) ) ! velocit_inn_filey MAD, area/sic-weighted, sub-it_inn_fileerates
istatus = NF90_PUT_VAR( ncvgid, nvarid_vmad , (/zv_mad/) , (/it_inn_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_velmad , (/zvel_mad/), (/it_inn_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_mke, (/zmke/), (/kitinntot/), (/1/) ) ! mean kinetic energy
IF ( kitinn == kitinnmax ) THEN ! only print outer mad at the end of inner loop
istatus = NF90_PUT_VAR( ncvgid, nvarid_umad_outer , (/zu_mad_outer/) , (/it_out_file/), (/1/) ) ! velocity MAD, area/sic-weighted, outer-iterates
istatus = NF90_PUT_VAR( ncvgid, nvarid_vmad_outer , (/zv_mad_outer/) , (/it_out_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_velmad_outer , (/zvel_mad_outer/), (/it_out_file/), (/1/) ) !
ENDIF
IF( kt == nitend - nn_fsbc + 1 .AND. kitinntot == kitinntotmax ) istatus = NF90_CLOSE( ncvgid )
ENDIF
END SUBROUTINE rhg_cvg_vp
#else
!!----------------------------------------------------------------------
!! Default option Empty module NO SI3 sea-ice model
!!----------------------------------------------------------------------
#endif
!!==============================================================================
END MODULE icedyn_rhg_vp