Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
IF(lwp) WRITE(numout,*) ' ==>>> vector form dynamics : total vorticity = Coriolis + relative vorticity'
nrvm = np_RVO ! relative vorticity
ntot = np_CRV ! relative + planetary vorticity
CASE( np_FLX_c2 , np_FLX_ubs )
IF(lwp) WRITE(numout,*) ' ==>>> flux form dynamics : total vorticity = Coriolis + metric term'
nrvm = np_MET ! metric term
ntot = np_CME ! Coriolis + metric term
!
SELECT CASE( nvor_scheme ) ! pre-computed gradients for the metric term:
CASE( np_ENT ) !* T-point metric term : pre-compute di(e2u)/2 and dj(e1v)/2
ALLOCATE( di_e2u_2(jpi,jpj), dj_e1v_2(jpi,jpj) )
DO_2D( 0, 0, 0, 0 )
di_e2u_2(ji,jj) = ( e2u(ji,jj) - e2u(ji-1,jj ) ) * 0.5_wp
dj_e1v_2(ji,jj) = ( e1v(ji,jj) - e1v(ji ,jj-1) ) * 0.5_wp
END_2D
CALL lbc_lnk( 'dynvor', di_e2u_2, 'T', -1.0_wp , dj_e1v_2, 'T', -1.0_wp ) ! Lateral boundary conditions
!
CASE DEFAULT !* F-point metric term : pre-compute di(e2u)/(2*e1e2f) and dj(e1v)/(2*e1e2f)
ALLOCATE( di_e2v_2e1e2f(jpi,jpj), dj_e1u_2e1e2f(jpi,jpj) )
DO_2D( 1, 0, 1, 0 )
di_e2v_2e1e2f(ji,jj) = ( e2v(ji+1,jj ) - e2v(ji,jj) ) * 0.5 * r1_e1e2f(ji,jj)
dj_e1u_2e1e2f(ji,jj) = ( e1u(ji ,jj+1) - e1u(ji,jj) ) * 0.5 * r1_e1e2f(ji,jj)
END_2D
CALL lbc_lnk( 'dynvor', di_e2v_2e1e2f, 'F', -1.0_wp , dj_e1u_2e1e2f, 'F', -1.0_wp ) ! Lateral boundary conditions
END SELECT
!
END SELECT
#if defined key_qco || defined key_linssh
SELECT CASE( nvor_scheme ) ! qco or linssh cases : pre-computed a specific e3f_0 for some vorticity schemes
CASE( np_ENS , np_ENE , np_EEN , np_MIX )
!
ALLOCATE( e3f_0vor(jpi,jpj,jpk) )
!
SELECT CASE( nn_e3f_typ )
CASE ( 0 ) ! original formulation (masked averaging of e3t divided by 4)
DO_3D( 0, 0, 0, 0, 1, jpk )
e3f_0vor(ji,jj,jk) = ( e3t_0(ji ,jj+1,jk)*tmask(ji ,jj+1,jk) &
& + e3t_0(ji+1,jj+1,jk)*tmask(ji+1,jj+1,jk) &
& + e3t_0(ji ,jj ,jk)*tmask(ji ,jj ,jk) &
& + e3t_0(ji+1,jj ,jk)*tmask(ji+1,jj ,jk) ) * 0.25_wp
END_3D
CASE ( 1 ) ! new formulation (masked averaging of e3t divided by the sum of mask)
DO_3D( 0, 0, 0, 0, 1, jpk )
zmsk = (tmask(ji,jj+1,jk) +tmask(ji+1,jj+1,jk) &
& + tmask(ji,jj ,jk) +tmask(ji+1,jj ,jk) )
!
IF( zmsk /= 0._wp ) THEN
e3f_0vor(ji,jj,jk) = ( e3t_0(ji ,jj+1,jk)*tmask(ji ,jj+1,jk) &
& + e3t_0(ji+1,jj+1,jk)*tmask(ji+1,jj+1,jk) &
& + e3t_0(ji ,jj ,jk)*tmask(ji ,jj ,jk) &
& + e3t_0(ji+1,jj ,jk)*tmask(ji+1,jj ,jk) ) / zmsk
ELSE ; e3f_0vor(ji,jj,jk) = 0._wp
ENDIF
END_3D
END SELECT
!
CALL lbc_lnk( 'dynvor', e3f_0vor, 'F', 1._wp )
! ! insure e3f_0vor /= 0
WHERE( e3f_0vor(:,:,:) == 0._wp ) e3f_0vor(:,:,:) = e3f_0(:,:,:)
!
END SELECT
!
#endif
IF(lwp) THEN ! Print the choice
WRITE(numout,*)
SELECT CASE( nvor_scheme )
CASE( np_ENS ) ; WRITE(numout,*) ' ==>>> enstrophy conserving scheme (ENS)'
CASE( np_ENE ) ; WRITE(numout,*) ' ==>>> energy conserving scheme (Coriolis at F-points) (ENE)'
CASE( np_ENT ) ; WRITE(numout,*) ' ==>>> energy conserving scheme (Coriolis at T-points) (ENT)'
IF( ln_dynadv_vec ) CALL ctl_warn('dyn_vor_init: ENT scheme may not work in vector form')
CASE( np_EET ) ; WRITE(numout,*) ' ==>>> energy conserving scheme (EEN scheme using e3t) (EET)'
CASE( np_EEN ) ; WRITE(numout,*) ' ==>>> energy and enstrophy conserving scheme (EEN)'
CASE( np_MIX ) ; WRITE(numout,*) ' ==>>> mixed enstrophy/energy conserving scheme (MIX)'
END SELECT
ENDIF
!
END SUBROUTINE dyn_vor_init
!!==============================================================================
END MODULE dynvor