Newer
Older
MODULE trazdf
!!==============================================================================
!! *** MODULE trazdf ***
!! Ocean active tracers: vertical component of the tracer mixing trend
!!==============================================================================
!! History : 1.0 ! 2005-11 (G. Madec) Original code
!! 3.0 ! 2008-01 (C. Ethe, G. Madec) merge TRC-TRA
!! 4.0 ! 2017-06 (G. Madec) remove explict time-stepping option
!! 4.5 ! 2022-06 (G. Madec) refactoring to reduce memory usage (j-k-i loops)
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! tra_zdf : Update the tracer trend with the vertical diffusion
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and tracers variables
USE dom_oce ! ocean space and time domain variables
USE domvvl ! variable volume
USE phycst ! physical constant
USE zdf_oce ! ocean vertical physics variables
USE zdfmfc ! Mass FLux Convection
USE sbc_oce ! surface boundary condition: ocean
USE ldftra ! lateral diffusion: eddy diffusivity
USE ldfslp ! lateral diffusion: iso-neutral slope
USE trd_oce ! trends: ocean variables
USE trdtra ! trends: tracer trend manager
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
!
USE in_out_manager ! I/O manager
USE prtctl ! Print control
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
USE lib_mpp ! MPP library
USE timing ! Timing
IMPLICIT NONE
PRIVATE
PUBLIC tra_zdf ! called by step.F90
PUBLIC tra_zdf_imp ! called by trczdf.F90
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: trazdf.F90 14834 2021-05-11 09:24:44Z hadcv $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE tra_zdf( kt, Kbb, Kmm, Krhs, pts, Kaa )
!!----------------------------------------------------------------------
!! *** ROUTINE tra_zdf ***
!!
!! ** Purpose : compute the vertical ocean tracer physics.
!!---------------------------------------------------------------------
INTEGER , INTENT(in) :: kt ! ocean time-step index
INTEGER , INTENT(in) :: Kbb, Kmm, Krhs, Kaa ! time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! active tracers and RHS of tracer equation
!
INTEGER :: ji, jj, jk ! Dummy loop indices
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ztrdt, ztrds ! 3D workspace
!!---------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('tra_zdf')
!
IF( kt == nit000 ) THEN
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF(lwp)WRITE(numout,*)
IF(lwp)WRITE(numout,*) 'tra_zdf : implicit vertical mixing on T & S'
IF(lwp)WRITE(numout,*) '~~~~~~~ '
ENDIF
ENDIF
!
IF( l_trdtra ) THEN !* Save ta and sa trends
ALLOCATE( ztrdt(jpi,jpj,jpk), ztrds(jpi,jpj,jpk) )
ztrdt(:,:,:) = pts(:,:,:,jp_tem,Kaa)
ztrds(:,:,:) = pts(:,:,:,jp_sal,Kaa)
ENDIF
!
! !* compute lateral mixing trend and add it to the general trend
CALL tra_zdf_imp( 'TRA', Kbb, Kmm, Krhs, pts, Kaa, jpts )
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
!!gm WHY here ! and I don't like that !
! DRAKKAR SSS control {
! JMM avoid negative salinities near river outlet ! Ugly fix
! JMM : restore negative salinities to small salinities:
!!jc: discard this correction in case salinity is not used in eos
IF ( .NOT.(ln_SEOS.AND.(rn_b0==0._wp)) ) THEN
WHERE( pts(A2D(0),:,jp_sal,Kaa) < 0._wp ) pts(A2D(0),:,jp_sal,Kaa) = 0.1_wp
ENDIF
!!gm
IF( l_trdtra ) THEN ! save the vertical diffusive trends for further diagnostics
DO jk = 1, jpk
ztrdt(:,:,jk) = ( ( pts(:,:,jk,jp_tem,Kaa)*e3t(:,:,jk,Kaa) &
& - pts(:,:,jk,jp_tem,Kbb)*e3t(:,:,jk,Kbb) ) &
& / ( e3t(:,:,jk,Kmm)*rDt ) ) &
& - ztrdt(:,:,jk)
ztrds(:,:,jk) = ( ( pts(:,:,jk,jp_sal,Kaa)*e3t(:,:,jk,Kaa) &
& - pts(:,:,jk,jp_sal,Kbb)*e3t(:,:,jk,Kbb) ) &
& / ( e3t(:,:,jk,Kmm)*rDt ) ) &
& - ztrds(:,:,jk)
END DO
!!gm this should be moved in trdtra.F90 and done on all trends
CALL lbc_lnk( 'trazdf', ztrdt, 'T', 1.0_wp , ztrds, 'T', 1.0_wp )
!!gm
CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_tem, jptra_zdf, ztrdt )
CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_sal, jptra_zdf, ztrds )
DEALLOCATE( ztrdt , ztrds )
ENDIF
! ! print mean trends (used for debugging)
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=pts(:,:,:,jp_tem,Kaa), clinfo1=' zdf - Ta: ', mask1=tmask, &
& tab3d_2=pts(:,:,:,jp_sal,Kaa), clinfo2= ' Sa: ', mask2=tmask, clinfo3='tra' )
!
IF( ln_timing ) CALL timing_stop('tra_zdf')
!
END SUBROUTINE tra_zdf
SUBROUTINE tra_zdf_imp( cdtype, Kbb, Kmm, Krhs, pt, Kaa, kjpt )
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
!!----------------------------------------------------------------------
!! *** ROUTINE tra_zdf_imp ***
!!
!! ** Purpose : Compute the after tracer through a implicit computation
!! of the vertical tracer diffusion (including the vertical component
!! of lateral mixing (only for 2nd order operator, for fourth order
!! it is already computed and add to the general trend in traldf)
!!
!! ** Method : The vertical diffusion of a tracer ,t , is given by:
!! difft = dz( avt dz(t) ) = 1/e3t dk+1( avt/e3w dk(t) )
!! It is computed using a backward time scheme (t=after field)
!! which provide directly the after tracer field.
!! If ln_zdfddm=T, use avs for salinity or for passive tracers
!! Surface and bottom boundary conditions: no diffusive flux on
!! both tracers (bottom, applied through the masked field avt).
!! If iso-neutral mixing, add to avt the contribution due to lateral mixing.
!!
!! ** Action : - pt(:,:,:,:,Kaa) becomes the after tracer
!!---------------------------------------------------------------------
INTEGER , INTENT(in ) :: Kbb, Kmm, Krhs, Kaa ! ocean time level indices
CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator)
INTEGER , INTENT(in ) :: kjpt ! number of tracers
REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) :: pt ! tracers and RHS of tracer equation
!
INTEGER :: ji, jj, jk, jn ! dummy loop indices
REAL(wp) :: zrhs, zzwi, zzws ! local scalars
REAL(wp), DIMENSION(A1Di(0),jpk) :: zwi, zwt, zwd, zws
!!---------------------------------------------------------------------
!
! ! ================= !
DO_1Dj( 0, 0 ) ! i-k slices loop !
! ! ================= !
DO jn = 1, kjpt ! tracer loop !
! ! ================= !
! Matrix construction
! --------------------
! Build matrix if temperature or salinity (only in double diffusion case) or first passive tracer
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
IF( ( cdtype == 'TRA' .AND. ( jn == jp_tem .OR. ( jn == jp_sal .AND. ln_zdfddm ) ) ) .OR. &
& ( cdtype == 'TRC' .AND. jn == 1 ) ) THEN
!
! vertical mixing coef.: avt for temperature, avs for salinity and passive tracers
!
IF( cdtype == 'TRA' .AND. jn == jp_tem ) THEN ! use avt for temperature
!
IF( l_ldfslp ) THEN ! use avt + isoneutral diffusion contribution
IF( ln_traldf_msc ) THEN ! MSC iso-neutral operator
DO_2Dik( 0, 0, 2, jpk, 1 )
zwt(ji,jk) = avt(ji,jj,jk) + akz(ji,jj,jk)
END_2D
ELSE ! standard or triad iso-neutral operator
DO_2Dik( 0, 0, 2, jpk, 1 )
zwt(ji,jk) = avt(ji,jj,jk) + ah_wslp2(ji,jj,jk)
END_2D
ENDIF
ELSE ! use avt only
DO_2Dik( 0, 0, 2, jpk, 1 )
zwt(ji,jk) = avt(ji,jj,jk)
END_2D
ENDIF
!
ELSE ! use avs for salinty or passive tracers
!
IF( l_ldfslp ) THEN ! use avs + isoneutral diffusion contribution
IF( ln_traldf_msc ) THEN ! MSC iso-neutral operator
DO_2Dik( 0, 0, 2, jpk, 1 )
zwt(ji,jk) = avs(ji,jj,jk) + akz(ji,jj,jk)
END_2D
ELSE ! standard or triad iso-neutral operator
DO_2Dik( 0, 0, 2, jpk, 1 )
zwt(ji,jk) = avs(ji,jj,jk) + ah_wslp2(ji,jj,jk)
END_2D
ENDIF
ELSE !
DO_2Dik( 0, 0, 2, jpk, 1 )
zwt(ji,jk) = avs(ji,jj,jk)
END_2D
ENDIF
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
zwt(:,1) = 0._wp
!
! Diagonal, lower (i), upper (s) (including the bottom boundary condition since avt is masked)
IF( ln_zad_Aimp ) THEN ! Adaptive implicit vertical advection
DO_2Dik( 0, 0, 1, jpkm1, 1 )
zzwi = - rDt * zwt(ji,jk ) / e3w(ji,jj,jk ,Kmm)
zzws = - rDt * zwt(ji,jk+1) / e3w(ji,jj,jk+1,Kmm)
zwd(ji,jk) = e3t(ji,jj,jk,Kaa) - zzwi - zzws &
& + rDt * ( MAX( wi(ji,jj,jk ) , 0._wp ) &
& - MIN( wi(ji,jj,jk+1) , 0._wp ) )
zwi(ji,jk) = zzwi + rDt * MIN( wi(ji,jj,jk ) , 0._wp )
zws(ji,jk) = zzws - rDt * MAX( wi(ji,jj,jk+1) , 0._wp )
END_2D
ELSE
DO_2Dik( 0, 0, 1, jpkm1, 1 )
zwi(ji,jk) = - rDt * zwt(ji,jk ) / e3w(ji,jj,jk,Kmm)
zws(ji,jk) = - rDt * zwt(ji,jk+1) / e3w(ji,jj,jk+1,Kmm)
zwd(ji,jk) = e3t(ji,jj,jk,Kaa) - zwi(ji,jk) - zws(ji,jk)
END_2D
ENDIF
!
!!gm BUG?? : if edmfm is equivalent to a w ==>>> just add +/- rDt * edmfm(ji,jj,jk+1/jk )
!! but edmfm is at t-point !!!! crazy??? why not keep it at w-point????
!
IF( ln_zdfmfc ) THEN ! add upward Mass Flux in the matrix
DO_2Dik( 0, 0, 1, jpkm1, 1 )
zws(ji,jk) = zws(ji,jk) + e3t(ji,jj,jk,Kaa) * rDt * edmfm(ji,jj,jk+1) / e3w(ji,jj,jk+1,Kmm)
zwd(ji,jk) = zwd(ji,jk) - e3t(ji,jj,jk,Kaa) * rDt * edmfm(ji,jj,jk ) / e3w(ji,jj,jk+1,Kmm)
END_2D
ENDIF
! DO_3D( 0, 0, 0, 0, 1, jpkm1 )
! edmfa(ji,jj,jk) = 0._wp
! edmfb(ji,jj,jk) = -edmfm(ji,jj,jk ) / e3w(ji,jj,jk+1,Kmm)
! edmfc(ji,jj,jk) = edmfm(ji,jj,jk+1) / e3w(ji,jj,jk+1,Kmm)
! END_3D
!!gm BUG : level jpk never used in the inversion
! DO_2D( 0, 0, 0, 0 )
! edmfa(ji,jj,jpk) = -edmfm(ji,jj,jpk-1) / e3w(ji,jj,jpk,Kmm)
! edmfb(ji,jj,jpk) = edmfm(ji,jj,jpk ) / e3w(ji,jj,jpk,Kmm)
! edmfc(ji,jj,jpk) = 0._wp
! END_2D
!!
!!gm BUG ??? below e3t_Kmm should be used ?
!! or even no multiplication by e3t unless there is a bug in wi calculation
!!
! DO_3D( 0, 0, 0, 0, 1, jpkm1 )
!!gm edmfa = 0._wp except at jpk which is not used ==>> zdiagi update is useless !
! zdiagi(ji,jj,jk) = zdiagi(ji,jj,jk) + e3t(ji,jj,jk,Kaa) * p2dt *edmfa(ji,jj,jk)
! zdiags(ji,jj,jk) = zdiags(ji,jj,jk) + e3t(ji,jj,jk,Kaa) * p2dt *edmfc(ji,jj,jk)
! zdiagd(ji,jj,jk) = zdiagd(ji,jj,jk) + e3t(ji,jj,jk,Kaa) * p2dt *edmfb(ji,jj,jk)
! END_3D
!!gm CALL diag_mfc( zwi, zwd, zws, rDt, Kaa )
!!gm SUBROUTINE diag_mfc( zdiagi, zdiagd, zdiags, p2dt, Kaa )
!
!! Matrix inversion from the first level
!!----------------------------------------------------------------------
! solve m.x = y where m is a tri diagonal matrix ( jpk*jpk )
!
! ( zwd1 zws1 0 0 0 )( zwx1 ) ( zwy1 )
! ( zwi2 zwd2 zws2 0 0 )( zwx2 ) ( zwy2 )
! ( 0 zwi3 zwd3 zws3 0 )( zwx3 )=( zwy3 )
! ( ... )( ... ) ( ... )
! ( 0 0 0 zwik zwdk )( zwxk ) ( zwyk )
!
! m is decomposed in the product of an upper and lower triangular matrix.
! The 3 diagonal terms are in 3d arrays: zwd, zws, zwi.
! Suffices i,s and d indicate "inferior" (below diagonal), diagonal
! and "superior" (above diagonal) components of the tridiagonal system.
! The solution will be in the 4d array pta.
! The 3d array zwt is used as a work space array.
! En route to the solution pt(:,:,:,:,Kaa) is used a to evaluate the rhs and then
! used as a work space array: its value is modified.
!
DO_1Di( 0, 0 ) !* 1st recurrence: Tk = Dk - Ik Sk-1 / Tk-1 (increasing k) ! done one for all passive tracers (so included in the IF instruction)
zwt(ji,1) = zwd(ji,1)
END_1D
DO_2Dik( 0, 0, 2, jpkm1, 1 )
zwt(ji,jk) = zwd(ji,jk) - zwi(ji,jk) * zws(ji,jk-1) / zwt(ji,jk-1)
END_2D
!
IF( ln_zdfmfc ) THEN ! add Mass Flux to the RHS
DO_2Dik( 0, 0, 1, jpkm1, 1 )
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) + edmftra(ji,jj,jk,jn)
END_2D
!!gm CALL rhs_mfc( pt(:,:,:,jn,Krhs), jn )
DO_1Di( 0, 0 ) !* 2nd recurrence: Zk = Yk - Ik / Tk-1 Zk-1
pt(ji,jj,1,jn,Kaa) = e3t(ji,jj,1,Kbb) * pt(ji,jj,1,jn,Kbb ) &
& + rDt * e3t(ji,jj,1,Kmm) * pt(ji,jj,1,jn,Krhs)
END_1D
DO_2Dik( 0, 0, 2, jpkm1, 1 )
zrhs = e3t(ji,jj,jk,Kbb) * pt(ji,jj,jk,jn,Kbb ) &
& + rDt * e3t(ji,jj,jk,Kmm) * pt(ji,jj,jk,jn,Krhs) ! zrhs=right hand side
pt(ji,jj,jk,jn,Kaa) = zrhs - zwi(ji,jk) / zwt(ji,jk-1) * pt(ji,jj,jk-1,jn,Kaa)
DO_1Di( 0, 0 ) !* 3d recurrence: Xk = (Zk - Sk Xk+1 ) / Tk (result is the after tracer)
pt(ji,jj,jpkm1,jn,Kaa) = pt(ji,jj,jpkm1,jn,Kaa) / zwt(ji,jpkm1) * tmask(ji,jj,jpkm1)
END_1D
DO_2Dik( 0, 0, jpk-2, 1, -1 )
pt(ji,jj,jk,jn,Kaa) = ( pt(ji,jj,jk,jn,Kaa) - zws(ji,jk) * pt(ji,jj,jk+1,jn,Kaa) ) &
& / zwt(ji,jk) * tmask(ji,jj,jk)
END_2D
! ! ================= !
END DO ! tracer loop !
! ! ================= !
END SUBROUTINE tra_zdf_imp
!!==============================================================================
END MODULE trazdf