Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
MODULE icedyn_rhg_eap
!!======================================================================
!! *** MODULE icedyn_rhg_eap ***
!! Sea-Ice dynamics : rheology Elasto-Viscous-Plastic
!!======================================================================
!! History : - ! 2007-03 (M.A. Morales Maqueda, S. Bouillon) Original code
!! 3.0 ! 2008-03 (M. Vancoppenolle) adaptation to new model
!! - ! 2008-11 (M. Vancoppenolle, S. Bouillon, Y. Aksenov) add surface tilt in ice rheolohy
!! 3.3 ! 2009-05 (G.Garric) addition of the evp case
!! 3.4 ! 2011-01 (A. Porter) dynamical allocation
!! 3.5 ! 2012-08 (R. Benshila) AGRIF
!! 3.6 ! 2016-06 (C. Rousset) Rewriting + landfast ice + mEVP (Bouillon 2013)
!! 3.7 ! 2017 (C. Rousset) add aEVP (Kimmritz 2016-2017)
!! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube]
!! ! 2019 (S. Rynders, Y. Aksenov, C. Rousset) change into eap rheology from
!! CICE code (Tsamados, Heorton)
!!----------------------------------------------------------------------
#if defined key_si3
!!----------------------------------------------------------------------
!! 'key_si3' SI3 sea-ice model
!!----------------------------------------------------------------------
!! ice_dyn_rhg_eap : computes ice velocities from EVP rheology
!! rhg_eap_rst : read/write EVP fields in ice restart
!!----------------------------------------------------------------------
USE phycst ! Physical constant
USE dom_oce ! Ocean domain
USE sbc_oce , ONLY : ln_ice_embd, nn_fsbc, ssh_m
USE sbc_ice , ONLY : utau_ice, vtau_ice, snwice_mass, snwice_mass_b
USE ice ! sea-ice: ice variables
USE icevar ! ice_var_sshdyn
USE icedyn_rdgrft ! sea-ice: ice strength
USE bdy_oce , ONLY : ln_bdy
USE bdyice
#if defined key_agrif
USE agrif_ice_interp
#endif
!
USE in_out_manager ! I/O manager
USE iom ! I/O manager library
USE lib_mpp ! MPP library
USE lib_fortran ! fortran utilities (glob_sum + no signed zero)
USE lbclnk ! lateral boundary conditions (or mpp links)
USE prtctl ! Print control
USE netcdf ! NetCDF library for convergence test
IMPLICIT NONE
PRIVATE
PUBLIC ice_dyn_rhg_eap ! called by icedyn_rhg.F90
PUBLIC rhg_eap_rst ! called by icedyn_rhg.F90
REAL(wp), PARAMETER :: pphi = 3.141592653589793_wp/12._wp ! diamond shaped floe smaller angle (default phi = 30 deg)
! look-up table for calculating structure tensor
INTEGER, PARAMETER :: nx_yield = 41
INTEGER, PARAMETER :: ny_yield = 41
INTEGER, PARAMETER :: na_yield = 21
REAL(wp), DIMENSION(nx_yield, ny_yield, na_yield) :: s11r, s12r, s22r, s11s, s12s, s22s
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fimask ! mask at F points for the ice
!! for convergence tests
INTEGER :: ncvgid ! netcdf file id
INTEGER :: nvarid ! netcdf variable id
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/ICE 4.0 , NEMO Consortium (2018)
!! $Id: icedyn_rhg_eap.F90 11536 2019-09-11 13:54:18Z smasson $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE ice_dyn_rhg_eap( kt, Kmm, pstress1_i, pstress2_i, pstress12_i, pshear_i, pdivu_i, pdelta_i, paniso_11, paniso_12, prdg_conv )
!!-------------------------------------------------------------------
!! *** SUBROUTINE ice_dyn_rhg_eap ***
!! EAP-C-grid
!!
!! ** purpose : determines sea ice drift from wind stress, ice-ocean
!! stress and sea-surface slope. Ice-ice interaction is described by
!! a non-linear elasto-anisotropic-plastic (EAP) law including shear
!! strength and a bulk rheology .
!!
!! The points in the C-grid look like this, dear reader
!!
!! (ji,jj)
!! |
!! |
!! (ji-1,jj) | (ji,jj)
!! ---------
!! | |
!! | (ji,jj) |------(ji,jj)
!! | |
!! ---------
!! (ji-1,jj-1) (ji,jj-1)
!!
!! ** Inputs : - wind forcing (stress), oceanic currents
!! ice total volume (vt_i) per unit area
!! snow total volume (vt_s) per unit area
!!
!! ** Action : - compute u_ice, v_ice : the components of the
!! sea-ice velocity vector
!! - compute delta_i, shear_i, divu_i, which are inputs
!! of the ice thickness distribution
!!
!! ** Steps : 0) compute mask at F point
!! 1) Compute ice snow mass, ice strength
!! 2) Compute wind, oceanic stresses, mass terms and
!! coriolis terms of the momentum equation
!! 3) Solve the momentum equation (iterative procedure)
!! 4) Recompute delta, shear and divergence
!! (which are inputs of the ITD) & store stress
!! for the next time step
!! 5) Diagnostics including charge ellipse
!!
!! ** Notes : There is the possibility to use aEVP from the nice work of Kimmritz et al. (2016 & 2017)
!! by setting up ln_aEVP=T (i.e. changing alpha and beta parameters).
!! This is an upgraded version of mEVP from Bouillon et al. 2013
!! (i.e. more stable and better convergence)
!!
!! References : Hunke and Dukowicz, JPO97
!! Bouillon et al., Ocean Modelling 2009
!! Bouillon et al., Ocean Modelling 2013
!! Kimmritz et al., Ocean Modelling 2016 & 2017
!!-------------------------------------------------------------------
Clement Rousset
committed
INTEGER , INTENT(in ) :: kt ! time step
INTEGER , INTENT(in ) :: Kmm ! ocean time level index
REAL(wp), DIMENSION(:,:) , INTENT(inout) :: pstress1_i, pstress2_i, pstress12_i !
REAL(wp), DIMENSION(A2D(0)), INTENT( out) :: pshear_i , pdivu_i , pdelta_i !
REAL(wp), DIMENSION(:,:) , INTENT(inout) :: paniso_11 , paniso_12 ! structure tensor components
REAL(wp), DIMENSION(:,:) , INTENT(inout) :: prdg_conv ! for ridging
!!
INTEGER :: ji, jj ! dummy loop indices
INTEGER :: jter ! local integers
!
REAL(wp) :: zrhoco ! rau0 * rn_cio
REAL(wp) :: zdtevp, z1_dtevp ! time step for subcycling
REAL(wp) :: ecc2, z1_ecc2 ! square of yield ellipse eccenticity
REAL(wp) :: zalph1, z1_alph1, zalph2, z1_alph2 ! alpha coef from Bouillon 2009 or Kimmritz 2017
REAl(wp) :: zbetau, zbetav
REAL(wp) :: zm1, zm2, zm3, zmassU, zmassV, zvU, zvV ! ice/snow mass and volume
REAL(wp) :: zds2, zdt, zdt2, zdiv, zdiv2, zdsT ! temporary scalars
REAL(wp) :: zTauO, zTauB, zRHS, zvel ! temporary scalars
REAL(wp) :: zkt ! isotropic tensile strength for landfast ice
REAL(wp) :: zvCr ! critical ice volume above which ice is landfast
!
REAL(wp) :: zintb, zintn ! dummy argument
REAL(wp) :: zfac_x, zfac_y
Clement Rousset
committed
REAL(wp) :: zdum1, zdum2
REAL(wp) :: zstressptmp, zstressmtmp, zstress12tmpF ! anisotropic stress tensor components
REAL(wp) :: zalphar, zalphas ! for mechanical redistribution
REAL(wp) :: zmresult11, zmresult12, z1dtevpkth, zp5kth, z1_dtevp_A ! for structure tensor evolution
!
REAL(wp), DIMENSION(jpi,jpj) :: zstress12tmp ! anisotropic stress tensor component for regridding
Clement Rousset
committed
REAL(wp), DIMENSION(A2D(0)) :: zyield11, zyield22, zyield12 ! yield surface tensor for history
REAL(wp), DIMENSION(jpi,jpj) :: zdelta, zp_delt ! delta and P/delta at T points
Clement Rousset
committed
REAL(wp), DIMENSION(A2D(0)) :: zten_i, zshear ! tension, shear
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
REAL(wp), DIMENSION(jpi,jpj) :: zbeta ! beta coef from Kimmritz 2017
!
REAL(wp), DIMENSION(jpi,jpj) :: zdt_m ! (dt / ice-snow_mass) on T points
REAL(wp), DIMENSION(jpi,jpj) :: zaU , zaV ! ice fraction on U/V points
REAL(wp), DIMENSION(jpi,jpj) :: zmU_t, zmV_t ! (ice-snow_mass / dt) on U/V points
REAL(wp), DIMENSION(jpi,jpj) :: zmf ! coriolis parameter at T points
REAL(wp), DIMENSION(jpi,jpj) :: v_oceU, u_oceV, v_iceU, u_iceV ! ocean/ice u/v component on V/U points
!
REAL(wp), DIMENSION(jpi,jpj) :: zds ! shear
REAL(wp), DIMENSION(jpi,jpj) :: zs1, zs2, zs12 ! stress tensor components
REAL(wp), DIMENSION(jpi,jpj) :: zsshdyn ! array used for the calculation of ice surface slope:
! ! ocean surface (ssh_m) if ice is not embedded
! ! ice bottom surface if ice is embedded
REAL(wp), DIMENSION(jpi,jpj) :: zfU , zfV ! internal stresses
REAL(wp), DIMENSION(jpi,jpj) :: zspgU, zspgV ! surface pressure gradient at U/V points
REAL(wp), DIMENSION(jpi,jpj) :: zCorU, zCorV ! Coriolis stress array
REAL(wp), DIMENSION(jpi,jpj) :: ztaux_ai, ztauy_ai ! ice-atm. stress at U-V points
REAL(wp), DIMENSION(jpi,jpj) :: ztaux_oi, ztauy_oi ! ice-ocean stress at U-V points
REAL(wp), DIMENSION(jpi,jpj) :: ztaux_bi, ztauy_bi ! ice-OceanBottom stress at U-V points (landfast)
REAL(wp), DIMENSION(jpi,jpj) :: ztaux_base, ztauy_base ! ice-bottom stress at U-V points (landfast)
!
REAL(wp), DIMENSION(jpi,jpj) :: zmsk01x, zmsk01y ! dummy arrays
REAL(wp), DIMENSION(jpi,jpj) :: zmsk00x, zmsk00y ! mask for ice presence
REAL(wp), PARAMETER :: zepsi = 1.0e-20_wp ! tolerance parameter
REAL(wp), PARAMETER :: zmmin = 1._wp ! ice mass (kg/m2) below which ice velocity becomes very small
REAL(wp), PARAMETER :: zamin = 0.001_wp ! ice concentration below which ice velocity becomes very small
!! --- check convergence
Clement Rousset
committed
REAL(wp), DIMENSION(A2D(0)) :: zmsk00, zmsk15
REAL(wp), DIMENSION(A2D(0)) :: zu_ice, zv_ice
!! --- diags
REAL(wp) :: zsig1, zsig2, zsig12, zfac, z1_strength
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zsig_I, zsig_II, zsig1_p, zsig2_p
!! --- SIMIP diags
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xmtrp_ice ! X-component of ice mass transport (kg/s)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_ymtrp_ice ! Y-component of ice mass transport (kg/s)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xmtrp_snw ! X-component of snow mass transport (kg/s)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_ymtrp_snw ! Y-component of snow mass transport (kg/s)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xatrp ! X-component of area transport (m2/s)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_yatrp ! Y-component of area transport (m2/s)
!!-------------------------------------------------------------------
IF( kt == nit000 .AND. lwp ) WRITE(numout,*) '-- ice_dyn_rhg_eap: EAP sea-ice rheology'
!
! for diagnostics and convergence tests
Clement Rousset
committed
DO_2D( 0, 0, 0, 0 )
zmsk00(ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi06 ) ) ! 1 if ice , 0 if no ice
END_2D
IF( nn_rhg_chkcvg > 0 ) THEN
Clement Rousset
committed
DO_2D( 0, 0, 0, 0 )
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
zmsk15(ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - 0.15_wp ) ) ! 1 if 15% ice, 0 if less
END_2D
ENDIF
!
!------------------------------------------------------------------------------!
! 0) mask at F points for the ice
!------------------------------------------------------------------------------!
IF( kt == nit000 ) THEN
! ocean/land mask
ALLOCATE( fimask(jpi,jpj) )
IF( rn_ishlat == 0._wp ) THEN
DO_2D( 0, 0, 0, 0 )
fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
END_2D
ELSE
DO_2D( 0, 0, 0, 0 )
fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
! Lateral boundary conditions on velocity (modify fimask)
IF( fimask(ji,jj) == 0._wp ) THEN
fimask(ji,jj) = rn_ishlat * MIN( 1._wp , MAX( umask(ji,jj,1), umask(ji,jj+1,1), &
& vmask(ji,jj,1), vmask(ji+1,jj,1) ) )
ENDIF
END_2D
ENDIF
CALL lbc_lnk( 'icedyn_rhg_eap', fimask, 'F', 1.0_wp )
ENDIF
!------------------------------------------------------------------------------!
! 1) define some variables and initialize arrays
!------------------------------------------------------------------------------!
zrhoco = rho0 * rn_cio
! ecc2: square of yield ellipse eccenticrity
ecc2 = rn_ecc * rn_ecc
z1_ecc2 = 1._wp / ecc2
! alpha parameters (Bouillon 2009)
IF( .NOT. ln_aEVP ) THEN
zdtevp = rDt_ice / REAL( nn_nevp )
zalph1 = 2._wp * rn_relast * REAL( nn_nevp )
zalph2 = zalph1 * z1_ecc2
z1_alph1 = 1._wp / ( zalph1 + 1._wp )
z1_alph2 = 1._wp / ( zalph2 + 1._wp )
ELSE
zdtevp = rdt_ice
! zalpha parameters set later on adaptatively
ENDIF
z1_dtevp = 1._wp / zdtevp
! Initialise stress tensor
zs1 (:,:) = pstress1_i (:,:)
zs2 (:,:) = pstress2_i (:,:)
zs12(:,:) = pstress12_i(:,:)
! constants for structure tensor
z1_dtevp_A = z1_dtevp/10.0_wp
z1dtevpkth = 1._wp / (z1_dtevp_A + 0.00002_wp)
zp5kth = 0.5_wp * 0.00002_wp
! Ice strength
CALL ice_strength
! landfast param from Lemieux(2016): add isotropic tensile strength (following Konig Beatty and Holland, 2010)
IF( ln_landfast_L16 ) THEN ; zkt = rn_lf_tensile
ELSE ; zkt = 0._wp
ENDIF
!
!------------------------------------------------------------------------------!
! 2) Wind / ocean stress, mass terms, coriolis terms
!------------------------------------------------------------------------------!
! sea surface height
! embedded sea ice: compute representative ice top surface
! non-embedded sea ice: use ocean surface for slope calculation
zsshdyn(:,:) = ice_var_sshdyn( ssh_m, snwice_mass, snwice_mass_b)
Clement Rousset
committed
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zm1 = ( rhos * vt_s(ji,jj) + rhoi * vt_i(ji,jj) ) ! Ice/snow mass at U-V points
!!$ zm1 = ( rhos * vt_s(ji,jj) + rhoi * vt_i(ji,jj) + rhow * (vt_ip(ji,jj) + vt_il(ji,jj)) ) ! clem: this should replace the above
zmf (ji,jj) = zm1 * ff_t(ji,jj) ! Coriolis at T points (m*f)
zdt_m(ji,jj) = zdtevp / MAX( zm1, zmmin ) ! dt/m at T points (for alpha and beta coefficients)
END_2D
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
! ice fraction at U-V points
zaU(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji+1,jj) * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
zaV(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji,jj+1) * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)
! Ice/snow mass at U-V points
zm1 = ( rhos * vt_s(ji ,jj ) + rhoi * vt_i(ji ,jj ) )
Clement Rousset
committed
!!$ zm1 = ( rhos * vt_s(ji ,jj ) + rhoi * vt_i(ji ,jj ) + rhow * (vt_ip(ji ,jj ) + vt_il(ji ,jj )) ) ! clem: this should replace the above
zm2 = ( rhos * vt_s(ji+1,jj ) + rhoi * vt_i(ji+1,jj ) )
Clement Rousset
committed
!!$ zm2 = ( rhos * vt_s(ji+1,jj ) + rhoi * vt_i(ji+1,jj ) + rhow * (vt_ip(ji+1,jj ) + vt_il(ji+1,jj )) ) ! clem: this should replace the above
zm3 = ( rhos * vt_s(ji ,jj+1) + rhoi * vt_i(ji ,jj+1) )
Clement Rousset
committed
!!$ zm3 = ( rhos * vt_s(ji ,jj+1) + rhoi * vt_i(ji ,jj+1) + rhow * (vt_ip(ji ,jj+1) + vt_il(ji ,jj+1)) ) ! clem: this should replace the above
zmassU = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm2 * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
zmassV = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm3 * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)
! Ocean currents at U-V points
v_oceU(ji,jj) = 0.25_wp * ( v_oce(ji,jj) + v_oce(ji,jj-1) + v_oce(ji+1,jj) + v_oce(ji+1,jj-1) ) * umask(ji,jj,1)
u_oceV(ji,jj) = 0.25_wp * ( u_oce(ji,jj) + u_oce(ji-1,jj) + u_oce(ji,jj+1) + u_oce(ji-1,jj+1) ) * vmask(ji,jj,1)
! m/dt
zmU_t(ji,jj) = zmassU * z1_dtevp
zmV_t(ji,jj) = zmassV * z1_dtevp
! Drag ice-atm.
! Note the use of 0.5*(2-umask) in order to unmask the stress along coastlines
! and the use of MAX(tmask(i,j),tmask(i+1,j) is to mask tau over ice shelves
ztaux_ai(ji,jj) = zaU(ji,jj) * 0.5_wp * ( utau_ice(ji,jj) + utau_ice(ji+1,jj) ) * &
& ( 2. - umask(ji,jj,1) ) * MAX( tmask(ji,jj,1), tmask(ji+1,jj,1) )
ztauy_ai(ji,jj) = zaV(ji,jj) * 0.5_wp * ( vtau_ice(ji,jj) + vtau_ice(ji,jj+1) ) * &
& ( 2. - vmask(ji,jj,1) ) * MAX( tmask(ji,jj,1), tmask(ji,jj+1,1) )
! Surface pressure gradient (- m*g*GRAD(ssh)) at U-V points
zspgU(ji,jj) = - zmassU * grav * ( zsshdyn(ji+1,jj) - zsshdyn(ji,jj) ) * r1_e1u(ji,jj)
zspgV(ji,jj) = - zmassV * grav * ( zsshdyn(ji,jj+1) - zsshdyn(ji,jj) ) * r1_e2v(ji,jj)
! masks
zmsk00x(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassU ) ) ! 0 if no ice
zmsk00y(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassV ) ) ! 0 if no ice
! switches
IF( zmassU <= zmmin .AND. zaU(ji,jj) <= zamin ) THEN ; zmsk01x(ji,jj) = 0._wp
ELSE ; zmsk01x(ji,jj) = 1._wp ; ENDIF
IF( zmassV <= zmmin .AND. zaV(ji,jj) <= zamin ) THEN ; zmsk01y(ji,jj) = 0._wp
ELSE ; zmsk01y(ji,jj) = 1._wp ; ENDIF
END_2D
!
! !== Landfast ice parameterization ==!
!
IF( ln_landfast_L16 ) THEN !-- Lemieux 2016
Clement Rousset
committed
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
! ice thickness at U-V points
zvU = 0.5_wp * ( vt_i(ji,jj) * e1e2t(ji,jj) + vt_i(ji+1,jj) * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
zvV = 0.5_wp * ( vt_i(ji,jj) * e1e2t(ji,jj) + vt_i(ji,jj+1) * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)
! ice-bottom stress at U points
zvCr = zaU(ji,jj) * rn_lf_depfra * hu(ji,jj,Kmm) * ( 1._wp - icb_mask(ji,jj) ) ! if grounded icebergs are read: ocean depth = 0
ztaux_base(ji,jj) = - rn_lf_bfr * MAX( 0._wp, zvU - zvCr ) * EXP( -rn_crhg * ( 1._wp - zaU(ji,jj) ) )
! ice-bottom stress at V points
zvCr = zaV(ji,jj) * rn_lf_depfra * hv(ji,jj,Kmm) * ( 1._wp - icb_mask(ji,jj) ) ! if grounded icebergs are read: ocean depth = 0
ztauy_base(ji,jj) = - rn_lf_bfr * MAX( 0._wp, zvV - zvCr ) * EXP( -rn_crhg * ( 1._wp - zaV(ji,jj) ) )
! ice_bottom stress at T points
zvCr = at_i(ji,jj) * rn_lf_depfra * ht(ji,jj) * ( 1._wp - icb_mask(ji,jj) ) ! if grounded icebergs are read: ocean depth = 0
tau_icebfr(ji,jj) = - rn_lf_bfr * MAX( 0._wp, vt_i(ji,jj) - zvCr ) * EXP( -rn_crhg * ( 1._wp - at_i(ji,jj) ) )
END_2D
!
ELSE !-- no landfast
Clement Rousset
committed
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
ztaux_base(ji,jj) = 0._wp
ztauy_base(ji,jj) = 0._wp
END_2D
ENDIF
!------------------------------------------------------------------------------!
! 3) Solution of the momentum equation, iterative procedure
!------------------------------------------------------------------------------!
!
! ! ==================== !
DO jter = 1 , nn_nevp ! loop over jter !
! ! ==================== !
! convergence test
IF( nn_rhg_chkcvg == 1 .OR. nn_rhg_chkcvg == 2 ) THEN
Clement Rousset
committed
DO_2D( 0, 0, 0, 0 )
zu_ice(ji,jj) = u_ice(ji,jj) * umask(ji,jj,1) ! velocity at previous time step
zv_ice(ji,jj) = v_ice(ji,jj) * vmask(ji,jj,1)
END_2D
ENDIF
! --- divergence, tension & shear (Appendix B of Hunke & Dukowicz, 2002) --- !
Clement Rousset
committed
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
! shear at F points
zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) &
& + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) &
& ) * r1_e1e2f(ji,jj) * fimask(ji,jj)
END_2D
DO_2D( 0, 0, 0, 0 )
! shear**2 at T points (doc eq. A16)
zds2 = ( zds(ji,jj ) * zds(ji,jj ) * e1e2f(ji,jj ) + zds(ji-1,jj ) * zds(ji-1,jj ) * e1e2f(ji-1,jj ) &
& + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1) &
& ) * 0.25_wp * r1_e1e2t(ji,jj)
! divergence at T points
zdiv = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj) &
& + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1) &
& ) * r1_e1e2t(ji,jj)
zdiv2 = zdiv * zdiv
! tension at T points
zdt = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj) &
& - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj) &
& ) * r1_e1e2t(ji,jj)
zdt2 = zdt * zdt
! delta at T points
zdelta(ji,jj) = SQRT( zdiv2 + ( zdt2 + zds2 ) * z1_ecc2 )
Clement Rousset
committed
! P/delta at T points
zp_delt(ji,jj) = strength(ji,jj) / ( zdelta(ji,jj) + rn_creepl )
Clement Rousset
committed
Clement Rousset
committed
CALL lbc_lnk( 'icedyn_rhg_eap', zdelta, 'T', 1.0_wp, zp_delt, 'T', 1.0_wp )
Clement Rousset
committed
DO_2D( 0, 0, 0, 0 )
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
! shear at T points
zdsT = ( zds(ji,jj ) * e1e2f(ji,jj ) + zds(ji-1,jj ) * e1e2f(ji-1,jj ) &
& + zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * e1e2f(ji-1,jj-1) &
& ) * 0.25_wp * r1_e1e2t(ji,jj)
! divergence at T points (duplication to avoid communications)
zdiv = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj) &
& + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1) &
& ) * r1_e1e2t(ji,jj)
! tension at T points (duplication to avoid communications)
zdt = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj) &
& - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj) &
& ) * r1_e1e2t(ji,jj)
! --- anisotropic stress calculation --- !
CALL update_stress_rdg (jter, nn_nevp, zdiv, zdt, zdsT, paniso_11(ji,jj), paniso_12(ji,jj), &
zstressptmp, zstressmtmp, zstress12tmp(ji,jj), strength(ji,jj), zalphar, zalphas)
! structure tensor update
CALL calc_ffrac(zstressptmp, zstressmtmp, zstress12tmp(ji,jj), paniso_11(ji,jj), paniso_12(ji,jj), zmresult11, zmresult12)
paniso_11(ji,jj) = (paniso_11(ji,jj) + 0.5*2.e-5*zdtevp + zmresult11*zdtevp) / (1. + 2.e-5*zdtevp) ! implicit
paniso_12(ji,jj) = (paniso_12(ji,jj) + zmresult12*zdtevp) / (1. + 2.e-5*zdtevp) ! implicit
IF (jter == nn_nevp) THEN
zyield11(ji,jj) = 0.5_wp * (zstressptmp + zstressmtmp)
zyield22(ji,jj) = 0.5_wp * (zstressptmp - zstressmtmp)
zyield12(ji,jj) = zstress12tmp(ji,jj)
prdg_conv(ji,jj) = -min( zalphar, 0._wp)
ENDIF
! alpha for aEVP
! gamma = 0.5*P/(delta+creepl) * (c*pi)**2/Area * dt/m
! alpha = beta = sqrt(4*gamma)
IF( ln_aEVP ) THEN
zalph1 = MAX( 50._wp, rpi * SQRT( 0.5_wp * zp_delt(ji,jj) * r1_e1e2t(ji,jj) * zdt_m(ji,jj) ) )
z1_alph1 = 1._wp / ( zalph1 + 1._wp )
zalph2 = zalph1
z1_alph2 = z1_alph1
! explicit:
! z1_alph1 = 1._wp / zalph1
! z1_alph2 = 1._wp / zalph1
! zalph1 = zalph1 - 1._wp
! zalph2 = zalph1
ENDIF
! stress at T points (zkt/=0 if landfast)
zs1(ji,jj) = ( zs1(ji,jj) * zalph1 + zstressptmp ) * z1_alph1
zs2(ji,jj) = ( zs2(ji,jj) * zalph1 + zstressmtmp ) * z1_alph1
END_2D
Clement Rousset
committed
CALL lbc_lnk( 'icedyn_rhg_eap', zstress12tmp, 'T', 1.0_wp , paniso_11, 'T', 1.0_wp , paniso_12, 'T', 1.0_wp, &
& zs1, 'T', 1.0_wp, zs2, 'T', 1.0_wp )
! Save beta at T-points for further computations
IF( ln_aEVP ) THEN
Clement Rousset
committed
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zbeta(ji,jj) = MAX( 50._wp, rpi * SQRT( 0.5_wp * zp_delt(ji,jj) * r1_e1e2t(ji,jj) * zdt_m(ji,jj) ) )
END_2D
ENDIF
Clement Rousset
committed
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )
! stress12tmp at F points
zstress12tmpF = ( zstress12tmp(ji,jj+1) * e1e2t(ji,jj+1) + zstress12tmp(ji+1,jj+1) * e1e2t(ji+1,jj+1) &
& + zstress12tmp(ji,jj ) * e1e2t(ji,jj ) + zstress12tmp(ji+1,jj ) * e1e2t(ji+1,jj ) &
& ) * 0.25_wp * r1_e1e2f(ji,jj)
! alpha for aEVP
IF( ln_aEVP ) THEN
zalph2 = MAX( zbeta(ji,jj), zbeta(ji+1,jj), zbeta(ji,jj+1), zbeta(ji+1,jj+1) )
z1_alph2 = 1._wp / ( zalph2 + 1._wp )
! explicit:
! z1_alph2 = 1._wp / zalph2
! zalph2 = zalph2 - 1._wp
ENDIF
! stress at F points (zkt/=0 if landfast)
zs12(ji,jj) = ( zs12(ji,jj) * zalph1 + zstress12tmpF ) * z1_alph1
END_2D
! --- Ice internal stresses (Appendix C of Hunke and Dukowicz, 2002) --- !
Clement Rousset
committed
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
! !--- U points
zfU(ji,jj) = 0.5_wp * ( ( zs1(ji+1,jj) - zs1(ji,jj) ) * e2u(ji,jj) &
& + ( zs2(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj) - zs2(ji,jj) * e2t(ji,jj) * e2t(ji,jj) &
& ) * r1_e2u(ji,jj) &
& + ( zs12(ji,jj) * e1f(ji,jj) * e1f(ji,jj) - zs12(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1) &
& ) * 2._wp * r1_e1u(ji,jj) &
& ) * r1_e1e2u(ji,jj)
!
! !--- V points
zfV(ji,jj) = 0.5_wp * ( ( zs1(ji,jj+1) - zs1(ji,jj) ) * e1v(ji,jj) &
& - ( zs2(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1) - zs2(ji,jj) * e1t(ji,jj) * e1t(ji,jj) &
& ) * r1_e1v(ji,jj) &
& + ( zs12(ji,jj) * e2f(ji,jj) * e2f(ji,jj) - zs12(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj) &
& ) * 2._wp * r1_e2v(ji,jj) &
& ) * r1_e1e2v(ji,jj)
!
! !--- ice currents at U-V point
v_iceU(ji,jj) = 0.25_wp * ( v_ice(ji,jj) + v_ice(ji,jj-1) + v_ice(ji+1,jj) + v_ice(ji+1,jj-1) ) * umask(ji,jj,1)
u_iceV(ji,jj) = 0.25_wp * ( u_ice(ji,jj) + u_ice(ji-1,jj) + u_ice(ji,jj+1) + u_ice(ji-1,jj+1) ) * vmask(ji,jj,1)
!
END_2D
!
! --- Computation of ice velocity --- !
! Bouillon et al. 2013 (eq 47-48) => unstable unless alpha, beta vary as in Kimmritz 2016 & 2017
! Bouillon et al. 2009 (eq 34-35) => stable
IF( MOD(jter,2) == 0 ) THEN ! even iterations
!
Clement Rousset
committed
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
! !--- tau_io/(v_oce - v_ice)
zTauO = zaV(ji,jj) * zrhoco * SQRT( ( v_ice (ji,jj) - v_oce (ji,jj) ) * ( v_ice (ji,jj) - v_oce (ji,jj) ) &
& + ( u_iceV(ji,jj) - u_oceV(ji,jj) ) * ( u_iceV(ji,jj) - u_oceV(ji,jj) ) )
! !--- Ocean-to-Ice stress
ztauy_oi(ji,jj) = zTauO * ( v_oce(ji,jj) - v_ice(ji,jj) )
!
! !--- tau_bottom/v_ice
zvel = 5.e-05_wp + SQRT( v_ice(ji,jj) * v_ice(ji,jj) + u_iceV(ji,jj) * u_iceV(ji,jj) )
zTauB = ztauy_base(ji,jj) / zvel
! !--- OceanBottom-to-Ice stress
ztauy_bi(ji,jj) = zTauB * v_ice(ji,jj)
!
! !--- Coriolis at V-points (energy conserving formulation)
zCorV(ji,jj) = - 0.25_wp * r1_e2v(ji,jj) * &
& ( zmf(ji,jj ) * ( e2u(ji,jj ) * u_ice(ji,jj ) + e2u(ji-1,jj ) * u_ice(ji-1,jj ) ) &
& + zmf(ji,jj+1) * ( e2u(ji,jj+1) * u_ice(ji,jj+1) + e2u(ji-1,jj+1) * u_ice(ji-1,jj+1) ) )
!
! !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
zRHS = zfV(ji,jj) + ztauy_ai(ji,jj) + zCorV(ji,jj) + zspgV(ji,jj) + ztauy_oi(ji,jj)
!
! !--- landfast switch => 0 = static friction : TauB > RHS & sign(TauB) /= sign(RHS)
! 1 = sliding friction : TauB < RHS
rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztauy_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
!
IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
zbetav = MAX( zbeta(ji,jj), zbeta(ji,jj+1) )
v_ice(ji,jj) = ( ( rswitch * ( zmV_t(ji,jj) * ( zbetav * v_ice(ji,jj) + v_ice_b(ji,jj) ) & ! previous velocity
& + zRHS + zTauO * v_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
& ) / MAX( zepsi, zmV_t(ji,jj) * ( zbetav + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
& + ( 1._wp - rswitch ) * ( v_ice_b(ji,jj) &
& + v_ice (ji,jj) * MAX( 0._wp, zbetav - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0
& ) / ( zbetav + 1._wp ) &
& ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
& ) * zmsk00y(ji,jj)
ELSE !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
v_ice(ji,jj) = ( ( rswitch * ( zmV_t(ji,jj) * v_ice(ji,jj) & ! previous velocity
& + zRHS + zTauO * v_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
& ) / MAX( zepsi, zmV_t(ji,jj) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
& + ( 1._wp - rswitch ) * v_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0
& ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
& ) * zmsk00y(ji,jj)
ENDIF
END_2D
Clement Rousset
committed
IF( nn_hls == 1 ) CALL lbc_lnk( 'icedyn_rhg_eap', v_ice, 'V', -1.0_wp )
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
!
DO_2D( 0, 0, 0, 0 )
! !--- tau_io/(u_oce - u_ice)
zTauO = zaU(ji,jj) * zrhoco * SQRT( ( u_ice (ji,jj) - u_oce (ji,jj) ) * ( u_ice (ji,jj) - u_oce (ji,jj) ) &
& + ( v_iceU(ji,jj) - v_oceU(ji,jj) ) * ( v_iceU(ji,jj) - v_oceU(ji,jj) ) )
! !--- Ocean-to-Ice stress
ztaux_oi(ji,jj) = zTauO * ( u_oce(ji,jj) - u_ice(ji,jj) )
!
! !--- tau_bottom/u_ice
zvel = 5.e-05_wp + SQRT( v_iceU(ji,jj) * v_iceU(ji,jj) + u_ice(ji,jj) * u_ice(ji,jj) )
zTauB = ztaux_base(ji,jj) / zvel
! !--- OceanBottom-to-Ice stress
ztaux_bi(ji,jj) = zTauB * u_ice(ji,jj)
!
! !--- Coriolis at U-points (energy conserving formulation)
zCorU(ji,jj) = 0.25_wp * r1_e1u(ji,jj) * &
& ( zmf(ji ,jj) * ( e1v(ji ,jj) * v_ice(ji ,jj) + e1v(ji ,jj-1) * v_ice(ji ,jj-1) ) &
& + zmf(ji+1,jj) * ( e1v(ji+1,jj) * v_ice(ji+1,jj) + e1v(ji+1,jj-1) * v_ice(ji+1,jj-1) ) )
!
! !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
zRHS = zfU(ji,jj) + ztaux_ai(ji,jj) + zCorU(ji,jj) + zspgU(ji,jj) + ztaux_oi(ji,jj)
!
! !--- landfast switch => 0 = static friction : TauB > RHS & sign(TauB) /= sign(RHS)
! 1 = sliding friction : TauB < RHS
rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztaux_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
!
IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
zbetau = MAX( zbeta(ji,jj), zbeta(ji+1,jj) )
u_ice(ji,jj) = ( ( rswitch * ( zmU_t(ji,jj) * ( zbetau * u_ice(ji,jj) + u_ice_b(ji,jj) ) & ! previous velocity
& + zRHS + zTauO * u_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
& ) / MAX( zepsi, zmU_t(ji,jj) * ( zbetau + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
& + ( 1._wp - rswitch ) * ( u_ice_b(ji,jj) &
& + u_ice (ji,jj) * MAX( 0._wp, zbetau - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0
& ) / ( zbetau + 1._wp ) &
& ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
& ) * zmsk00x(ji,jj)
ELSE !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
u_ice(ji,jj) = ( ( rswitch * ( zmU_t(ji,jj) * u_ice(ji,jj) & ! previous velocity
& + zRHS + zTauO * u_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
& ) / MAX( zepsi, zmU_t(ji,jj) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
& + ( 1._wp - rswitch ) * u_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0
& ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
& ) * zmsk00x(ji,jj)
ENDIF
END_2D
Clement Rousset
committed
IF( nn_hls == 1 ) THEN ; CALL lbc_lnk( 'icedyn_rhg_eap', u_ice, 'U', -1.0_wp )
ELSE ; CALL lbc_lnk( 'icedyn_rhg_eap', u_ice, 'U', -1.0_wp, v_ice, 'V', -1.0_wp )
ENDIF
Clement Rousset
committed
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
! !--- tau_io/(u_oce - u_ice)
zTauO = zaU(ji,jj) * zrhoco * SQRT( ( u_ice (ji,jj) - u_oce (ji,jj) ) * ( u_ice (ji,jj) - u_oce (ji,jj) ) &
& + ( v_iceU(ji,jj) - v_oceU(ji,jj) ) * ( v_iceU(ji,jj) - v_oceU(ji,jj) ) )
! !--- Ocean-to-Ice stress
ztaux_oi(ji,jj) = zTauO * ( u_oce(ji,jj) - u_ice(ji,jj) )
!
! !--- tau_bottom/u_ice
zvel = 5.e-05_wp + SQRT( v_iceU(ji,jj) * v_iceU(ji,jj) + u_ice(ji,jj) * u_ice(ji,jj) )
zTauB = ztaux_base(ji,jj) / zvel
! !--- OceanBottom-to-Ice stress
ztaux_bi(ji,jj) = zTauB * u_ice(ji,jj)
!
! !--- Coriolis at U-points (energy conserving formulation)
zCorU(ji,jj) = 0.25_wp * r1_e1u(ji,jj) * &
& ( zmf(ji ,jj) * ( e1v(ji ,jj) * v_ice(ji ,jj) + e1v(ji ,jj-1) * v_ice(ji ,jj-1) ) &
& + zmf(ji+1,jj) * ( e1v(ji+1,jj) * v_ice(ji+1,jj) + e1v(ji+1,jj-1) * v_ice(ji+1,jj-1) ) )
!
! !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
zRHS = zfU(ji,jj) + ztaux_ai(ji,jj) + zCorU(ji,jj) + zspgU(ji,jj) + ztaux_oi(ji,jj)
!
! !--- landfast switch => 0 = static friction : TauB > RHS & sign(TauB) /= sign(RHS)
! 1 = sliding friction : TauB < RHS
rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztaux_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
!
IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
zbetau = MAX( zbeta(ji,jj), zbeta(ji+1,jj) )
u_ice(ji,jj) = ( ( rswitch * ( zmU_t(ji,jj) * ( zbetau * u_ice(ji,jj) + u_ice_b(ji,jj) ) & ! previous velocity
& + zRHS + zTauO * u_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
& ) / MAX( zepsi, zmU_t(ji,jj) * ( zbetau + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
& + ( 1._wp - rswitch ) * ( u_ice_b(ji,jj) &
& + u_ice (ji,jj) * MAX( 0._wp, zbetau - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0
& ) / ( zbetau + 1._wp ) &
& ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
& ) * zmsk00x(ji,jj)
ELSE !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
u_ice(ji,jj) = ( ( rswitch * ( zmU_t(ji,jj) * u_ice(ji,jj) & ! previous velocity
& + zRHS + zTauO * u_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
& ) / MAX( zepsi, zmU_t(ji,jj) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
& + ( 1._wp - rswitch ) * u_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0
& ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
& ) * zmsk00x(ji,jj)
ENDIF
END_2D
Clement Rousset
committed
IF( nn_hls == 1 ) CALL lbc_lnk( 'icedyn_rhg_eap', u_ice, 'U', -1.0_wp )
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
!
DO_2D( 0, 0, 0, 0 )
! !--- tau_io/(v_oce - v_ice)
zTauO = zaV(ji,jj) * zrhoco * SQRT( ( v_ice (ji,jj) - v_oce (ji,jj) ) * ( v_ice (ji,jj) - v_oce (ji,jj) ) &
& + ( u_iceV(ji,jj) - u_oceV(ji,jj) ) * ( u_iceV(ji,jj) - u_oceV(ji,jj) ) )
! !--- Ocean-to-Ice stress
ztauy_oi(ji,jj) = zTauO * ( v_oce(ji,jj) - v_ice(ji,jj) )
!
! !--- tau_bottom/v_ice
zvel = 5.e-05_wp + SQRT( v_ice(ji,jj) * v_ice(ji,jj) + u_iceV(ji,jj) * u_iceV(ji,jj) )
zTauB = ztauy_base(ji,jj) / zvel
! !--- OceanBottom-to-Ice stress
ztauy_bi(ji,jj) = zTauB * v_ice(ji,jj)
!
! !--- Coriolis at v-points (energy conserving formulation)
zCorV(ji,jj) = - 0.25_wp * r1_e2v(ji,jj) * &
& ( zmf(ji,jj ) * ( e2u(ji,jj ) * u_ice(ji,jj ) + e2u(ji-1,jj ) * u_ice(ji-1,jj ) ) &
& + zmf(ji,jj+1) * ( e2u(ji,jj+1) * u_ice(ji,jj+1) + e2u(ji-1,jj+1) * u_ice(ji-1,jj+1) ) )
!
! !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
zRHS = zfV(ji,jj) + ztauy_ai(ji,jj) + zCorV(ji,jj) + zspgV(ji,jj) + ztauy_oi(ji,jj)
!
! !--- landfast switch => 0 = static friction : TauB > RHS & sign(TauB) /= sign(RHS)
! 1 = sliding friction : TauB < RHS
rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztauy_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
!
IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
zbetav = MAX( zbeta(ji,jj), zbeta(ji,jj+1) )
v_ice(ji,jj) = ( ( rswitch * ( zmV_t(ji,jj) * ( zbetav * v_ice(ji,jj) + v_ice_b(ji,jj) ) & ! previous velocity
& + zRHS + zTauO * v_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
& ) / MAX( zepsi, zmV_t(ji,jj) * ( zbetav + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
& + ( 1._wp - rswitch ) * ( v_ice_b(ji,jj) &
& + v_ice (ji,jj) * MAX( 0._wp, zbetav - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0
& ) / ( zbetav + 1._wp ) &
& ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
& ) * zmsk00y(ji,jj)
ELSE !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
v_ice(ji,jj) = ( ( rswitch * ( zmV_t(ji,jj) * v_ice(ji,jj) & ! previous velocity
& + zRHS + zTauO * v_ice(ji,jj) & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
& ) / MAX( zepsi, zmV_t(ji,jj) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
& + ( 1._wp - rswitch ) * v_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax ) & ! static friction => slow decrease to v=0
& ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) ) & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
& ) * zmsk00y(ji,jj)
ENDIF
END_2D
Clement Rousset
committed
IF( nn_hls == 1 ) THEN ; CALL lbc_lnk( 'icedyn_rhg_eap', v_ice, 'V', -1.0_wp )
ELSE ; CALL lbc_lnk( 'icedyn_rhg_eap', u_ice, 'U', -1.0_wp, v_ice, 'V', -1.0_wp )
ENDIF
Clement Rousset
committed
ENDIF
Clement Rousset
committed
!! CALL agrif_interp_ice( 'U', jter, nn_nevp )
!! CALL agrif_interp_ice( 'V', jter, nn_nevp )
CALL agrif_interp_ice( 'U' )
CALL agrif_interp_ice( 'V' )
Clement Rousset
committed
IF( ln_bdy ) CALL bdy_ice_dyn( 'U' )
IF( ln_bdy ) CALL bdy_ice_dyn( 'V' )
! convergence test
IF( nn_rhg_chkcvg == 2 ) CALL rhg_cvg_eap( kt, jter, nn_nevp, u_ice, v_ice, zu_ice, zv_ice, zmsk15 )
!
! ! ==================== !
END DO ! end loop over jter !
! ! ==================== !
IF( ln_aEVP ) CALL iom_put( 'beta_evp' , zbeta )
!
CALL lbc_lnk( 'icedyn_rhg_eap', prdg_conv, 'T', 1.0_wp ) ! only need this in ridging module after rheology completed
!
!------------------------------------------------------------------------------!
! 4) Recompute delta, shear and div (inputs for mechanical redistribution)
!------------------------------------------------------------------------------!
Clement Rousset
committed
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )
! shear at F points
zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) &
& + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) &
& ) * r1_e1e2f(ji,jj) * fimask(ji,jj)
END_2D
DO_2D( 0, 0, 0, 0 )
! tension**2 at T points
zdt = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj) &
& - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj) &
& ) * r1_e1e2t(ji,jj)
zdt2 = zdt * zdt
zten_i(ji,jj) = zdt
! shear**2 at T points (doc eq. A16)
zds2 = ( zds(ji,jj ) * zds(ji,jj ) * e1e2f(ji,jj ) + zds(ji-1,jj ) * zds(ji-1,jj ) * e1e2f(ji-1,jj ) &
& + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1) &
& ) * 0.25_wp * r1_e1e2t(ji,jj)
Clement Rousset
committed
! maximum shear rate at T points (includes tension, output only)
Clement Rousset
committed
! shear at T-points
zshear(ji,jj) = SQRT( zds2 )
! divergence at T points
pdivu_i(ji,jj) = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj) &
& + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1) &
& ) * r1_e1e2t(ji,jj)
! delta at T points
Clement Rousset
committed
zdelta(ji,jj) = SQRT( pdivu_i(ji,jj) * pdivu_i(ji,jj) + ( zdt2 + zds2 ) * z1_ecc2 ) ! delta
! delta at T points
rswitch = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zdelta(ji,jj) ) ) ! 0 if delta=0
pdelta_i(ji,jj) = zdelta(ji,jj) + rn_creepl * rswitch
! it seems that deformation used for advection and mech redistribution is delta*
! MV in principle adding creep limit is a regularization for viscosity not for delta
! delta_star should not (in my view) be used in a replacement for delta
END_2D
CALL lbc_lnk( 'icedyn_rhg_eap', pshear_i, 'T', 1.0_wp, pdivu_i, 'T', 1.0_wp, pdelta_i, 'T', 1.0_wp, &
Clement Rousset
committed
& zs1, 'T', 1.0_wp, zs2 , 'T', 1.0_wp, &
& zs12, 'F', 1.0_wp )
! --- Store the stress tensor for the next time step --- !
pstress1_i (:,:) = zs1 (:,:)
pstress2_i (:,:) = zs2 (:,:)
pstress12_i(:,:) = zs12(:,:)
!
!------------------------------------------------------------------------------!
! 5) diagnostics
!------------------------------------------------------------------------------!
! --- ice-ocean, ice-atm. & ice-oceanbottom(landfast) stresses --- !
Clement Rousset
committed
IF( iom_use('utau_oi') ) CALL iom_put( 'utau_oi' , ztaux_oi(A2D(0)) * zmsk00 )
IF( iom_use('vtau_oi') ) CALL iom_put( 'vtau_oi' , ztauy_oi(A2D(0)) * zmsk00 )
IF( iom_use('utau_ai') ) CALL iom_put( 'utau_ai' , ztaux_ai(A2D(0)) * zmsk00 )
IF( iom_use('vtau_ai') ) CALL iom_put( 'vtau_ai' , ztauy_ai(A2D(0)) * zmsk00 )
IF( iom_use('utau_bi') ) CALL iom_put( 'utau_bi' , ztaux_bi(A2D(0)) * zmsk00 )
IF( iom_use('vtau_bi') ) CALL iom_put( 'vtau_bi' , ztauy_bi(A2D(0)) * zmsk00 )
Clement Rousset
committed
IF( iom_use('icediv') ) CALL iom_put( 'icediv' , pdivu_i (A2D(0)) * zmsk00 ) ! divergence
IF( iom_use('iceshe') ) CALL iom_put( 'iceshe' , pshear_i(A2D(0)) * zmsk00 ) ! shear
IF( iom_use('icestr') ) CALL iom_put( 'icestr' , strength(A2D(0)) * zmsk00 ) ! strength
IF( iom_use('icedlt') ) CALL iom_put( 'icedlt' , zdelta (A2D(0)) * zmsk00 ) ! delta
! --- Stress tensor invariants (SIMIP diags) --- !
IF( iom_use('normstr') .OR. iom_use('sheastr') ) THEN
!
Clement Rousset
committed
ALLOCATE( zsig_I(A2D(0)) , zsig_II(A2D(0)) )
Clement Rousset
committed
DO_2D( 0, 0, 0, 0 )
! Ice stresses
! sigma1, sigma2, sigma12 are some useful recombination of the stresses (Hunke and Dukowicz MWR 2002, Bouillon et al., OM2013)
! These are NOT stress tensor components, neither stress invariants, neither stress principal components
! I know, this can be confusing...
Clement Rousset
committed
zfac = strength(ji,jj) / ( zdelta(ji,jj) + rn_creepl ) ! viscosity
zsig1 = zfac * ( pdivu_i(ji,jj) - zdelta(ji,jj) )
Clement Rousset
committed
zsig12 = zfac * z1_ecc2 * zshear(ji,jj) * 0.5_wp
! Stress invariants (sigma_I, sigma_II, Coon 1974, Feltham 2008)
Clement Rousset
committed
zsig_I (ji,jj) = 0.5_wp * zsig1
zsig_II(ji,jj) = 0.5_wp * SQRT ( zsig2 * zsig2 + 4._wp * zsig12 * zsig12 )
END_2D
!
! Stress tensor invariants (normal and shear stress N/m) - SIMIP diags - definitions following Coon (1974) and Feltham (2008)
IF( iom_use('normstr') ) CALL iom_put( 'normstr', zsig_I (:,:) * zmsk00(:,:) ) ! Normal stress
IF( iom_use('sheastr') ) CALL iom_put( 'sheastr', zsig_II(:,:) * zmsk00(:,:) ) ! Maximum shear stress
DEALLOCATE ( zsig_I, zsig_II )
ENDIF
! --- Normalized stress tensor principal components --- !
! This are used to plot the normalized yield curve, see Lemieux & Dupont, 2020
! Recommendation 1 : we use ice strength, not replacement pressure
! Recommendation 2 : need to use deformations at PREVIOUS iterate for viscosities
IF( iom_use('sig1_pnorm') .OR. iom_use('sig2_pnorm') ) THEN
!
Clement Rousset
committed
ALLOCATE( zsig1_p(A2D(0)) , zsig2_p(A2D(0)) , zsig_I(A2D(0)) , zsig_II(A2D(0)) )
Clement Rousset
committed
DO_2D( 0, 0, 0, 0 )
Clement Rousset
committed
! For EVP solvers, ice stresses at current iterates can be used
Clement Rousset
committed
zfac = strength(ji,jj) / ( zdelta(ji,jj) + rn_creepl )
zsig1 = zfac * ( pdivu_i(ji,jj) - zdelta(ji,jj) )
Clement Rousset
committed
zsig12 = zfac * z1_ecc2 * zshear(ji,jj) * 0.5_wp
! Stress invariants (sigma_I, sigma_II, Coon 1974, Feltham 2008), T-point
Clement Rousset
committed
zsig_I(ji,jj) = 0.5_wp * zsig1 ! normal stress
zsig_II(ji,jj) = 0.5_wp * SQRT ( zsig2 * zsig2 + 4._wp * zsig12 * zsig12 ) ! max shear stress
! Normalized principal stresses (used to display the ellipse)
z1_strength = 1._wp / MAX( 1._wp, strength(ji,jj) )
zsig1_p(ji,jj) = ( zsig_I(ji,jj) + zsig_II(ji,jj) ) * z1_strength
zsig2_p(ji,jj) = ( zsig_I(ji,jj) - zsig_II(ji,jj) ) * z1_strength
END_2D
!
Clement Rousset
committed
CALL iom_put( 'sig1_pnorm' , zsig1_p(:,:) * zmsk00 )
CALL iom_put( 'sig2_pnorm' , zsig2_p(:,:) * zmsk00 )
DEALLOCATE( zsig1_p , zsig2_p , zsig_I, zsig_II )
ENDIF
! --- yieldcurve --- !
IF( iom_use('yield11') .OR. iom_use('yield12') .OR. iom_use('yield22')) THEN
CALL iom_put( 'yield11', zyield11 * zmsk00 )
CALL iom_put( 'yield22', zyield22 * zmsk00 )
CALL iom_put( 'yield12', zyield12 * zmsk00 )
ENDIF
! --- anisotropy tensor --- !
IF( iom_use('aniso') ) THEN
CALL iom_put( 'aniso' , paniso_11 * zmsk00 )
ENDIF
! --- SIMIP --- !
Clement Rousset
committed
IF( iom_use('dssh_dx') ) CALL iom_put( 'dssh_dx' , zspgU(A2D(0)) * zmsk00 ) ! Sea-surface tilt term in force balance (x)
IF( iom_use('dssh_dy') ) CALL iom_put( 'dssh_dy' , zspgV(A2D(0)) * zmsk00 ) ! Sea-surface tilt term in force balance (y)
IF( iom_use('corstrx') ) CALL iom_put( 'corstrx' , zCorU(A2D(0)) * zmsk00 ) ! Coriolis force term in force balance (x)
IF( iom_use('corstry') ) CALL iom_put( 'corstry' , zCorV(A2D(0)) * zmsk00 ) ! Coriolis force term in force balance (y)
IF( iom_use('intstrx') ) CALL iom_put( 'intstrx' , zfU (A2D(0)) * zmsk00 ) ! Internal force term in force balance (x)
IF( iom_use('intstry') ) CALL iom_put( 'intstry' , zfV (A2D(0)) * zmsk00 ) ! Internal force term in force balance (y)
IF( iom_use('xmtrpice') .OR. iom_use('ymtrpice') .OR. &
& iom_use('xmtrpsnw') .OR. iom_use('ymtrpsnw') .OR. iom_use('xatrp') .OR. iom_use('yatrp') ) THEN
!
Clement Rousset
committed
ALLOCATE( zdiag_xmtrp_ice(A2D(0)) , zdiag_ymtrp_ice(A2D(0)) , &
& zdiag_xmtrp_snw(A2D(0)) , zdiag_ymtrp_snw(A2D(0)) , zdiag_xatrp(A2D(0)) , zdiag_yatrp(A2D(0)) )
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
!
DO_2D( 0, 0, 0, 0 )
! 2D ice mass, snow mass, area transport arrays (X, Y)
zfac_x = 0.5 * u_ice(ji,jj) * e2u(ji,jj) * zmsk00(ji,jj)
zfac_y = 0.5 * v_ice(ji,jj) * e1v(ji,jj) * zmsk00(ji,jj)
zdiag_xmtrp_ice(ji,jj) = rhoi * zfac_x * ( vt_i(ji+1,jj) + vt_i(ji,jj) ) ! ice mass transport, X-component
zdiag_ymtrp_ice(ji,jj) = rhoi * zfac_y * ( vt_i(ji,jj+1) + vt_i(ji,jj) ) ! '' Y- ''
zdiag_xmtrp_snw(ji,jj) = rhos * zfac_x * ( vt_s(ji+1,jj) + vt_s(ji,jj) ) ! snow mass transport, X-component
zdiag_ymtrp_snw(ji,jj) = rhos * zfac_y * ( vt_s(ji,jj+1) + vt_s(ji,jj) ) ! '' Y- ''
zdiag_xatrp(ji,jj) = zfac_x * ( at_i(ji+1,jj) + at_i(ji,jj) ) ! area transport, X-component
zdiag_yatrp(ji,jj) = zfac_y * ( at_i(ji,jj+1) + at_i(ji,jj) ) ! '' Y- ''
END_2D
CALL iom_put( 'xmtrpice' , zdiag_xmtrp_ice ) ! X-component of sea-ice mass transport (kg/s)
CALL iom_put( 'ymtrpice' , zdiag_ymtrp_ice ) ! Y-component of sea-ice mass transport
CALL iom_put( 'xmtrpsnw' , zdiag_xmtrp_snw ) ! X-component of snow mass transport (kg/s)
CALL iom_put( 'ymtrpsnw' , zdiag_ymtrp_snw ) ! Y-component of snow mass transport
CALL iom_put( 'xatrp' , zdiag_xatrp ) ! X-component of ice area transport
CALL iom_put( 'yatrp' , zdiag_yatrp ) ! Y-component of ice area transport
DEALLOCATE( zdiag_xmtrp_ice , zdiag_ymtrp_ice , &
& zdiag_xmtrp_snw , zdiag_ymtrp_snw , zdiag_xatrp , zdiag_yatrp )
ENDIF
!
! --- convergence tests --- !
IF( nn_rhg_chkcvg == 1 .OR. nn_rhg_chkcvg == 2 ) THEN
IF( iom_use('uice_cvg') ) THEN
IF( ln_aEVP ) THEN ! output: beta * ( u(t=nn_nevp) - u(t=nn_nevp-1) )
Clement Rousset
committed
CALL iom_put( 'uice_cvg', MAX( ABS( u_ice(A2D(0)) - zu_ice(:,:) ) * zbeta(A2D(0)) * umask(A2D(0),1) , &
& ABS( v_ice(A2D(0)) - zv_ice(:,:) ) * zbeta(A2D(0)) * vmask(A2D(0),1) ) * zmsk15(:,:) )
ELSE ! output: nn_nevp * ( u(t=nn_nevp) - u(t=nn_nevp-1) )
Clement Rousset
committed
CALL iom_put( 'uice_cvg', REAL( nn_nevp ) * MAX( ABS( u_ice(A2D(0)) - zu_ice(:,:) ) * umask(A2D(0),1) , &
& ABS( v_ice(A2D(0)) - zv_ice(:,:) ) * vmask(A2D(0),1) ) * zmsk15(:,:) )
ENDIF
ENDIF
ENDIF
!
END SUBROUTINE ice_dyn_rhg_eap
SUBROUTINE rhg_cvg_eap( kt, kiter, kitermax, pu, pv, pub, pvb, pmsk15 )
!!----------------------------------------------------------------------
!! *** ROUTINE rhg_cvg_eap ***
!!
!! ** Purpose : check convergence of oce rheology
!!
!! ** Method : create a file ice_cvg.nc containing the convergence of ice velocity
!! during the sub timestepping of rheology so as:
!! uice_cvg = MAX( u(t+1) - u(t) , v(t+1) - v(t) )
!! This routine is called every sub-iteration, so it is cpu expensive
!!
!! ** Note : for the first sub-iteration, uice_cvg is set to 0 (too large otherwise)
!!----------------------------------------------------------------------
Clement Rousset
committed
INTEGER , INTENT(in) :: kt, kiter, kitermax ! ocean time-step index
REAL(wp), DIMENSION(:,:) , INTENT(in) :: pu, pv ! now velocities
REAL(wp), DIMENSION(A2D(0)), INTENT(in) :: pub, pvb ! before velocities
REAL(wp), DIMENSION(A2D(0)), INTENT(in) :: pmsk15
!!
INTEGER :: it, idtime, istatus
INTEGER :: ji, jj ! dummy loop indices
REAL(wp) :: zresm ! local real
CHARACTER(len=20) :: clname
Clement Rousset
committed
LOGICAL :: ll_maxcvg
REAL(wp), DIMENSION(A2D(0),2) :: zres
REAL(wp), DIMENSION(2) :: ztmp
!!----------------------------------------------------------------------
Clement Rousset
committed
ll_maxcvg = .FALSE.
!
! create file
IF( kt == nit000 .AND. kiter == 1 ) THEN
!
IF( lwp ) THEN
WRITE(numout,*)
Clement Rousset
committed
WRITE(numout,*) 'rhg_cvg : ice rheology convergence control'
WRITE(numout,*) '~~~~~~~'
ENDIF
!
IF( lwm ) THEN
clname = 'ice_cvg.nc'
IF( .NOT. Agrif_Root() ) clname = TRIM(Agrif_CFixed())//"_"//TRIM(clname)
istatus = NF90_CREATE( TRIM(clname), NF90_CLOBBER, ncvgid )
istatus = NF90_DEF_DIM( ncvgid, 'time' , NF90_UNLIMITED, idtime )
Clement Rousset
committed
istatus = NF90_DEF_VAR( ncvgid, 'uice_cvg', NF90_DOUBLE , (/ idtime /), nvarid )
istatus = NF90_ENDDEF(ncvgid)
ENDIF
!
ENDIF
! time
it = ( kt - nit000 ) * kitermax + kiter