Skip to content
Snippets Groups Projects
lib_fortran.F90 27.8 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
MODULE lib_fortran
   !!======================================================================
   !!                       ***  MODULE  lib_fortran  ***
   !! Fortran utilities:  includes some low levels fortran functionality
   !!======================================================================
   !! History :  3.2  !  2010-05  (M. Dunphy, R. Benshila)  Original code
   !!            3.4  !  2013-06  (C. Rousset)  add glob_min, glob_max 
   !!                                           + 3d dim. of input is fexible (jpk, jpl...) 
   !!            4.0  !  2016-06  (T. Lovato)  double precision global sum by default 
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   glob_sum    : generic interface for global masked summation over
   !!                 the interior domain for 1 or 2 2D or 3D arrays
   !!                 it works only for T points
   !!   SIGN        : generic interface for SIGN to overwrite f95 behaviour
   !!                 of intrinsinc sign function
   !!----------------------------------------------------------------------
   USE par_oce         ! Ocean parameter
   USE dom_oce         ! ocean domain
   USE in_out_manager  ! I/O manager
   USE lib_mpp         ! distributed memory computing
   USE lbclnk          ! ocean lateral boundary conditions

   IMPLICIT NONE
   PRIVATE

   PUBLIC   glob_sum      ! used in many places (masked with tmask_i = ssmask * (excludes halo+duplicated points (NP folding)) )
Guillaume Samson's avatar
Guillaume Samson committed
   PUBLIC   local_sum     ! used in trcrad, local operation before glob_sum_delay
   PUBLIC   sum3x3        ! used in trcrad, do a sum over 3x3 boxes
   PUBLIC   DDPDD         ! also used in closea module
   PUBLIC   glob_min, glob_max
   PUBLIC   glob_sum_vec
   PUBLIC   glob_min_vec, glob_max_vec
#if defined key_nosignedzero
   PUBLIC SIGN
#endif

   INTERFACE glob_sum
      MODULE PROCEDURE glob_sum_1d, glob_sum_2d, glob_sum_3d
   END INTERFACE
   INTERFACE local_sum
      MODULE PROCEDURE local_sum_2d, local_sum_3d
   END INTERFACE
   INTERFACE sum3x3
      MODULE PROCEDURE sum3x3_2d, sum3x3_3d
   END INTERFACE
   INTERFACE glob_min
      MODULE PROCEDURE glob_min_2d, glob_min_3d
   END INTERFACE
   INTERFACE glob_max
      MODULE PROCEDURE glob_max_2d, glob_max_3d
   END INTERFACE
   INTERFACE glob_sum_vec
      MODULE PROCEDURE glob_sum_vec_3d, glob_sum_vec_4d
   END INTERFACE
   INTERFACE glob_min_vec
      MODULE PROCEDURE glob_min_vec_3d, glob_min_vec_4d
   END INTERFACE
   INTERFACE glob_max_vec
      MODULE PROCEDURE glob_max_vec_3d, glob_max_vec_4d
   END INTERFACE

#if defined key_nosignedzero
   INTERFACE SIGN
      MODULE PROCEDURE SIGN_SCALAR, SIGN_ARRAY_1D, SIGN_ARRAY_2D, SIGN_ARRAY_3D,   &
         &             SIGN_ARRAY_1D_A, SIGN_ARRAY_2D_A, SIGN_ARRAY_3D_A,          &
         &             SIGN_ARRAY_1D_B, SIGN_ARRAY_2D_B, SIGN_ARRAY_3D_B
   END INTERFACE
#endif

   !! * Substitutions
#  include "do_loop_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: lib_fortran.F90 15376 2021-10-14 20:41:23Z clem $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

#  define GLOBSUM_CODE
#     define DIM_1d
Sebastien MASSON's avatar
Sebastien MASSON committed
#        include "lib_fortran_generic.h90"
Guillaume Samson's avatar
Guillaume Samson committed
#     undef DIM_1d
#     define DIM_2d
Sebastien MASSON's avatar
Sebastien MASSON committed
#        include "lib_fortran_generic.h90"
Guillaume Samson's avatar
Guillaume Samson committed
#     undef DIM_2d
#     define DIM_3d
Sebastien MASSON's avatar
Sebastien MASSON committed
#        include "lib_fortran_generic.h90"
Guillaume Samson's avatar
Guillaume Samson committed
#     undef DIM_3d
#  undef GLOBSUM_CODE

#  define GLOBMINMAX_CODE
#     define DIM_2d
Sebastien MASSON's avatar
Sebastien MASSON committed
#        define OPERATION_GLOBMIN
#           include "lib_fortran_generic.h90"
#        undef OPERATION_GLOBMIN
#        define OPERATION_GLOBMAX
#           include "lib_fortran_generic.h90"
#        undef OPERATION_GLOBMAX
Guillaume Samson's avatar
Guillaume Samson committed
#     undef DIM_2d
#     define DIM_3d
Sebastien MASSON's avatar
Sebastien MASSON committed
#        define OPERATION_GLOBMIN
#           include "lib_fortran_generic.h90"
#        undef OPERATION_GLOBMIN
#        define OPERATION_GLOBMAX
#           include "lib_fortran_generic.h90"
#        undef OPERATION_GLOBMAX
#     undef DIM_3
Guillaume Samson's avatar
Guillaume Samson committed
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
#  undef GLOBMINMAX_CODE

!                          ! FUNCTION local_sum !

   FUNCTION local_sum_2d( ptab )
      !!----------------------------------------------------------------------
      REAL(wp),  INTENT(in   ) ::   ptab(:,:) ! array on which operation is applied
      COMPLEX(dp)              ::  local_sum_2d
      !
      !!-----------------------------------------------------------------------
      !
      COMPLEX(dp)::   ctmp
      REAL(wp)   ::   ztmp
      INTEGER    ::   ji, jj    ! dummy loop indices
      INTEGER    ::   ipi, ipj  ! dimensions
      !!-----------------------------------------------------------------------
      !
      ipi = SIZE(ptab,1)   ! 1st dimension
      ipj = SIZE(ptab,2)   ! 2nd dimension
      !
      ctmp = CMPLX( 0.e0, 0.e0, wp )   ! warning ctmp is cumulated

      DO jj = 1, ipj
         DO ji = 1, ipi
            ztmp =  ptab(ji,jj) * tmask_i(ji,jj)
            CALL DDPDD( CMPLX( ztmp, 0.e0, dp ), ctmp )
         END DO
      END DO
      !
      local_sum_2d = ctmp
       
   END FUNCTION local_sum_2d

   FUNCTION local_sum_3d( ptab )
      !!----------------------------------------------------------------------
      REAL(wp),  INTENT(in   ) ::   ptab(:,:,:) ! array on which operation is applied
      COMPLEX(dp)              ::  local_sum_3d
      !
      !!-----------------------------------------------------------------------
      !
      COMPLEX(dp)::   ctmp
      REAL(wp)   ::   ztmp
      INTEGER    ::   ji, jj, jk   ! dummy loop indices
      INTEGER    ::   ipi, ipj, ipk    ! dimensions
      !!-----------------------------------------------------------------------
      !
      ipi = SIZE(ptab,1)   ! 1st dimension
      ipj = SIZE(ptab,2)   ! 2nd dimension
      ipk = SIZE(ptab,3)   ! 3rd dimension
      !
      ctmp = CMPLX( 0.e0, 0.e0, wp )   ! warning ctmp is cumulated

      DO jk = 1, ipk
        DO jj = 1, ipj
          DO ji = 1, ipi
             ztmp =  ptab(ji,jj,jk) * tmask_i(ji,jj)
             CALL DDPDD( CMPLX( ztmp, 0.e0, dp ), ctmp )
          END DO
        END DO
      END DO
      !
      local_sum_3d = ctmp
       
   END FUNCTION local_sum_3d

!                          ! FUNCTION sum3x3 !

   SUBROUTINE sum3x3_2d( p2d )
      !!-----------------------------------------------------------------------
      !!                  ***  routine sum3x3_2d  ***
      !!
      !! ** Purpose : sum over 3x3 boxes
      !!----------------------------------------------------------------------
      REAL(wp), DIMENSION (:,:), INTENT(inout) ::   p2d
      !
      INTEGER ::   ji, ji2, jj, jj2     ! dummy loop indices
      !!----------------------------------------------------------------------
      !
      IF( SIZE(p2d,1) /= jpi ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_2d, the first dimension is not equal to jpi' ) 
      IF( SIZE(p2d,2) /= jpj ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_2d, the second dimension is not equal to jpj' ) 
      !
      ! work over the whole domain (guarantees all internal cells are set when nn_hls=2)
      !
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         IF( MOD(mig(ji), 3) == MOD(nn_hls, 3) .AND.   &              ! 1st bottom left corner always at (Nis0-1, Njs0-1)
           & MOD(mjg(jj), 3) == MOD(nn_hls, 3)         ) THEN         ! bottom left corner of a 3x3 box
            ji2 = MIN(mig(ji)+2, jpiglo) - nimpp + 1                  ! right position of the box
            jj2 = MIN(mjg(jj)+2, jpjglo) - njmpp + 1                  ! upper position of the box
            IF( ji2 <= jpi .AND. jj2 <= jpj ) THEN                    ! the box is fully included in the local mpi domain
               p2d(ji:ji2,jj:jj2) = SUM(p2d(ji:ji2,jj:jj2))
            ENDIF
         ENDIF
      END_2D
      CALL lbc_lnk( 'lib_fortran', p2d, 'T', 1.0_wp )
      ! no need for 2nd exchange when nn_hls > 1
      IF( nn_hls == 1 ) THEN
         IF( mpiRnei(nn_hls,jpwe) > -1 ) THEN   ! 1st column was changed during the previous call to lbc_lnk
            IF( MOD(mig(    1), 3) == 1 )   &   ! 1st box start at i=1 -> column 1 to 3 correctly computed locally
               p2d(    1,:) = p2d(    2,:)      ! previous lbc_lnk corrupted column 1 -> put it back using column 2 
            IF( MOD(mig(    1), 3) == 2 )   &   ! 1st box start at i=3 -> column 1 and 2 correctly computed on west neighbourh
               p2d(    2,:) = p2d(    1,:)      !  previous lbc_lnk fix column 1 -> copy it to column 2 
         ENDIF
         IF( mpiRnei(nn_hls,jpea) > -1 ) THEN
            IF( MOD(mig(jpi-2), 3) == 1 )   p2d(  jpi,:) = p2d(jpi-1,:)
            IF( MOD(mig(jpi-2), 3) == 0 )   p2d(jpi-1,:) = p2d(  jpi,:)
         ENDIF
         IF( mpiRnei(nn_hls,jpso) > -1 ) THEN
            IF( MOD(mjg(    1), 3) == 1 )   p2d(:,    1) = p2d(:,    2)
            IF( MOD(mjg(    1), 3) == 2 )   p2d(:,    2) = p2d(:,    1)
         ENDIF
         IF( mpiRnei(nn_hls,jpno) > -1 ) THEN
            IF( MOD(mjg(jpj-2), 3) == 1 )   p2d(:,  jpj) = p2d(:,jpj-1)
            IF( MOD(mjg(jpj-2), 3) == 0 )   p2d(:,jpj-1) = p2d(:,  jpj)
         ENDIF
         CALL lbc_lnk( 'lib_fortran', p2d, 'T', 1.0_wp )
      ENDIF

   END SUBROUTINE sum3x3_2d

   SUBROUTINE sum3x3_3d( p3d )
      !!-----------------------------------------------------------------------
      !!                  ***  routine sum3x3_3d  ***
      !!
      !! ** Purpose : sum over 3x3 boxes
      !!----------------------------------------------------------------------
      REAL(wp), DIMENSION (:,:,:), INTENT(inout) ::   p3d
      !
      INTEGER ::   ji, ji2, jj, jj2, jn     ! dummy loop indices
      INTEGER ::   ipn                      ! Third dimension size
      !!----------------------------------------------------------------------
      !
      IF( SIZE(p3d,1) /= jpi ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_3d, the first dimension is not equal to jpi' ) 
      IF( SIZE(p3d,2) /= jpj ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_3d, the second dimension is not equal to jpj' ) 
      ipn = SIZE(p3d,3)
      !
      DO jn = 1, ipn
         !
         ! work over the whole domain (guarantees all internal cells are set when nn_hls=2)
         !
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            IF( MOD(mig(ji), 3) == MOD(nn_hls, 3) .AND.   &              ! 1st bottom left corner always at (Nis0-1, Njs0-1)
              & MOD(mjg(jj), 3) == MOD(nn_hls, 3)         ) THEN         ! bottom left corner of a 3x3 box
               ji2 = MIN(mig(ji)+2, jpiglo) - nimpp + 1                  ! right position of the box
               jj2 = MIN(mjg(jj)+2, jpjglo) - njmpp + 1                  ! upper position of the box
               IF( ji2 <= jpi .AND. jj2 <= jpj ) THEN                    ! the box is fully included in the local mpi domain
                  p3d(ji:ji2,jj:jj2,jn) = SUM(p3d(ji:ji2,jj:jj2,jn))
               ENDIF
            ENDIF
         END_2D
      END DO
      CALL lbc_lnk( 'lib_fortran', p3d, 'T', 1.0_wp )
      ! no need for 2nd exchange when nn_hls > 1
      IF( nn_hls == 1 ) THEN
         IF( mpiRnei(nn_hls,jpwe) > -1 ) THEN    ! 1st column was changed during the previous call to lbc_lnk
            IF( MOD(mig(    1), 3) == 1 )   &    ! 1st box start at i=1 -> column 1 to 3 correctly computed locally
               p3d(    1,:,:) = p3d(    2,:,:)   ! previous lbc_lnk corrupted column 1 -> put it back using column 2 
            IF( MOD(mig(    1), 3) == 2 )   &    ! 1st box start at i=3 -> column 1 and 2 correctly computed on west neighbourh
               p3d(    2,:,:) = p3d(    1,:,:)   !  previous lbc_lnk fix column 1 -> copy it to column 2 
         ENDIF
         IF( mpiRnei(nn_hls,jpea) > -1 ) THEN
            IF( MOD(mig(jpi-2), 3) == 1 )   p3d(  jpi,:,:) = p3d(jpi-1,:,:)
            IF( MOD(mig(jpi-2), 3) == 0 )   p3d(jpi-1,:,:) = p3d(  jpi,:,:)
         ENDIF
         IF( mpiRnei(nn_hls,jpso) > -1 ) THEN
            IF( MOD(mjg(    1), 3) == 1 )   p3d(:,    1,:) = p3d(:,    2,:)
            IF( MOD(mjg(    1), 3) == 2 )   p3d(:,    2,:) = p3d(:,    1,:)
         ENDIF
         IF( mpiRnei(nn_hls,jpno) > -1 ) THEN
            IF( MOD(mjg(jpj-2), 3) == 1 )   p3d(:,  jpj,:) = p3d(:,jpj-1,:)
            IF( MOD(mjg(jpj-2), 3) == 0 )   p3d(:,jpj-1,:) = p3d(:,  jpj,:)
         ENDIF
         CALL lbc_lnk( 'lib_fortran', p3d, 'T', 1.0_wp )
      ENDIF

   END SUBROUTINE sum3x3_3d


   FUNCTION glob_sum_vec_3d( cdname, ptab ) RESULT( ptmp )
      !!----------------------------------------------------------------------
      CHARACTER(len=*),  INTENT(in) ::   cdname      ! name of the calling subroutine
      REAL(wp),          INTENT(in) ::   ptab(:,:,:) ! array on which operation is applied
      REAL(wp), DIMENSION(SIZE(ptab,3)) ::   ptmp
      !
      COMPLEX(dp), DIMENSION(:), ALLOCATABLE ::   ctmp
      REAL(wp)    ::   ztmp
      INTEGER     ::   ji , jj , jk     ! dummy loop indices
      INTEGER     ::   ipi, ipj, ipk    ! dimensions
      INTEGER     ::   iis, iie, ijs, ije   ! loop start and end
      !!-----------------------------------------------------------------------
      !
      ipi = SIZE(ptab,1)   ! 1st dimension
      ipj = SIZE(ptab,2)   ! 2nd dimension
      ipk = SIZE(ptab,3)   ! 3rd dimension
      !
      IF( ipi == jpi .AND. ipj == jpj ) THEN   ! do 2D loop only over the inner domain (-> avoid to use undefined values)
         iis = Nis0   ;   iie = Nie0
         ijs = Njs0   ;   ije = Nje0
      ELSE                                     ! I think we are never in this case...
         iis = 1   ;   iie = jpi
         ijs = 1   ;   ije = jpj
      ENDIF
      !
      ALLOCATE( ctmp(ipk) )
      !
      DO jk = 1, ipk
         ctmp(jk) = CMPLX( 0.e0, 0.e0, dp )   ! warning ctmp is cumulated
         DO jj = ijs, ije
            DO ji = iis, iie
               ztmp =  ptab(ji,jj,jk) * tmask_i(ji,jj)
               CALL DDPDD( CMPLX( ztmp, 0.e0, dp ), ctmp(jk) )
            END DO
         END DO
      END DO
      CALL mpp_sum( cdname, ctmp(:) )   ! sum over the global domain
      !
      ptmp = REAL( ctmp(:), wp )
      !
      DEALLOCATE( ctmp )
      !
   END FUNCTION glob_sum_vec_3d

   FUNCTION glob_sum_vec_4d( cdname, ptab ) RESULT( ptmp )
      !!----------------------------------------------------------------------
      CHARACTER(len=*),  INTENT(in) ::   cdname        ! name of the calling subroutine
      REAL(wp),          INTENT(in) ::   ptab(:,:,:,:) ! array on which operation is applied
      REAL(wp), DIMENSION(SIZE(ptab,4)) ::   ptmp
      !
      COMPLEX(dp), DIMENSION(:), ALLOCATABLE ::   ctmp
      REAL(wp)    ::   ztmp
      INTEGER     ::   ji , jj , jk , jl     ! dummy loop indices
      INTEGER     ::   ipi, ipj, ipk, ipl    ! dimensions
      INTEGER     ::   iis, iie, ijs, ije    ! loop start and end
      !!-----------------------------------------------------------------------
      !
      ipi = SIZE(ptab,1)   ! 1st dimension
      ipj = SIZE(ptab,2)   ! 2nd dimension
      ipk = SIZE(ptab,3)   ! 3rd dimension
      ipl = SIZE(ptab,4)   ! 4th dimension
      !
      IF( ipi == jpi .AND. ipj == jpj ) THEN   ! do 2D loop only over the inner domain (-> avoid to use undefined values)
         iis = Nis0   ;   iie = Nie0
         ijs = Njs0   ;   ije = Nje0
      ELSE                                     ! I think we are never in this case...
         iis = 1   ;   iie = jpi
         ijs = 1   ;   ije = jpj
      ENDIF
      !
      ALLOCATE( ctmp(ipl) )
      !
      DO jl = 1, ipl
         ctmp(jl) = CMPLX( 0.e0, 0.e0, dp )   ! warning ctmp is cumulated
         DO jk = 1, ipk
            DO jj = ijs, ije
               DO ji = iis, iie
                  ztmp =  ptab(ji,jj,jk,jl) * tmask_i(ji,jj)
                  CALL DDPDD( CMPLX( ztmp, 0.e0, dp ), ctmp(jl) )
               END DO
            END DO
         END DO
      END DO
      CALL mpp_sum( cdname, ctmp(:) )   ! sum over the global domain
      !
      ptmp = REAL( ctmp(:), wp )
      !
      DEALLOCATE( ctmp )
      !
   END FUNCTION glob_sum_vec_4d

   FUNCTION glob_min_vec_3d( cdname, ptab ) RESULT( ptmp )
      !!----------------------------------------------------------------------
      CHARACTER(len=*),  INTENT(in) ::   cdname        ! name of the calling subroutine
      REAL(wp),          INTENT(in) ::   ptab(:,:,:)   ! array on which operation is applied
      REAL(wp), DIMENSION(SIZE(ptab,3)) ::   ptmp
      !
      INTEGER     ::   jk    ! dummy loop indice & dimension
      INTEGER     ::   ipk   ! dimension
      !!-----------------------------------------------------------------------
      !
      ipk = SIZE(ptab,3)
      DO jk = 1, ipk
         ptmp(jk) = MINVAL( ptab(:,:,jk) * tmask_i(:,:) )
      ENDDO
      !
      CALL mpp_min( cdname, ptmp (:) )
      !
   END FUNCTION glob_min_vec_3d

   FUNCTION glob_min_vec_4d( cdname, ptab ) RESULT( ptmp )
      !!----------------------------------------------------------------------
      CHARACTER(len=*),  INTENT(in) ::   cdname          ! name of the calling subroutine
      REAL(wp),          INTENT(in) ::   ptab(:,:,:,:)   ! array on which operation is applied
      REAL(wp), DIMENSION(SIZE(ptab,4)) ::   ptmp
      !
      INTEGER     ::   jk , jl    ! dummy loop indice & dimension
      INTEGER     ::   ipk, ipl   ! dimension
      !!-----------------------------------------------------------------------
      !
      ipk = SIZE(ptab,3)
      ipl = SIZE(ptab,4)
      DO jl = 1, ipl
            ptmp(jl) = MINVAL( ptab(:,:,1,jl) * tmask_i(:,:) )         
         DO jk = 2, ipk
            ptmp(jl) = MIN( ptmp(jl), MINVAL( ptab(:,:,jk,jl) * tmask_i(:,:) ) )
         ENDDO
      ENDDO
      !
      CALL mpp_min( cdname, ptmp (:) )
      !
   END FUNCTION glob_min_vec_4d
   
   FUNCTION glob_max_vec_3d( cdname, ptab ) RESULT( ptmp )
      !!----------------------------------------------------------------------
      CHARACTER(len=*),  INTENT(in) ::   cdname        ! name of the calling subroutine
      REAL(wp),          INTENT(in) ::   ptab(:,:,:)   ! array on which operation is applied
      REAL(wp), DIMENSION(SIZE(ptab,3)) ::   ptmp
      !
      INTEGER     ::   jk    ! dummy loop indice & dimension
      INTEGER     ::   ipk   ! dimension
      !!-----------------------------------------------------------------------
      !
      ipk = SIZE(ptab,3)
      DO jk = 1, ipk
         ptmp(jk) = MAXVAL( ptab(:,:,jk) * tmask_i(:,:) )
      ENDDO
      !
      CALL mpp_max( cdname, ptmp (:) )
      !
   END FUNCTION glob_max_vec_3d

   FUNCTION glob_max_vec_4d( cdname, ptab ) RESULT( ptmp )
      !!----------------------------------------------------------------------
      CHARACTER(len=*),  INTENT(in) ::   cdname          ! name of the calling subroutine
      REAL(wp),          INTENT(in) ::   ptab(:,:,:,:)   ! array on which operation is applied
      REAL(wp), DIMENSION(SIZE(ptab,4)) ::   ptmp
      !
      INTEGER     ::   jk , jl    ! dummy loop indice & dimension
      INTEGER     ::   ipk, ipl   ! dimension
      !!-----------------------------------------------------------------------
      !
      ipk = SIZE(ptab,3)
      ipl = SIZE(ptab,4)
      DO jl = 1, ipl
            ptmp(jl) = MAXVAL( ptab(:,:,1,jl) * tmask_i(:,:) )         
         DO jk = 2, ipk
            ptmp(jl) = MAX( ptmp(jl), MAXVAL( ptab(:,:,jk,jl) * tmask_i(:,:) ) )
         ENDDO
      ENDDO
      !
      CALL mpp_max( cdname, ptmp (:) )
      !
   END FUNCTION glob_max_vec_4d
   
   SUBROUTINE DDPDD( ydda, yddb )
      !!----------------------------------------------------------------------
      !!               ***  ROUTINE DDPDD ***
      !!
      !! ** Purpose : Add a scalar element to a sum
      !!
      !!
      !! ** Method  : The code uses the compensated summation with doublet
      !!              (sum,error) emulated useing complex numbers. ydda is the
      !!               scalar to add to the summ yddb
      !!
      !! ** Action  : This does only work for MPI.
      !!
      !! References : Using Acurate Arithmetics to Improve Numerical
      !!              Reproducibility and Sability in Parallel Applications
      !!              Yun HE and Chris H. Q. DING, Journal of Supercomputing 18, 259-277, 2001
      !!----------------------------------------------------------------------
      COMPLEX(dp), INTENT(in   ) ::   ydda
      COMPLEX(dp), INTENT(inout) ::   yddb
      !
      REAL(dp) :: zerr, zt1, zt2  ! local work variables
      !!-----------------------------------------------------------------------
      !
      ! Compute ydda + yddb using Knuth's trick.
      zt1  = REAL(ydda) + REAL(yddb)
      zerr = zt1 - REAL(ydda)
      zt2  = ( (REAL(yddb) - zerr) + (REAL(ydda) - (zt1 - zerr)) )   &
         &   + AIMAG(ydda)         + AIMAG(yddb)
      !
      ! The result is t1 + t2, after normalization.
      yddb = CMPLX( zt1 + zt2, zt2 - ((zt1 + zt2) - zt1), wp )
      !
   END SUBROUTINE DDPDD

#if defined key_nosignedzero
   !!----------------------------------------------------------------------
   !!   'key_nosignedzero'                                         F90 SIGN
   !!----------------------------------------------------------------------

   FUNCTION SIGN_SCALAR( pa, pb )
      !!-----------------------------------------------------------------------
      !!                  ***  FUNCTION SIGN_SCALAR  ***
      !!
      !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
      !!-----------------------------------------------------------------------
      REAL(wp) :: pa,pb          ! input
      REAL(wp) :: SIGN_SCALAR    ! result
      !!-----------------------------------------------------------------------
      IF ( pb >= 0.e0) THEN   ;   SIGN_SCALAR = ABS(pa)
      ELSE                    ;   SIGN_SCALAR =-ABS(pa)
      ENDIF
   END FUNCTION SIGN_SCALAR


   FUNCTION SIGN_ARRAY_1D( pa, pb )
      !!-----------------------------------------------------------------------
      !!                  ***  FUNCTION SIGN_ARRAY_1D  ***
      !!
      !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
      !!-----------------------------------------------------------------------
      REAL(wp) :: pa,pb(:)                   ! input
      REAL(wp) :: SIGN_ARRAY_1D(SIZE(pb,1))  ! result
      !!-----------------------------------------------------------------------
      WHERE ( pb >= 0.e0 )   ;   SIGN_ARRAY_1D = ABS(pa)
      ELSEWHERE              ;   SIGN_ARRAY_1D =-ABS(pa)
      END WHERE
   END FUNCTION SIGN_ARRAY_1D


   FUNCTION SIGN_ARRAY_2D(pa,pb)
      !!-----------------------------------------------------------------------
      !!                  ***  FUNCTION SIGN_ARRAY_2D  ***
      !!
      !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
      !!-----------------------------------------------------------------------
      REAL(wp) :: pa,pb(:,:)      ! input
      REAL(wp) :: SIGN_ARRAY_2D(SIZE(pb,1),SIZE(pb,2))  ! result
      !!-----------------------------------------------------------------------
      WHERE ( pb >= 0.e0 )   ;   SIGN_ARRAY_2D = ABS(pa)
      ELSEWHERE              ;   SIGN_ARRAY_2D =-ABS(pa)
      END WHERE
   END FUNCTION SIGN_ARRAY_2D

   FUNCTION SIGN_ARRAY_3D(pa,pb)
      !!-----------------------------------------------------------------------
      !!                  ***  FUNCTION SIGN_ARRAY_3D  ***
      !!
      !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
      !!-----------------------------------------------------------------------
      REAL(wp) :: pa,pb(:,:,:)      ! input
      REAL(wp) :: SIGN_ARRAY_3D(SIZE(pb,1),SIZE(pb,2),SIZE(pb,3))  ! result
      !!-----------------------------------------------------------------------
      WHERE ( pb >= 0.e0 )   ;   SIGN_ARRAY_3D = ABS(pa)
      ELSEWHERE              ;   SIGN_ARRAY_3D =-ABS(pa)
      END WHERE
   END FUNCTION SIGN_ARRAY_3D


   FUNCTION SIGN_ARRAY_1D_A(pa,pb)
      !!-----------------------------------------------------------------------
      !!                  ***  FUNCTION SIGN_ARRAY_1D_A  ***
      !!
      !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
      !!-----------------------------------------------------------------------
      REAL(wp) :: pa(:),pb(:)      ! input
      REAL(wp) :: SIGN_ARRAY_1D_A(SIZE(pb,1))  ! result
      !!-----------------------------------------------------------------------
      WHERE ( pb >= 0.e0 )   ;   SIGN_ARRAY_1D_A = ABS(pa)
      ELSEWHERE              ;   SIGN_ARRAY_1D_A =-ABS(pa)
      END WHERE
   END FUNCTION SIGN_ARRAY_1D_A


   FUNCTION SIGN_ARRAY_2D_A(pa,pb)
      !!-----------------------------------------------------------------------
      !!                  ***  FUNCTION SIGN_ARRAY_2D_A  ***
      !!
      !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
      !!-----------------------------------------------------------------------
      REAL(wp) :: pa(:,:),pb(:,:)      ! input
      REAL(wp) :: SIGN_ARRAY_2D_A(SIZE(pb,1),SIZE(pb,2))  ! result
      !!-----------------------------------------------------------------------
      WHERE ( pb >= 0.e0 )   ;   SIGN_ARRAY_2D_A = ABS(pa)
      ELSEWHERE              ;   SIGN_ARRAY_2D_A =-ABS(pa)
      END WHERE
   END FUNCTION SIGN_ARRAY_2D_A


   FUNCTION SIGN_ARRAY_3D_A(pa,pb)
      !!-----------------------------------------------------------------------
      !!                  ***  FUNCTION SIGN_ARRAY_3D_A  ***
      !!
      !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
      !!-----------------------------------------------------------------------
      REAL(wp) :: pa(:,:,:),pb(:,:,:)  ! input
      REAL(wp) :: SIGN_ARRAY_3D_A(SIZE(pb,1),SIZE(pb,2),SIZE(pb,3)) ! result
      !!-----------------------------------------------------------------------
      WHERE ( pb >= 0.e0 )   ;   SIGN_ARRAY_3D_A = ABS(pa)
      ELSEWHERE              ;   SIGN_ARRAY_3D_A =-ABS(pa)
      END WHERE
   END FUNCTION SIGN_ARRAY_3D_A


   FUNCTION SIGN_ARRAY_1D_B(pa,pb)
      !!-----------------------------------------------------------------------
      !!                  ***  FUNCTION SIGN_ARRAY_1D_B  ***
      !!
      !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
      !!-----------------------------------------------------------------------
      REAL(wp) :: pa(:),pb      ! input
      REAL(wp) :: SIGN_ARRAY_1D_B(SIZE(pa,1))  ! result
      !!-----------------------------------------------------------------------
      IF( pb >= 0.e0 ) THEN   ;   SIGN_ARRAY_1D_B = ABS(pa)
      ELSE                    ;   SIGN_ARRAY_1D_B =-ABS(pa)
      ENDIF
   END FUNCTION SIGN_ARRAY_1D_B


   FUNCTION SIGN_ARRAY_2D_B(pa,pb)
      !!-----------------------------------------------------------------------
      !!                  ***  FUNCTION SIGN_ARRAY_2D_B  ***
      !!
      !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
      !!-----------------------------------------------------------------------
      REAL(wp) :: pa(:,:),pb      ! input
      REAL(wp) :: SIGN_ARRAY_2D_B(SIZE(pa,1),SIZE(pa,2))  ! result
      !!-----------------------------------------------------------------------
      IF( pb >= 0.e0 ) THEN   ;   SIGN_ARRAY_2D_B = ABS(pa)
      ELSE                    ;   SIGN_ARRAY_2D_B =-ABS(pa)
      ENDIF
   END FUNCTION SIGN_ARRAY_2D_B


   FUNCTION SIGN_ARRAY_3D_B(pa,pb)
      !!-----------------------------------------------------------------------
      !!                  ***  FUNCTION SIGN_ARRAY_3D_B  ***
      !!
      !! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
      !!-----------------------------------------------------------------------
      REAL(wp) :: pa(:,:,:),pb      ! input
      REAL(wp) :: SIGN_ARRAY_3D_B(SIZE(pa,1),SIZE(pa,2),SIZE(pa,3))  ! result
      !!-----------------------------------------------------------------------
      IF( pb >= 0.e0 ) THEN   ;   SIGN_ARRAY_3D_B = ABS(pa)
      ELSE                    ;   SIGN_ARRAY_3D_B =-ABS(pa)
      ENDIF
   END FUNCTION SIGN_ARRAY_3D_B
#endif

   !!======================================================================
END MODULE lib_fortran