Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
MODULE diahsb
!!======================================================================
!! *** MODULE diahsb ***
!! Ocean diagnostics: Heat, salt and volume budgets
!!======================================================================
!! History : 3.3 ! 2010-09 (M. Leclair) Original code
!! ! 2012-10 (C. Rousset) add iom_put
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! dia_hsb : Diagnose the conservation of ocean heat and salt contents, and volume
!! dia_hsb_rst : Read or write DIA file in restart file
!! dia_hsb_init : Initialization of the conservation diagnostic
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and tracers
USE dom_oce ! ocean space and time domain
USE phycst ! physical constants
USE sbc_oce ! surface thermohaline fluxes
USE isf_oce ! ice shelf fluxes
USE sbcrnf ! river runoff
USE domvvl ! vertical scale factors
USE traqsr ! penetrative solar radiation
USE trabbc ! bottom boundary condition
USE trabbc ! bottom boundary condition
USE restart ! ocean restart
USE bdy_oce , ONLY : ln_bdy
!
USE iom ! I/O manager
USE in_out_manager ! I/O manager
USE lib_fortran ! glob_sum
USE lib_mpp ! distributed memory computing library
USE timing ! preformance summary
IMPLICIT NONE
PRIVATE
PUBLIC dia_hsb ! routine called by step.F90
PUBLIC dia_hsb_init ! routine called by nemogcm.F90
LOGICAL, PUBLIC :: ln_diahsb !: check the heat and salt budgets
REAL(wp) :: surf_tot ! ocean surface
REAL(wp) :: frc_t, frc_s, frc_v ! global forcing trends
REAL(wp) :: frc_wn_t, frc_wn_s ! global forcing trends
!
REAL(wp), DIMENSION(:,:) , ALLOCATABLE :: surf
REAL(wp), DIMENSION(:,:) , ALLOCATABLE :: surf_ini , ssh_ini !
REAL(wp), DIMENSION(:,:) , ALLOCATABLE :: ssh_hc_loc_ini, ssh_sc_loc_ini !
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: hc_loc_ini, sc_loc_ini, e3t_ini !
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tmask_ini
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: diahsb.F90 15062 2021-06-28 11:19:48Z jchanut $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE dia_hsb( kt, Kbb, Kmm )
!!---------------------------------------------------------------------------
!! *** ROUTINE dia_hsb ***
!!
!! ** Purpose: Compute the ocean global heat content, salt content and volume conservation
!!
!! ** Method : - Compute the deviation of heat content, salt content and volume
!! at the current time step from their values at nit000
!! - Compute the contribution of forcing and remove it from these deviations
!!
!!---------------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! ocean time-step index
INTEGER, INTENT(in) :: Kbb, Kmm ! ocean time level indices
!
INTEGER :: ji, jj, jk ! dummy loop indice
REAL(wp) :: zdiff_hc , zdiff_sc ! heat and salt content variations
REAL(wp) :: zdiff_hc1 , zdiff_sc1 ! - - - -
REAL(wp) :: zdiff_v1 , zdiff_v2 ! volume variation
REAL(wp) :: zerr_hc1 , zerr_sc1 ! heat and salt content misfit
REAL(wp) :: zvol_tot ! volume
REAL(wp) :: z_frc_trd_t , z_frc_trd_s ! - -
REAL(wp) :: z_frc_trd_v ! - -
REAL(wp) :: z_wn_trd_t , z_wn_trd_s ! - -
REAL(wp) :: z_ssh_hc , z_ssh_sc ! - -
REAL(wp), DIMENSION(A2D(0),13) :: ztmp
REAL(wp), DIMENSION(A2D(0),jpkm1,4) :: ztmpk
REAL(wp), DIMENSION(17) :: zbg
!!---------------------------------------------------------------------------
IF( ln_timing ) CALL timing_start('dia_hsb')
!
DO_2D( 0, 0, 0, 0 )
ztmp (ji,jj,:) = 0._wp ! should be better coded
ztmpk(ji,jj,:,:) = 0._wp ! should be better coded
!
ts(ji,jj,:,1,Kmm) = ts(ji,jj,:,1,Kmm) * tmask(ji,jj,:)
ts(ji,jj,:,1,Kbb) = ts(ji,jj,:,1,Kbb) * tmask(ji,jj,:)
!
ts(ji,jj,:,2,Kmm) = ts(ji,jj,:,2,Kmm) * tmask(ji,jj,:)
ts(ji,jj,:,2,Kbb) = ts(ji,jj,:,2,Kbb) * tmask(ji,jj,:)
END_2D
!
! ------------------------- !
! 1 - Trends due to forcing !
! ------------------------- !
! prepare trends
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
DO_2D( 0, 0, 0, 0 )
ztmp(ji,jj,1) = - r1_rho0 * ( emp(ji,jj) & ! volume
& - rnf(ji,jj) &
& - fwfisf_cav(ji,jj) &
& - fwfisf_par(ji,jj) ) * surf(ji,jj)
ztmp(ji,jj,2) = sbc_tsc(ji,jj,jp_tem) * surf(ji,jj) ! heat
ztmp(ji,jj,3) = sbc_tsc(ji,jj,jp_sal) * surf(ji,jj) ! salt
END_2D
IF( ln_rnf ) THEN
DO_2D( 0, 0, 0, 0 )
ztmp(ji,jj,4) = rnf_tsc(ji,jj,jp_tem) * surf(ji,jj) ! runoff temp
END_2D
END IF
IF( ln_rnf_sal ) THEN
DO_2D( 0, 0, 0, 0 )
ztmp(ji,jj,5) = rnf_tsc(ji,jj,jp_sal) * surf(ji,jj) ! runoff salt
END_2D
END IF
IF( ln_isf ) THEN
DO_2D( 0, 0, 0, 0 )
ztmp(ji,jj,6) = ( risf_cav_tsc(ji,jj,jp_tem) &
& + risf_par_tsc(ji,jj,jp_tem) ) * surf(ji,jj) ! isf temp
END_2D
END IF
IF( ln_traqsr ) THEN
DO_2D( 0, 0, 0, 0 )
ztmp(ji,jj,7) = r1_rho0_rcp * qsr(ji,jj) * surf(ji,jj) ! penetrative solar radiation
END_2D
END IF
IF( ln_trabbc ) THEN
DO_2D( 0, 0, 0, 0 )
ztmp(ji,jj,8) = qgh_trd0(ji,jj) * surf(ji,jj) ! geothermal heat
END_2D
END IF
!
IF( ln_linssh ) THEN ! Advection flux through fixed surface (z=0)
IF( ln_isfcav ) THEN
DO ji=1,jpi
DO jj=1,jpj
ztmp(ji,jj,9 ) = - surf(ji,jj) * ww(ji,jj,mikt(ji,jj)) * ts(ji,jj,mikt(ji,jj),jp_tem,Kbb)
ztmp(ji,jj,10) = - surf(ji,jj) * ww(ji,jj,mikt(ji,jj)) * ts(ji,jj,mikt(ji,jj),jp_sal,Kbb)
END DO
END DO
ELSE
DO_2D( 0, 0, 0, 0 )
ztmp(ji,jj,9 ) = - surf(ji,jj) * ww(ji,jj,1) * ts(ji,jj,1,jp_tem,Kbb)
ztmp(ji,jj,10) = - surf(ji,jj) * ww(ji,jj,1) * ts(ji,jj,1,jp_sal,Kbb)
END_2D
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
END IF
ENDIF
! global sum
zbg(1:10) = glob_sum_vec( 'dia_hsb', ztmp(:,:,1:10) )
! adding up
z_frc_trd_v = zbg(1) ! volume fluxes
z_frc_trd_t = zbg(2) ! heat fluxes
z_frc_trd_s = zbg(3) ! salt fluxes
IF( ln_rnf ) z_frc_trd_t = z_frc_trd_t + zbg(4) ! runoff heat
IF( ln_rnf_sal) z_frc_trd_s = z_frc_trd_s + zbg(5) ! runoff salt
IF( ln_isf ) z_frc_trd_t = z_frc_trd_t + zbg(6) ! isf heat
IF( ln_traqsr ) z_frc_trd_t = z_frc_trd_t + zbg(7) ! penetrative solar flux
IF( ln_trabbc ) z_frc_trd_t = z_frc_trd_t + zbg(8) ! geothermal heat
!
frc_v = frc_v + z_frc_trd_v * rn_Dt
frc_t = frc_t + z_frc_trd_t * rn_Dt
frc_s = frc_s + z_frc_trd_s * rn_Dt
! ! Advection flux through fixed surface (z=0)
IF( ln_linssh ) THEN
z_wn_trd_t = zbg(9)
z_wn_trd_s = zbg(10)
!
frc_wn_t = frc_wn_t + z_wn_trd_t * rn_Dt
frc_wn_s = frc_wn_s + z_wn_trd_s * rn_Dt
ENDIF
! --------------------------------- !
! 2 - Content variations with ssh !
! --------------------------------- !
! glob_sum is needed because you keep only the interior domain to compute the sum (iscpl)
DO_2D( 0, 0, 0, 0 )
ztmp(ji,jj,11) = surf(ji,jj)*ssh(ji,jj,Kmm) - surf_ini(ji,jj)*ssh_ini(ji,jj)
END_2D
! ! heat & salt content variation (associated with ssh)
IF( ln_linssh ) THEN ! linear free surface case
IF( ln_isfcav ) THEN ! ISF case
DO ji = 1, jpi
DO jj = 1, jpj
ztmp(ji,jj,12) = surf(ji,jj) * ( ts(ji,jj,mikt(ji,jj),jp_tem,Kmm) * ssh(ji,jj,Kmm) - ssh_hc_loc_ini(ji,jj) )
ztmp(ji,jj,13) = surf(ji,jj) * ( ts(ji,jj,mikt(ji,jj),jp_sal,Kmm) * ssh(ji,jj,Kmm) - ssh_sc_loc_ini(ji,jj) )
END DO
END DO
ELSE ! no under ice-shelf seas
DO_2D( 0, 0, 0, 0 )
ztmp(ji,jj,12) = surf(ji,jj) * ( ts(ji,jj,1,jp_tem,Kmm) * ssh(ji,jj,Kmm) - ssh_hc_loc_ini(ji,jj) )
ztmp(ji,jj,13) = surf(ji,jj) * ( ts(ji,jj,1,jp_sal,Kmm) * ssh(ji,jj,Kmm) - ssh_sc_loc_ini(ji,jj) )
END_2D
zbg(11:13) = glob_sum_vec( 'dia_hsb', ztmp(:,:,11:13) )
zdiff_v1 = zbg(11)
! ! heat & salt content variation (associated with ssh)
IF( ln_linssh ) THEN ! linear free surface case
z_ssh_hc = zbg(12)
z_ssh_sc = zbg(13)
ENDIF
!
! --------------------------------- !
! 3 - Content variations with e3t !
! --------------------------------- !
! glob_sum is needed because you keep only the interior domain to compute the sum (iscpl)
DO_2D( 0, 0, 0, 0 )
ztmpk(ji,jj,jk,1) = surf (ji,jj) * e3t(ji,jj,jk,Kmm)*tmask(ji,jj,jk) &
& - surf_ini(ji,jj) * e3t_ini(ji,jj,jk )*tmask_ini(ji,jj,jk)
END_2D
DO_2D( 0, 0, 0, 0 )
ztmpk(ji,jj,jk,2) = ( surf (ji,jj) * e3t(ji,jj,jk,Kmm)*ts(ji,jj,jk,jp_tem,Kmm) &
& - surf_ini(ji,jj) * hc_loc_ini(ji,jj,jk) )
END_2D
DO_2D( 0, 0, 0, 0 )
ztmpk(ji,jj,jk,3) = ( surf (ji,jj) * e3t(ji,jj,jk,Kmm)*ts(ji,jj,jk,jp_sal,Kmm) &
& - surf_ini(ji,jj) * sc_loc_ini(ji,jj,jk) )
END_2D
DO_2D( 0, 0, 0, 0 )
ztmpk(ji,jj,jk,4) = surf(ji,jj) * e3t(ji,jj,jk,Kmm) * tmask(ji,jj,jk)
END_2D
zbg(14:17) = glob_sum_vec( 'dia_hsb', ztmpk(:,:,:,1:4) )
zdiff_v2 = zbg(14) ! glob_sum needed as tmask and tmask_ini could be different
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
zdiff_hc = zbg(15)
zdiff_sc = zbg(16)
zvol_tot = zbg(17)
! ------------------------ !
! 4 - Drifts !
! ------------------------ !
zdiff_v1 = zdiff_v1 - frc_v
IF( .NOT.ln_linssh ) zdiff_v2 = zdiff_v2 - frc_v
zdiff_hc = zdiff_hc - frc_t
zdiff_sc = zdiff_sc - frc_s
IF( ln_linssh ) THEN
zdiff_hc1 = zdiff_hc + z_ssh_hc
zdiff_sc1 = zdiff_sc + z_ssh_sc
zerr_hc1 = z_ssh_hc - frc_wn_t
zerr_sc1 = z_ssh_sc - frc_wn_s
ENDIF
!!gm to be added ?
! IF( ln_linssh ) THEN ! fixed volume, add the ssh contribution
! zvol_tot = zvol_tot + glob_sum( 'diahsb', surf(:,:) * ssh(:,:,Kmm) )
! ENDIF
!!gm end
CALL iom_put( 'bgfrcvol' , frc_v * 1.e-9 ) ! vol - surface forcing (km3)
CALL iom_put( 'bgfrctem' , frc_t * rho0 * rcp * 1.e-20 ) ! hc - surface forcing (1.e20 J)
CALL iom_put( 'bgfrchfx' , frc_t * rho0 * rcp / & ! hc - surface forcing (W/m2)
& ( surf_tot * kt * rn_Dt ) )
CALL iom_put( 'bgfrcsal' , frc_s * 1.e-9 ) ! sc - surface forcing (psu*km3)
IF( .NOT. ln_linssh ) THEN
CALL iom_put( 'bgtemper' , zdiff_hc / zvol_tot ) ! Temperature drift (C)
CALL iom_put( 'bgsaline' , zdiff_sc / zvol_tot ) ! Salinity drift (PSU)
CALL iom_put( 'bgheatco' , zdiff_hc * 1.e-20 * rho0 * rcp ) ! Heat content drift (1.e20 J)
CALL iom_put( 'bgheatfx' , zdiff_hc * rho0 * rcp / & ! Heat flux drift (W/m2)
& ( surf_tot * kt * rn_Dt ) )
CALL iom_put( 'bgsaltco' , zdiff_sc * 1.e-9 ) ! Salt content drift (psu*km3)
CALL iom_put( 'bgvolssh' , zdiff_v1 * 1.e-9 ) ! volume ssh drift (km3)
CALL iom_put( 'bgvole3t' , zdiff_v2 * 1.e-9 ) ! volume e3t drift (km3)
!
IF( kt == nitend .AND. lwp ) THEN
WRITE(numout,*)
WRITE(numout,*) 'dia_hsb : last time step hsb diagnostics: at it= ', kt,' date= ', ndastp
WRITE(numout,*) '~~~~~~~'
WRITE(numout,*) ' Temperature drift = ', zdiff_hc / zvol_tot, ' C'
WRITE(numout,*) ' Salinity drift = ', zdiff_sc / zvol_tot, ' PSU'
WRITE(numout,*) ' volume ssh drift = ', zdiff_v1 * 1.e-9 , ' km^3'
WRITE(numout,*) ' volume e3t drift = ', zdiff_v2 * 1.e-9 , ' km^3'
ENDIF
!
ELSE
CALL iom_put( 'bgtemper' , zdiff_hc1 / zvol_tot) ! Heat content drift (C)
CALL iom_put( 'bgsaline' , zdiff_sc1 / zvol_tot) ! Salt content drift (PSU)
CALL iom_put( 'bgheatco' , zdiff_hc1 * 1.e-20 * rho0 * rcp ) ! Heat content drift (1.e20 J)
CALL iom_put( 'bgheatfx' , zdiff_hc1 * rho0 * rcp / & ! Heat flux drift (W/m2)
& ( surf_tot * kt * rn_Dt ) )
CALL iom_put( 'bgsaltco' , zdiff_sc1 * 1.e-9 ) ! Salt content drift (psu*km3)
CALL iom_put( 'bgvolssh' , zdiff_v1 * 1.e-9 ) ! volume ssh drift (km3)
CALL iom_put( 'bgmistem' , zerr_hc1 / zvol_tot ) ! hc - error due to free surface (C)
CALL iom_put( 'bgmissal' , zerr_sc1 / zvol_tot ) ! sc - error due to free surface (psu)
ENDIF
!
IF( lrst_oce ) CALL dia_hsb_rst( kt, Kmm, 'WRITE' )
!
IF( ln_timing ) CALL timing_stop('dia_hsb')
!
END SUBROUTINE dia_hsb
SUBROUTINE dia_hsb_rst( kt, Kmm, cdrw )
!!---------------------------------------------------------------------
!! *** ROUTINE dia_hsb_rst ***
!!
!! ** Purpose : Read or write DIA file in restart file
!!
!! ** Method : use of IOM library
!!----------------------------------------------------------------------
INTEGER , INTENT(in) :: kt ! ocean time-step
INTEGER , INTENT(in) :: Kmm ! ocean time level index
CHARACTER(len=*), INTENT(in) :: cdrw ! "READ"/"WRITE" flag
!
INTEGER :: ji, jj, jk ! dummy loop indices
!!----------------------------------------------------------------------
!
IF( TRIM(cdrw) == 'READ' ) THEN ! Read/initialise
IF( ln_rstart ) THEN !* Read the restart file
!
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' dia_hsb_rst : read hsb restart at it= ', kt,' date= ', ndastp
IF(lwp) WRITE(numout,*)
CALL iom_get( numror, 'frc_v', frc_v )
CALL iom_get( numror, 'frc_t', frc_t )
CALL iom_get( numror, 'frc_s', frc_s )
IF( ln_linssh ) THEN
CALL iom_get( numror, 'frc_wn_t', frc_wn_t )
CALL iom_get( numror, 'frc_wn_s', frc_wn_s )
ENDIF
CALL iom_get( numror, jpdom_auto, 'surf_ini' , surf_ini ) ! ice sheet coupling
CALL iom_get( numror, jpdom_auto, 'ssh_ini' , ssh_ini )
CALL iom_get( numror, jpdom_auto, 'e3t_ini' , e3t_ini )
CALL iom_get( numror, jpdom_auto, 'tmask_ini' , tmask_ini )
CALL iom_get( numror, jpdom_auto, 'hc_loc_ini', hc_loc_ini )
CALL iom_get( numror, jpdom_auto, 'sc_loc_ini', sc_loc_ini )
IF( ln_linssh ) THEN
CALL iom_get( numror, jpdom_auto, 'ssh_hc_loc_ini', ssh_hc_loc_ini )
CALL iom_get( numror, jpdom_auto, 'ssh_sc_loc_ini', ssh_sc_loc_ini )
ENDIF
ELSE
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' dia_hsb_rst : initialise hsb at initial state '
IF(lwp) WRITE(numout,*)
DO_2D( 0, 0, 0, 0 )
surf_ini(ji,jj) = e1e2t(ji,jj) * tmask_i(ji,jj) ! initial ocean surface
ssh_ini(ji,jj) = ssh(ji,jj,Kmm) ! initial ssh
END_2D
DO jk = 1, jpk
! if ice sheet/oceqn coupling, need to mask ini variables here (mask could change at the next NEMO instance).
DO_2D( 0, 0, 0, 0 )
e3t_ini (ji,jj,jk) = e3t(ji,jj,jk,Kmm) * tmask(ji,jj,jk) ! initial vertical scale factors
tmask_ini (ji,jj,jk) = tmask(ji,jj,jk) ! initial mask
hc_loc_ini(ji,jj,jk) = ts(ji,jj,jk,jp_tem,Kmm) * e3t(ji,jj,jk,Kmm) * tmask(ji,jj,jk) ! initial heat content
sc_loc_ini(ji,jj,jk) = ts(ji,jj,jk,jp_sal,Kmm) * e3t(ji,jj,jk,Kmm) * tmask(ji,jj,jk) ! initial salt content
END_2D
END DO
frc_v = 0._wp ! volume trend due to forcing
frc_t = 0._wp ! heat content - - - -
frc_s = 0._wp ! salt content - - - -
IF( ln_linssh ) THEN
IF( ln_isfcav ) THEN
DO ji = 1, jpi
DO jj = 1, jpj
ssh_hc_loc_ini(ji,jj) = ts(ji,jj,mikt(ji,jj),jp_tem,Kmm) * ssh(ji,jj,Kmm) ! initial heat content in ssh
ssh_sc_loc_ini(ji,jj) = ts(ji,jj,mikt(ji,jj),jp_sal,Kmm) * ssh(ji,jj,Kmm) ! initial salt content in ssh
END DO
END DO
ELSE
DO_2D( 0, 0, 0, 0 )
ssh_hc_loc_ini(ji,jj) = ts(ji,jj,1,jp_tem,Kmm) * ssh(ji,jj,Kmm) ! initial heat content in ssh
ssh_sc_loc_ini(ji,jj) = ts(ji,jj,1,jp_sal,Kmm) * ssh(ji,jj,Kmm) ! initial salt content in ssh
END_2D
frc_wn_t = 0._wp ! initial heat content misfit due to free surface
frc_wn_s = 0._wp ! initial salt content misfit due to free surface
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
ENDIF
ENDIF
!
ELSEIF( TRIM(cdrw) == 'WRITE' ) THEN ! Create restart file
! ! -------------------
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' dia_hsb_rst : write restart at it= ', kt,' date= ', ndastp
IF(lwp) WRITE(numout,*)
!
CALL iom_rstput( kt, nitrst, numrow, 'frc_v', frc_v )
CALL iom_rstput( kt, nitrst, numrow, 'frc_t', frc_t )
CALL iom_rstput( kt, nitrst, numrow, 'frc_s', frc_s )
IF( ln_linssh ) THEN
CALL iom_rstput( kt, nitrst, numrow, 'frc_wn_t', frc_wn_t )
CALL iom_rstput( kt, nitrst, numrow, 'frc_wn_s', frc_wn_s )
ENDIF
CALL iom_rstput( kt, nitrst, numrow, 'surf_ini' , surf_ini ) ! ice sheet coupling
CALL iom_rstput( kt, nitrst, numrow, 'ssh_ini' , ssh_ini )
CALL iom_rstput( kt, nitrst, numrow, 'e3t_ini' , e3t_ini )
CALL iom_rstput( kt, nitrst, numrow, 'tmask_ini' , tmask_ini )
CALL iom_rstput( kt, nitrst, numrow, 'hc_loc_ini', hc_loc_ini )
CALL iom_rstput( kt, nitrst, numrow, 'sc_loc_ini', sc_loc_ini )
IF( ln_linssh ) THEN
CALL iom_rstput( kt, nitrst, numrow, 'ssh_hc_loc_ini', ssh_hc_loc_ini )
CALL iom_rstput( kt, nitrst, numrow, 'ssh_sc_loc_ini', ssh_sc_loc_ini )
ENDIF
!
ENDIF
!
END SUBROUTINE dia_hsb_rst
SUBROUTINE dia_hsb_init( Kmm )
!!---------------------------------------------------------------------------
!! *** ROUTINE dia_hsb ***
!!
!! ** Purpose: Initialization for the heat salt volume budgets
!!
!! ** Method : Compute initial heat content, salt content and volume
!!
!! ** Action : - Compute initial heat content, salt content and volume
!! - Initialize forcing trends
!! - Compute coefficients for conversion
!!---------------------------------------------------------------------------
INTEGER, INTENT(in) :: Kmm ! time level index
!
INTEGER :: ierror, ios ! local integer
INTEGER :: ji, jj ! loop index
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
!!
NAMELIST/namhsb/ ln_diahsb
!!----------------------------------------------------------------------
!
IF(lwp) THEN
WRITE(numout,*)
WRITE(numout,*) 'dia_hsb_init : heat and salt budgets diagnostics'
WRITE(numout,*) '~~~~~~~~~~~~ '
ENDIF
READ ( numnam_ref, namhsb, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namhsb in reference namelist' )
READ ( numnam_cfg, namhsb, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namhsb in configuration namelist' )
IF(lwm) WRITE( numond, namhsb )
IF(lwp) THEN
WRITE(numout,*) ' Namelist namhsb :'
WRITE(numout,*) ' check the heat and salt budgets (T) or not (F) ln_diahsb = ', ln_diahsb
ENDIF
!
IF( .NOT. ln_diahsb ) RETURN
! ------------------- !
! 1 - Allocate memory !
! ------------------- !
ALLOCATE( hc_loc_ini(jpi,jpj,jpk), sc_loc_ini(jpi,jpj,jpk), surf_ini(jpi,jpj), &
& e3t_ini(jpi,jpj,jpk), surf(jpi,jpj), ssh_ini(jpi,jpj), tmask_ini(jpi,jpj,jpk),STAT=ierror )
IF( ierror > 0 ) THEN
CALL ctl_stop( 'dia_hsb_init: unable to allocate hc_loc_ini' ) ; RETURN
ENDIF
IF( ln_linssh ) ALLOCATE( ssh_hc_loc_ini(jpi,jpj), ssh_sc_loc_ini(jpi,jpj),STAT=ierror )
IF( ierror > 0 ) THEN
CALL ctl_stop( 'dia_hsb: unable to allocate ssh_hc_loc_ini' ) ; RETURN
ENDIF
! ----------------------------------------------- !
! 2 - Time independant variables and file opening !
! ----------------------------------------------- !
DO_2D( 0, 0, 0, 0 )
surf(ji,jj) = e1e2t(ji,jj) * tmask_i(ji,jj) ! masked surface grid cell area
END_2D
surf_tot = glob_sum( 'diahsb', surf(:,:) ) ! total ocean surface area
IF( ln_bdy ) CALL ctl_warn( 'dia_hsb_init: heat/salt budget does not consider open boundary fluxes' )
!
! ---------------------------------- !
! 4 - initial conservation variables !
! ---------------------------------- !
CALL dia_hsb_rst( nit000, Kmm, 'READ' ) !* read or initialize all required files
!
END SUBROUTINE dia_hsb_init
!!======================================================================
END MODULE diahsb