Newer
Older
MODULE traadv_cen
!!======================================================================
!! *** MODULE traadv_cen ***
!! Ocean tracers: advective trend (2nd/4th order centered)
!!======================================================================
!! History : 3.7 ! 2014-05 (G. Madec) original code
!! 4.5 ! 2022-06 (S. Techene, G, Madec) refactorization to reduce local memory usage
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! tra_adv_cen : update the tracer trend with the advection trends using a centered or scheme (2nd or 4th order)
!! NB: on the vertical it is actually a 4th order COMPACT scheme which is used
!!----------------------------------------------------------------------
USE dom_oce ! ocean space and time domain
USE eosbn2 ! equation of state
USE traadv_fct ! acces to routine interp_4th_cpt
USE trd_oce ! trends: ocean variables
USE trdtra ! trends manager: tracers
USE diaptr ! poleward transport diagnostics
USE diaar5 ! AR5 diagnostics
!
USE in_out_manager ! I/O manager
USE iom ! IOM library
USE trc_oce ! share passive tracers/Ocean variables
USE lib_mpp ! MPP library
#if defined key_loop_fusion
USE traadv_cen_lf ! centered scheme (tra_adv_cen routine - loop fusion version)
#endif
IMPLICIT NONE
PRIVATE
PUBLIC tra_adv_cen ! called by traadv.F90
PUBLIC tra_adv_cen_hls1 ! called by traadv.F90
REAL(wp) :: r1_6 = 1._wp / 6._wp ! =1/6
LOGICAL :: l_trd ! flag to compute trends
LOGICAL :: l_ptr ! flag to compute poleward transport
LOGICAL :: l_hst ! flag to compute heat/salt transport
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: traadv_cen.F90 14834 2021-05-11 09:24:44Z hadcv $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
SUBROUTINE tra_adv_cen_test( kt, kit000, cdtype, pU, pV, pW, &
& Kmm, pt, kjpt, Krhs, kn_cen_h, kn_cen_v )
!!----------------------------------------------------------------------
!! *** ROUTINE tra_adv_cen ***
!!
!! ** Purpose : Compute the now trend due to the advection of tracers
!! and add it to the general trend of passive tracer equations.
!!
!! ** Method : The advection is evaluated by a 2nd or 4th order scheme
!! using now fields (leap-frog scheme).
!! kn_cen_h = 2 ==>> 2nd order centered scheme on the horizontal
!! = 4 ==>> 4th order - - - -
!! kn_cen_v = 2 ==>> 2nd order centered scheme on the vertical
!! = 4 ==>> 4th order COMPACT scheme - -
!!
!! ** Action : - update pt(:,:,:,:,Krhs) with the now advective tracer trends
!! - send trends to trdtra module for further diagnostcs (l_trdtra=T)
!! - poleward advective heat and salt transport (l_diaptr=T)
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kmm, Krhs ! ocean time level indices
INTEGER , INTENT(in ) :: kit000 ! first time step index
CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator)
INTEGER , INTENT(in ) :: kjpt ! number of tracers
INTEGER , INTENT(in ) :: kn_cen_h ! =2/4 (2nd or 4th order scheme)
INTEGER , INTENT(in ) :: kn_cen_v ! =2/4 (2nd or 4th order scheme)
! TEMP: [tiling] This can be A2D(nn_hls) after all lbc_lnks removed in the nn_hls = 2 case in tra_adv_fct
REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pU, pV, pW ! 3 ocean volume flux components
REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) :: pt ! tracers and RHS of tracer equation
!
INTEGER :: ji, jj, jk, jn ! dummy loop indices
INTEGER :: ierr ! local integer
REAL(wp) :: zC2t_u, zC4t_u ! local scalars
REAL(wp) :: zC2t_v, zC4t_v ! - -
REAL(wp) :: zftw_kp1
REAL(wp), DIMENSION(A2D(1)) :: zft_u, zft_v !, zft_w
REAL(wp), DIMENSION(:,:) , ALLOCATABLE :: zdt_u, zdt_v
REAL(wp), DIMENSION(:,:,:) , ALLOCATABLE :: ztw
!!----------------------------------------------------------------------
!
#if defined key_loop_fusion
CALL tra_adv_cen_lf ( kt, nit000, cdtype, pU, pV, pW, Kmm, pt, kjpt, Krhs, kn_cen_h, kn_cen_v )
#else
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == kit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'tra_adv_cen : centered advection scheme on ', cdtype, ' order h/v =', kn_cen_h,'/', kn_cen_v
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~ '
ENDIF
! ! set local switches
l_trd = .FALSE.
l_hst = .FALSE.
l_ptr = .FALSE.
IF( ( cdtype == 'TRA' .AND. l_trdtra ) .OR. ( cdtype == 'TRC' .AND. l_trdtrc ) ) l_trd = .TRUE.
IF( cdtype == 'TRA' .AND. ( iom_use( 'sophtadv' ) .OR. iom_use( 'sophtadv' ) ) ) l_ptr = .TRUE.
IF( cdtype == 'TRA' .AND. ( iom_use("uadv_heattr") .OR. iom_use("vadv_heattr") .OR. &
& iom_use("uadv_salttr") .OR. iom_use("vadv_salttr") ) ) l_hst = .TRUE.
ENDIF
!
! !* 2nd order centered
DO jn = 1, kjpt !== loop over the tracers ==!
!
DO jk = 1, jpkm1
!
DO_2D( 1, 0, 1, 0 ) ! Horizontal fluxes at layer jk
zft_u(ji,jj) = 0.5_wp * pU(ji,jj,jk) * ( pt(ji,jj,jk,jn,Kmm) + pt(ji+1,jj ,jk,jn,Kmm) )
zft_v(ji,jj) = 0.5_wp * pV(ji,jj,jk) * ( pt(ji,jj,jk,jn,Kmm) + pt(ji ,jj+1,jk,jn,Kmm) )
END_2D
!
DO_2D( 0, 0, 0, 0 ) ! Horizontal divergence of advective fluxes
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - ( zft_u(ji,jj) - zft_u(ji-1,jj ) &
& + zft_v(ji,jj) - zft_v(ji ,jj-1) ) * r1_e1e2t(ji,jj) &
& / e3t(ji,jj,jk,Kmm)
END_2D
END DO
!
#define zft_w zft_u
IF( ln_linssh ) THEN !* top value (linear free surf. only as zwz is multiplied by wmask)
DO_2D( 0, 0, 0, 0 )
zft_w(ji,jj) = pW(ji,jj,1) * pt(ji,jj,1,jn,Kmm)
END_2D
ELSE
DO_2D( 0, 0, 0, 0 )
zft_w(ji,jj) = 0._wp
END_2D
ENDIF
DO jk = 1, jpk-2
DO_2D( 0, 0, 0, 0 ) ! Vertical fluxes
zftw_kp1 = 0.5 * pW(ji,jj,jk+1) * ( pt(ji,jj,jk+1,jn,Kmm) + pt(ji,jj,jk,jn,Kmm) ) * wmask(ji,jj,jk+1)
!
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - ( zft_w(ji,jj) - zftw_kp1 ) * r1_e1e2t(ji,jj) &
& / e3t(ji,jj,jk,Kmm)
zft_w(ji,jj) = zftw_kp1
END_2D
END DO
jk = jpkm1 ! bottom vertical flux set to zero for all tracers
DO_2D( 0, 0, 0, 0 )
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - zft_w(ji,jj) * r1_e1e2t(ji,jj) &
& / e3t(ji,jj,jk,Kmm)
END_2D
!
END DO
!
!
#undef zft_w
! ! trend diagnostics
!!gm + !!st to be done with the whole rewritting of trd
!! trd routine arguments MUST be changed adding jk and zwx, zwy in 2D
!! IF( l_trd ) THEN
!! CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_xad, zwx, pU, pt(:,:,:,jn,Kmm) )
!! CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_yad, zwy, pV, pt(:,:,:,jn,Kmm) )
!! CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_zad, zwz, pW, pt(:,:,:,jn,Kmm) )
!! ENDIF
!! ! ! "Poleward" heat and salt transports
!! IF( l_ptr ) CALL dia_ptr_hst( jn, 'adv', zwy(:,:,:) )
!! ! ! heat and salt transport
!! IF( l_hst ) CALL dia_ar5_hst( jn, 'adv', zwx(:,:,:), zwy(:,:,:) )
!
!
!
#endif
END SUBROUTINE tra_adv_cen_test
SUBROUTINE tra_adv_cen( kt, kit000, cdtype, pU, pV, pW, &
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
& Kmm, pt, kjpt, Krhs, kn_cen_h, kn_cen_v )
!!----------------------------------------------------------------------
!! *** ROUTINE tra_adv_cen ***
!!
!! ** Purpose : Compute the now trend due to the advection of tracers
!! and add it to the general trend of passive tracer equations.
!!
!! ** Method : The advection is evaluated by a 2nd or 4th order scheme
!! using now fields (leap-frog scheme).
!! kn_cen_h = 2 ==>> 2nd order centered scheme on the horizontal
!! = 4 ==>> 4th order - - - -
!! kn_cen_v = 2 ==>> 2nd order centered scheme on the vertical
!! = 4 ==>> 4th order COMPACT scheme - -
!!
!! ** Action : - update pt(:,:,:,:,Krhs) with the now advective tracer trends
!! - send trends to trdtra module for further diagnostcs (l_trdtra=T)
!! - poleward advective heat and salt transport (l_diaptr=T)
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kmm, Krhs ! ocean time level indices
INTEGER , INTENT(in ) :: kit000 ! first time step index
CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator)
INTEGER , INTENT(in ) :: kjpt ! number of tracers
INTEGER , INTENT(in ) :: kn_cen_h ! =2/4 (2nd or 4th order scheme)
INTEGER , INTENT(in ) :: kn_cen_v ! =2/4 (2nd or 4th order scheme)
! TEMP: [tiling] This can be A2D(nn_hls) after all lbc_lnks removed in the nn_hls = 2 case in tra_adv_fct
REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pU, pV, pW ! 3 ocean volume flux components
REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) :: pt ! tracers and RHS of tracer equation
!
INTEGER :: ji, jj, jk, jn ! dummy loop indices
INTEGER :: ierr ! local integer
REAL(wp) :: zC2t_u, zC4t_u ! local scalars
REAL(wp) :: zC2t_v, zC4t_v ! - -
REAL(wp) :: zftw_kp1
REAL(wp), DIMENSION(A2D(1)) :: zft_u, zft_v
REAL(wp), DIMENSION(:,:) , ALLOCATABLE :: zdt_u, zdt_v
REAL(wp), DIMENSION(:,:,:) , ALLOCATABLE :: ztw
!!----------------------------------------------------------------------
!
#if defined key_loop_fusion
CALL tra_adv_cen_lf ( kt, nit000, cdtype, pU, pV, pW, Kmm, pt, kjpt, Krhs, kn_cen_h, kn_cen_v )
#else
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == kit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'tra_adv_cen : centered advection scheme on ', cdtype, ' order h/v =', kn_cen_h,'/', kn_cen_v
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~ '
ENDIF
! ! set local switches
l_trd = .FALSE.
l_hst = .FALSE.
l_ptr = .FALSE.
IF( ( cdtype == 'TRA' .AND. l_trdtra ) .OR. ( cdtype == 'TRC' .AND. l_trdtrc ) ) l_trd = .TRUE.
IF( cdtype == 'TRA' .AND. ( iom_use( 'sophtadv' ) .OR. iom_use( 'sophtadv' ) ) ) l_ptr = .TRUE.
IF( cdtype == 'TRA' .AND. ( iom_use("uadv_heattr") .OR. iom_use("vadv_heattr") .OR. &
& iom_use("uadv_salttr") .OR. iom_use("vadv_salttr") ) ) l_hst = .TRUE.
ENDIF
!
IF( kn_cen_h == 4 ) ALLOCATE( zdt_u(A2D(2)) , zdt_v(A2D(2)) ) ! horizontal 4th order only
IF( kn_cen_v == 4 ) ALLOCATE( ztw(A2D(nn_hls),jpk) ) ! vertical 4th order only
!
DO jn = 1, kjpt !== loop over the tracers ==!
!
SELECT CASE( kn_cen_h ) !-- Horizontal divergence of advective fluxes --!
!
!!st limitation : does not take into acccount iceshelf specificity
!! in case of linssh
CASE( 2 ) !* 2nd order centered
DO jk = 1, jpkm1
!
DO_2D( 1, 0, 1, 0 ) ! Horizontal fluxes at layer jk
zft_u(ji,jj) = 0.5_wp * pU(ji,jj,jk) * ( pt(ji,jj,jk,jn,Kmm) + pt(ji+1,jj ,jk,jn,Kmm) )
zft_v(ji,jj) = 0.5_wp * pV(ji,jj,jk) * ( pt(ji,jj,jk,jn,Kmm) + pt(ji ,jj+1,jk,jn,Kmm) )
END_2D
!
DO_2D( 0, 0, 0, 0 ) ! Horizontal divergence of advective fluxes
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - ( zft_u(ji,jj) - zft_u(ji-1,jj ) &
& + zft_v(ji,jj) - zft_v(ji ,jj-1) ) * r1_e1e2t(ji,jj) &
& / e3t(ji,jj,jk,Kmm)
END_2D
END DO
!
CASE( 4 ) !* 4th order centered
DO jk = 1, jpkm1
DO_2D( 2, 1, 2, 1 ) ! masked gradient
zdt_u(ji,jj) = ( pt(ji+1,jj ,jk,jn,Kmm) - pt(ji,jj,jk,jn,Kmm) ) * umask(ji,jj,jk)
zdt_v(ji,jj) = ( pt(ji ,jj+1,jk,jn,Kmm) - pt(ji,jj,jk,jn,Kmm) ) * vmask(ji,jj,jk)
END_2D
!
DO_2D( 1, 0, 1, 0 ) ! Horizontal advective fluxes
zC2t_u = pt(ji,jj,jk,jn,Kmm) + pt(ji+1,jj ,jk,jn,Kmm) ! C2 interpolation of T at u- & v-points (x2)
zC2t_v = pt(ji,jj,jk,jn,Kmm) + pt(ji ,jj+1,jk,jn,Kmm)
! ! C4 interpolation of T at u- & v-points (x2)
zC4t_u = zC2t_u + r1_6 * ( zdt_u(ji-1,jj ) - zdt_u(ji+1,jj ) )
zC4t_v = zC2t_v + r1_6 * ( zdt_v(ji ,jj-1) - zdt_v(ji ,jj+1) )
! ! C4 fluxes
zft_u(ji,jj) = 0.5_wp * pU(ji,jj,jk) * zC4t_u
zft_v(ji,jj) = 0.5_wp * pV(ji,jj,jk) * zC4t_v
END_2D
!
DO_2D( 0, 0, 0, 0 ) ! Horizontal divergence of advective fluxes
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - ( zft_u(ji,jj) - zft_u(ji-1,jj ) &
& + zft_v(ji,jj) - zft_v(ji ,jj-1) ) * r1_e1e2t(ji,jj) &
& / e3t(ji,jj,jk,Kmm)
END_2D
END DO
!
CASE DEFAULT
CALL ctl_stop( 'traadv_cen: wrong value for nn_cen' )
END SELECT
!
#define zft_w zft_u
!
IF( ln_linssh ) THEN !* top value (linear free surf. only as zwz is multiplied by wmask)
DO_2D( 0, 0, 0, 0 )
zft_w(ji,jj) = pW(ji,jj,1) * pt(ji,jj,1,jn,Kmm)
END_2D
ELSE
DO_2D( 0, 0, 0, 0 )
zft_w(ji,jj) = 0._wp
END_2D
ENDIF
!
SELECT CASE( kn_cen_v ) !-- Vertical divergence of advective fluxes --! (interior)
!
CASE( 2 ) !* 2nd order centered
DO jk = 1, jpk-2
DO_2D( 0, 0, 0, 0 ) ! Vertical fluxes
zftw_kp1 = 0.5 * pW(ji,jj,jk+1) * ( pt(ji,jj,jk+1,jn,Kmm) + pt(ji,jj,jk,jn,Kmm) ) * wmask(ji,jj,jk+1)
!
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - ( zft_w(ji,jj) - zftw_kp1 ) * r1_e1e2t(ji,jj) &
& / e3t(ji,jj,jk,Kmm)
zft_w(ji,jj) = zftw_kp1
END_2D
END DO
jk = jpkm1 ! bottom vertical flux set to zero for all tracers
DO_2D( 0, 0, 0, 0 )
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - zft_w(ji,jj) * r1_e1e2t(ji,jj) &
& / e3t(ji,jj,jk,Kmm)
END_2D
!
CASE( 4 ) !* 4th order compact
CALL interp_4th_cpt( pt(:,:,:,jn,Kmm) , ztw ) ! ztw = interpolated value of T at w-point
!
DO jk = 1, jpk-2
!
DO_2D( 0, 0, 0, 0 )
zftw_kp1 = pW(ji,jj,jk+1) * ztw(ji,jj,jk+1) * wmask(ji,jj,jk+1)
! ! Divergence of advective fluxes
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - ( zft_w(ji,jj) - zftw_kp1 ) * r1_e1e2t(ji,jj) &
& / e3t(ji,jj,jk,Kmm)
! ! update
zft_w(ji,jj) = zftw_kp1
END_2D
!
END DO
!
jk = jpkm1 ! bottom vertical flux set to zero for all tracers
DO_2D( 0, 0, 0, 0 )
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - zft_w(ji,jj) * r1_e1e2t(ji,jj) &
& / e3t(ji,jj,jk,Kmm)
END_2D
!
END SELECT
!
#undef zft_w
! ! trend diagnostics
!!gm + !!st to be done with the whole rewritting of trd
!! trd routine arguments MUST be changed adding jk and zwx, zwy in 2D
!! IF( l_trd ) THEN
!! CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_xad, zwx, pU, pt(:,:,:,jn,Kmm) )
!! CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_yad, zwy, pV, pt(:,:,:,jn,Kmm) )
!! CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_zad, zwz, pW, pt(:,:,:,jn,Kmm) )
!! ENDIF
!! ! ! "Poleward" heat and salt transports
!! IF( l_ptr ) CALL dia_ptr_hst( jn, 'adv', zwy(:,:,:) )
!! ! ! heat and salt transport
!! IF( l_hst ) CALL dia_ar5_hst( jn, 'adv', zwx(:,:,:), zwy(:,:,:) )
!
END DO
!
IF( kn_cen_h == 4 ) DEALLOCATE( zdt_u , zdt_v ) ! horizontal 4th order only
IF( kn_cen_v == 4 ) DEALLOCATE( ztw ) ! vertical 4th order only
!
#endif
END SUBROUTINE tra_adv_cen
SUBROUTINE tra_adv_cen_hls1( kt, kit000, cdtype, pU, pV, pW, &
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
& Kmm, pt, kjpt, Krhs, kn_cen_h, kn_cen_v )
!!----------------------------------------------------------------------
!! *** ROUTINE tra_adv_cen ***
!!
!! ** Purpose : Compute the now trend due to the advection of tracers
!! and add it to the general trend of passive tracer equations.
!!
!! ** Method : The advection is evaluated by a 2nd or 4th order scheme
!! using now fields (leap-frog scheme).
!! kn_cen_h = 2 ==>> 2nd order centered scheme on the horizontal
!! = 4 ==>> 4th order - - - -
!! kn_cen_v = 2 ==>> 2nd order centered scheme on the vertical
!! = 4 ==>> 4th order COMPACT scheme - -
!!
!! ** Action : - update pt(:,:,:,:,Krhs) with the now advective tracer trends
!! - send trends to trdtra module for further diagnostcs (l_trdtra=T)
!! - poleward advective heat and salt transport (l_diaptr=T)
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kmm, Krhs ! ocean time level indices
INTEGER , INTENT(in ) :: kit000 ! first time step index
CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator)
INTEGER , INTENT(in ) :: kjpt ! number of tracers
INTEGER , INTENT(in ) :: kn_cen_h ! =2/4 (2nd or 4th order scheme)
INTEGER , INTENT(in ) :: kn_cen_v ! =2/4 (2nd or 4th order scheme)
! TEMP: [tiling] This can be A2D(nn_hls) after all lbc_lnks removed in the nn_hls = 2 case in tra_adv_fct
REAL(wp), DIMENSION(jpi,jpj,jpk ), INTENT(in ) :: pU, pV, pW ! 3 ocean volume flux components
REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) :: pt ! tracers and RHS of tracer equation
!
INTEGER :: ji, jj, jk, jn ! dummy loop indices
INTEGER :: ierr ! local integer
REAL(wp) :: zC2t_u, zC4t_u ! local scalars
REAL(wp) :: zC2t_v, zC4t_v ! - -
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zwx, zwy, zwz, ztu, ztv, ztw
!!----------------------------------------------------------------------
!
#if defined key_loop_fusion
CALL tra_adv_cen_lf ( kt, nit000, cdtype, pU, pV, pW, Kmm, pt, kjpt, Krhs, kn_cen_h, kn_cen_v )
#else
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == kit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'tra_adv_cen : centered advection scheme on ', cdtype, ' order h/v =', kn_cen_h,'/', kn_cen_v
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~ '
ENDIF
! ! set local switches
l_trd = .FALSE.
l_hst = .FALSE.
l_ptr = .FALSE.
IF( ( cdtype == 'TRA' .AND. l_trdtra ) .OR. ( cdtype == 'TRC' .AND. l_trdtrc ) ) l_trd = .TRUE.
IF( cdtype == 'TRA' .AND. ( iom_use( 'sophtadv' ) .OR. iom_use( 'sophtadv' ) ) ) l_ptr = .TRUE.
IF( cdtype == 'TRA' .AND. ( iom_use("uadv_heattr") .OR. iom_use("vadv_heattr") .OR. &
& iom_use("uadv_salttr") .OR. iom_use("vadv_salttr") ) ) l_hst = .TRUE.
ENDIF
!
!
zwz(:,:, 1 ) = 0._wp ! surface & bottom vertical flux set to zero for all tracers
zwz(:,:,jpk) = 0._wp
!
DO jn = 1, kjpt !== loop over the tracers ==!
!
SELECT CASE( kn_cen_h ) !-- Horizontal fluxes --!
!
CASE( 2 ) !* 2nd order centered
DO_3D( 1, 0, 1, 0, 1, jpkm1 )
zwx(ji,jj,jk) = 0.5_wp * pU(ji,jj,jk) * ( pt(ji,jj,jk,jn,Kmm) + pt(ji+1,jj ,jk,jn,Kmm) )
zwy(ji,jj,jk) = 0.5_wp * pV(ji,jj,jk) * ( pt(ji,jj,jk,jn,Kmm) + pt(ji ,jj+1,jk,jn,Kmm) )
END_3D
!
CASE( 4 ) !* 4th order centered
ztu(:,:,jpk) = 0._wp ! Bottom value : flux set to zero
ztv(:,:,jpk) = 0._wp
DO_3D( nn_hls, nn_hls-1, nn_hls, nn_hls-1, 1, jpkm1 ) ! masked gradient
ztu(ji,jj,jk) = ( pt(ji+1,jj ,jk,jn,Kmm) - pt(ji,jj,jk,jn,Kmm) ) * umask(ji,jj,jk)
ztv(ji,jj,jk) = ( pt(ji ,jj+1,jk,jn,Kmm) - pt(ji,jj,jk,jn,Kmm) ) * vmask(ji,jj,jk)
END_3D
IF (nn_hls==1) CALL lbc_lnk( 'traadv_cen', ztu, 'U', -1.0_wp , ztv, 'V', -1.0_wp, ld4only= .TRUE. ) ! Lateral boundary cond.
!
DO_3D( nn_hls-1, 0, nn_hls-1, 0, 1, jpkm1 ) ! Horizontal advective fluxes
zC2t_u = pt(ji,jj,jk,jn,Kmm) + pt(ji+1,jj ,jk,jn,Kmm) ! C2 interpolation of T at u- & v-points (x2)
zC2t_v = pt(ji,jj,jk,jn,Kmm) + pt(ji ,jj+1,jk,jn,Kmm)
! ! C4 interpolation of T at u- & v-points (x2)
zC4t_u = zC2t_u + r1_6 * ( ztu(ji-1,jj,jk) - ztu(ji+1,jj,jk) )
zC4t_v = zC2t_v + r1_6 * ( ztv(ji,jj-1,jk) - ztv(ji,jj+1,jk) )
! ! C4 fluxes
zwx(ji,jj,jk) = 0.5_wp * pU(ji,jj,jk) * zC4t_u
zwy(ji,jj,jk) = 0.5_wp * pV(ji,jj,jk) * zC4t_v
END_3D
IF (nn_hls==1) CALL lbc_lnk( 'traadv_cen', zwx, 'U', -1. , zwy, 'V', -1. )
!
CASE DEFAULT
CALL ctl_stop( 'traadv_cen: wrong value for nn_cen' )
END SELECT
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) !-- Divergence of advective fluxes --!
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) &
& - ( zwx(ji,jj,jk) - zwx(ji-1,jj ,jk ) &
& + zwy(ji,jj,jk) - zwy(ji ,jj-1,jk ) ) &
& * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm)
END_3D
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
!
SELECT CASE( kn_cen_v ) !-- Vertical fluxes --! (interior)
!
CASE( 2 ) !* 2nd order centered
DO_3D( 0, 0, 0, 0, 2, jpk )
zwz(ji,jj,jk) = 0.5 * pW(ji,jj,jk) * ( pt(ji,jj,jk,jn,Kmm) + pt(ji,jj,jk-1,jn,Kmm) ) * wmask(ji,jj,jk)
END_3D
!
CASE( 4 ) !* 4th order compact
CALL interp_4th_cpt( pt(:,:,:,jn,Kmm) , ztw ) ! ztw = interpolated value of T at w-point
DO_3D( 0, 0, 0, 0, 2, jpkm1 )
zwz(ji,jj,jk) = pW(ji,jj,jk) * ztw(ji,jj,jk) * wmask(ji,jj,jk)
END_3D
!
END SELECT
!
IF( ln_linssh ) THEN !* top value (linear free surf. only as zwz is multiplied by wmask)
IF( ln_isfcav ) THEN ! ice-shelf cavities (top of the ocean)
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj, mikt(ji,jj) ) = pW(ji,jj,mikt(ji,jj)) * pt(ji,jj,mikt(ji,jj),jn,Kmm)
END_2D
ELSE ! no ice-shelf cavities (only ocean surface)
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj,1) = pW(ji,jj,1) * pt(ji,jj,1,jn,Kmm)
END_2D
ENDIF
ENDIF
!
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) !-- Divergence of advective fluxes --!
pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) &
& - ( zwz(ji,jj,jk) - zwz(ji ,jj ,jk+1) ) &
!
!!st DO_3D( 0, 0, 0, 0, 1, jpkm1 ) !-- Divergence of advective fluxes --!
!!st pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) &
!!st & - ( zwx(ji,jj,jk) - zwx(ji-1,jj ,jk ) &
!!st & + zwy(ji,jj,jk) - zwy(ji ,jj-1,jk ) &
!!st & + zwz(ji,jj,jk) - zwz(ji ,jj ,jk+1) ) &
!!st & * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm)
!!st END_3D
! ! trend diagnostics
IF( l_trd ) THEN
CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_xad, zwx, pU, pt(:,:,:,jn,Kmm) )
CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_yad, zwy, pV, pt(:,:,:,jn,Kmm) )
CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_zad, zwz, pW, pt(:,:,:,jn,Kmm) )
ENDIF
! ! "Poleward" heat and salt transports
IF( l_ptr ) CALL dia_ptr_hst( jn, 'adv', zwy(:,:,:) )
! ! heat and salt transport
IF( l_hst ) CALL dia_ar5_hst( jn, 'adv', zwx(:,:,:), zwy(:,:,:) )
!
END DO
!
#endif
END SUBROUTINE tra_adv_cen_hls1
!!======================================================================
END MODULE traadv_cen