Skip to content
Snippets Groups Projects
Forked from NEMO Workspace / Nemo
951 commits behind, 56 commits ahead of the upstream repository.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
ablmod.F90 63.02 KiB
MODULE ablmod
   !!======================================================================
   !!                       ***  MODULE  ablmod  ***
   !! Surface module :  ABL computation to provide atmospheric data
   !!                   for surface fluxes computation
   !!======================================================================
   !! History :  3.6  ! 2019-03  (F. Lemarié & G. Samson)  Original code
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   abl_stp       : ABL single column model
   !!   abl_zdf_tke   : atmospheric vertical closure
   !!----------------------------------------------------------------------
   USE abl            ! ABL dynamics and tracers
   USE par_abl        ! ABL constants

   USE phycst         ! physical constants
   USE dom_oce, ONLY  : tmask
   USE sbc_oce, ONLY  : ght_abl, ghw_abl, e3t_abl, e3w_abl, jpka, jpkam1, rhoa
   USE sbcblk         ! use rn_efac
   USE sbc_phy        ! Catalog of functions for physical/meteorological parameters in the marine boundary layer
   !
   USE prtctl         ! Print control                    (prt_ctl routine)
   USE iom            ! IOM library
   USE in_out_manager ! I/O manager
   USE lib_mpp        ! MPP library
   USE timing         ! Timing

   IMPLICIT NONE

   PUBLIC   abl_stp   ! called by sbcabl.F90
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   ustar2, zrough
   !! * Substitutions
#  include "do_loop_substitute.h90"

CONTAINS


!===================================================================================================
   SUBROUTINE abl_stp( kt, psst, pssu, pssv, pssq,            &     ! in
              &            pu_dta, pv_dta, pt_dta, pq_dta,    &
              &            pslp_dta, pgu_dta, pgv_dta,        &
              &            pcd_du, psen, pevp, plat,          &     ! in/out
              &            pwndm, ptaui, ptauj, ptaum         &
#if defined key_si3
              &          , ptm_su, pssu_ice, pssv_ice         &
              &          , pssq_ice, pcd_du_ice, psen_ice     &
              &          , pevp_ice, pwndm_ice, pfrac_oce     &
              &          , ptaui_ice, ptauj_ice               &
#endif
              &      )
!---------------------------------------------------------------------------------------------------

      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE abl_stp ***
      !!
      !! ** Purpose :   Time-integration of the ABL model
      !!
      !! ** Method  :   Compute atmospheric variables : vertical turbulence
      !!                             + Coriolis term + newtonian relaxation
      !!
      !! ** Action  : - Advance TKE to time n+1 and compute Avm_abl, Avt_abl, PBLh
      !!              - Advance tracers to time n+1 (Euler backward scheme)
      !!              - Compute Coriolis term with forward-backward scheme (possibly with geostrophic guide)
      !!              - Advance u,v to time n+1 (Euler backward scheme)
      !!              - Apply newtonian relaxation on the dynamics and the tracers
      !!              - Finalize flux computation in psen, pevp, pwndm, ptaui, ptauj, ptaum
      !!
      !!----------------------------------------------------------------------
      INTEGER  , INTENT(in   )                   ::   kt         ! time step index
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   psst       ! sea-surface temperature [Celsius]
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pssu       ! sea-surface u (U-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pssv       ! sea-surface v (V-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pssq       ! sea-surface humidity
      REAL(wp) , INTENT(in   ), DIMENSION(:,:,:) ::   pu_dta     ! large-scale windi
      REAL(wp) , INTENT(in   ), DIMENSION(:,:,:) ::   pv_dta     ! large-scale windj
      REAL(wp) , INTENT(in   ), DIMENSION(:,:,:) ::   pgu_dta    ! large-scale hpgi
      REAL(wp) , INTENT(in   ), DIMENSION(:,:,:) ::   pgv_dta    ! large-scale hpgj
      REAL(wp) , INTENT(in   ), DIMENSION(:,:,:) ::   pt_dta     ! large-scale pot. temp.
      REAL(wp) , INTENT(in   ), DIMENSION(:,:,:) ::   pq_dta     ! large-scale humidity
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pslp_dta   ! sea-level pressure
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pcd_du     ! Cd x Du (T-point)
      REAL(wp) , INTENT(inout), DIMENSION(:,:  ) ::   psen       ! Ch x Du
      REAL(wp) , INTENT(inout), DIMENSION(:,:  ) ::   pevp       ! Ce x Du
      REAL(wp) , INTENT(inout), DIMENSION(:,:  ) ::   pwndm      ! ||uwnd - uoce||
      REAL(wp) , INTENT(  out), DIMENSION(:,:  ) ::   plat       ! latent heat flux
      REAL(wp) , INTENT(  out), DIMENSION(:,:  ) ::   ptaui      ! taux
      REAL(wp) , INTENT(  out), DIMENSION(:,:  ) ::   ptauj      ! tauy
      REAL(wp) , INTENT(  out), DIMENSION(:,:  ) ::   ptaum      ! ||tau||
      !
#if defined key_si3
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   ptm_su       ! ice-surface temperature [K]
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pssu_ice     ! ice-surface u (U-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pssv_ice     ! ice-surface v (V-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pssq_ice     ! ice-surface humidity
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pcd_du_ice   ! Cd x Du over ice (T-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   psen_ice     ! Ch x Du over ice (T-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pevp_ice     ! Ce x Du over ice (T-point)
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pwndm_ice    ! ||uwnd - uice||
      REAL(wp) , INTENT(in   ), DIMENSION(:,:  ) ::   pfrac_oce    ! ocean fraction
      REAL(wp) , INTENT(  out), DIMENSION(:,:  ) ::   ptaui_ice    ! ice-surface taux stress (T-point)
      REAL(wp) , INTENT(  out), DIMENSION(:,:  ) ::   ptauj_ice    ! ice-surface tauy stress (T-point)
#endif
      !
      REAL(wp), DIMENSION(1:jpi,1:jpj       )    ::   zwnd_i, zwnd_j
      REAL(wp), DIMENSION(1:jpi,1:jpj       )    ::   zsspt
      REAL(wp), DIMENSION(1:jpi,1:jpj       )    ::   ztabs, zpre
      REAL(wp), DIMENSION(1:jpi      ,2:jpka)    ::   zCF
      !
      REAL(wp), DIMENSION(1:jpi      ,1:jpka)    ::   z_elem_a
      REAL(wp), DIMENSION(1:jpi      ,1:jpka)    ::   z_elem_b
      REAL(wp), DIMENSION(1:jpi      ,1:jpka)    ::   z_elem_c
      !
      INTEGER             ::   ji, jj, jk, jtra, jbak               ! dummy loop indices
      REAL(wp)            ::   zztmp, zcff, ztemp, zhumi, zcff1, zztmp1, zztmp2
      REAL(wp)            ::   zcff2, zfcor, zmsk, zsig, zcffu, zcffv, zzice,zzoce
      LOGICAL             ::   SemiImp_Cor = .TRUE.
      !
      !!---------------------------------------------------------------------
      !
      IF(lwp .AND. kt == nit000) THEN                  ! control print
         WRITE(numout,*)
         WRITE(numout,*) 'abl_stp : ABL time stepping'
         WRITE(numout,*) '~~~~~~'
      ENDIF
      !
      IF( kt == nit000 ) ALLOCATE ( ustar2( 1:jpi, 1:jpj ) )
      IF( kt == nit000 ) ALLOCATE ( zrough( 1:jpi, 1:jpj ) )
      !! Compute ustar squared as Cd || Uatm-Uoce ||^2
      !! needed for surface boundary condition of TKE
      !! pwndm contains | U10m - U_oce | (see blk_oce_1 in sbcblk)
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         zzoce         = pCd_du    (ji,jj) * pwndm    (ji,jj)
#if defined key_si3
         zzice         = pCd_du_ice(ji,jj) * pwndm_ice(ji,jj)
         ustar2(ji,jj) = zzoce * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * zzice
#else
         ustar2(ji,jj) = zzoce
#endif
         !#LB: sorry Cdn_oce is gone:
         !zrough(ji,jj) = ght_abl(2) * EXP( - vkarmn / SQRT( MAX( Cdn_oce(ji,jj), 1.e-4 ) ) ) !<-- recover the value of z0 from Cdn_oce
      END_2D

      zrough(:,:) = z0_from_Cd( ght_abl(2), pCd_du(:,:) / MAX( pwndm(:,:), 0.5_wp ) ) ! #LB: z0_from_Cd is define in sbc_phy.F90...

      ! sea surface potential temperature [K]
      zsspt(:,:) = theta_exner( psst(:,:)+rt0, pslp_dta(:,:) )

      !
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  1 *** Advance TKE to time n+1 and compute Avm_abl, Avt_abl, PBLh
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

      CALL abl_zdf_tke( )                       !--> Avm_abl, Avt_abl, pblh defined on (1,jpi) x (1,jpj)

      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  2 *** Advance tracers to time n+1
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

      !-------------
      DO jj = 1, jpj    ! outer loop             !--> tq_abl computed on (1:jpi) x (1:jpj)
      !-------------
         ! Compute matrix elements for interior points
         DO jk = 3, jpkam1
            DO ji = 1, jpi   ! vector opt.
               z_elem_a( ji, jk ) = - rDt_abl * Avt_abl( ji, jj, jk-1 ) / e3w_abl( jk-1 )   ! lower-diagonal
               z_elem_c( ji, jk ) = - rDt_abl * Avt_abl( ji, jj, jk   ) / e3w_abl( jk   )   ! upper-diagonal
               z_elem_b( ji, jk ) = e3t_abl(jk) - z_elem_a( ji, jk ) - z_elem_c( ji, jk )   !       diagonal
            END DO
         END DO
         ! Boundary conditions
         DO ji = 1, jpi   ! vector opt.
            ! Neumann at the bottom
            z_elem_a( ji,    2 ) = 0._wp
            z_elem_c( ji,    2 ) = - rDt_abl * Avt_abl( ji, jj,    2 ) / e3w_abl(    2 )
            ! Homogeneous Neumann at the top
            z_elem_a( ji, jpka ) = - rDt_abl * Avt_abl( ji, jj, jpka ) / e3w_abl( jpka )
            z_elem_c( ji, jpka ) = 0._wp
            z_elem_b( ji, jpka ) = e3t_abl( jpka ) - z_elem_a( ji, jpka )
         END DO

         DO jtra = 1,jptq  ! loop on active tracers

            DO jk = 3, jpkam1
               !DO ji = 2, jpim1
               DO ji = 1,jpi  !!GS: to be checked if needed
                  tq_abl( ji, jj, jk, nt_a, jtra ) = e3t_abl(jk) * tq_abl( ji, jj, jk, nt_n, jtra )   ! initialize right-hand-side
               END DO
            END DO

            IF(jtra == jp_ta) THEN
               DO ji = 1,jpi  ! surface boundary condition for temperature
                  zztmp1 = psen(ji, jj)
                  zztmp2 = psen(ji, jj) * zsspt(ji, jj)
#if defined key_si3
                  zztmp1 = zztmp1 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * psen_ice(ji,jj)
                  zztmp2 = zztmp2 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * psen_ice(ji,jj) * ptm_su(ji,jj)
#endif
                  z_elem_b( ji,        2             ) = e3t_abl(    2 ) - z_elem_c( ji,        2             ) + rDt_abl * zztmp1
                  tq_abl  ( ji, jj,    2, nt_a, jtra ) = e3t_abl(    2 ) * tq_abl  ( ji, jj,    2, nt_n, jtra ) + rDt_abl * zztmp2
                  tq_abl  ( ji, jj, jpka, nt_a, jtra ) = e3t_abl( jpka ) * tq_abl  ( ji, jj, jpka, nt_n, jtra )
               END DO
            ELSE ! jp_qa
               DO ji = 1,jpi  ! surface boundary condition for humidity
                  zztmp1 = pevp(ji, jj)
                  zztmp2 = pevp(ji, jj) * pssq(ji, jj)
#if defined key_si3
                  zztmp1 = zztmp1 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * pevp_ice(ji,jj)
                  zztmp2 = zztmp2 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * pevp_ice(ji, jj) * pssq_ice(ji, jj)
#endif
                  z_elem_b( ji,     2                ) = e3t_abl(    2 ) - z_elem_c( ji,        2             ) + rDt_abl * zztmp1
                  tq_abl  ( ji, jj, 2   , nt_a, jtra ) = e3t_abl(    2 ) * tq_abl  ( ji, jj,    2, nt_n, jtra ) + rDt_abl * zztmp2
                  tq_abl  ( ji, jj, jpka, nt_a, jtra ) = e3t_abl( jpka ) * tq_abl  ( ji, jj, jpka, nt_n, jtra )
               END DO
            END IF
            !!
            !! Matrix inversion
            !! ----------------------------------------------------------
            DO ji = 1,jpi
               zcff                            =  1._wp / z_elem_b( ji, 2 )
               zCF   ( ji,     2             ) = - zcff * z_elem_c( ji, 2 )
               tq_abl( ji, jj, 2, nt_a, jtra ) =   zcff * tq_abl( ji, jj, 2, nt_a, jtra )
            END DO

            DO jk = 3, jpka
               DO ji = 1,jpi
                  zcff = 1._wp / ( z_elem_b( ji, jk ) + z_elem_a( ji, jk ) * zCF( ji, jk-1 ) )
                  zCF(ji,jk) = - zcff * z_elem_c( ji, jk )
                  tq_abl(ji,jj,jk,nt_a,jtra) = zcff * ( tq_abl(ji,jj,jk  ,nt_a,jtra)   &
                     &           - z_elem_a(ji, jk) *   tq_abl(ji,jj,jk-1,nt_a,jtra) )
               END DO
            END DO
            !!FL at this point we could check positivity of tq_abl(:,:,:,nt_a,jp_qa) ... test to do ...
            DO jk = jpkam1,2,-1
               DO ji = 1,jpi
                  tq_abl(ji,jj,jk,nt_a,jtra) = tq_abl(ji,jj,jk,nt_a,jtra) +    &
                     &                        zCF(ji,jk) * tq_abl(ji,jj,jk+1,nt_a,jtra)
               END DO
            END DO

         END DO   !<-- loop on tracers
         !!
      !-------------
      END DO             ! end outer loop
      !-------------

      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  3 *** Compute Coriolis term with geostrophic guide
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      IF( SemiImp_Cor ) THEN

         !-------------
         DO jk = 2, jpka    ! outer loop
         !-------------
            !
            ! Advance u_abl & v_abl to time n+1
            DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
               zcff = ( fft_abl(ji,jj) * rDt_abl )*( fft_abl(ji,jj) * rDt_abl )  ! (f dt)**2

               u_abl( ji, jj, jk, nt_a ) = e3t_abl(jk) *(                                          &
                  &        (1._wp-gamma_Cor*(1._wp-gamma_Cor)*zcff) * u_abl( ji, jj, jk, nt_n )    &
                  &                     + rDt_abl * fft_abl(ji, jj) * v_abl( ji, jj, jk, nt_n ) )  &
                  &                               / (1._wp + gamma_Cor*gamma_Cor*zcff)

               v_abl( ji, jj, jk, nt_a ) =  e3t_abl(jk) *(                                         &
                  &        (1._wp-gamma_Cor*(1._wp-gamma_Cor)*zcff) * v_abl( ji, jj, jk, nt_n )    &
                  &                     - rDt_abl * fft_abl(ji, jj) * u_abl( ji, jj, jk, nt_n ) )  &
                  &                               / (1._wp + gamma_Cor*gamma_Cor*zcff)
            END_2D
            !
         !-------------
         END DO             ! end outer loop  !<-- u_abl and v_abl are properly updated on (1:jpi) x (1:jpj)
         !-------------
         !
         IF( ln_geos_winds ) THEN
            DO jj = 1, jpj    ! outer loop
               DO jk = 1, jpka
                  DO ji = 1, jpi
                     u_abl( ji, jj, jk, nt_a ) = u_abl( ji, jj, jk, nt_a )   &
                        &                      - rDt_abl * e3t_abl(jk) * fft_abl(ji  , jj) * pgv_dta(ji  ,jj  ,jk)
                     v_abl( ji, jj, jk, nt_a ) = v_abl( ji, jj, jk, nt_a )   &
                        &                      + rDt_abl * e3t_abl(jk) * fft_abl(ji, jj  ) * pgu_dta(ji  ,jj  ,jk)
                  END DO
               END DO
            END DO
         END IF
         !
         IF( ln_hpgls_frc ) THEN
            DO jj = 1, jpj    ! outer loop
               DO jk = 1, jpka
                  DO ji = 1, jpi
                     u_abl( ji, jj, jk, nt_a ) = u_abl( ji, jj, jk, nt_a ) - rDt_abl * e3t_abl(jk) * pgu_dta(ji,jj,jk)
                     v_abl( ji, jj, jk, nt_a ) = v_abl( ji, jj, jk, nt_a ) - rDt_abl * e3t_abl(jk) * pgv_dta(ji,jj,jk)
                  ENDDO
               ENDDO
            ENDDO
         END IF

      ELSE ! SemiImp_Cor = .FALSE.

         IF( ln_geos_winds ) THEN

            !-------------
            DO jk = 2, jpka    ! outer loop
            !-------------
               !
               IF( MOD( kt, 2 ) == 0 ) then
                  ! Advance u_abl & v_abl to time n+1
                  DO jj = 1, jpj
                     DO ji = 1, jpi
                        zcff = fft_abl(ji,jj) * ( v_abl ( ji , jj  , jk, nt_n ) - pgv_dta(ji  ,jj  ,jk)  )
                        u_abl( ji, jj, jk, nt_a ) =                u_abl( ji, jj, jk, nt_n ) + rDt_abl * zcff
                        zcff = fft_abl(ji,jj) * ( u_abl ( ji , jj  , jk, nt_a ) - pgu_dta(ji  ,jj  ,jk)  )
                        v_abl( ji, jj, jk, nt_a ) = e3t_abl(jk) *( v_abl( ji, jj, jk, nt_n ) - rDt_abl * zcff )
                        u_abl( ji, jj, jk, nt_a ) = e3t_abl(jk) *  u_abl( ji, jj, jk, nt_a )
                     END DO
                  END DO
               ELSE
                  DO jj = 1, jpj
                     DO ji = 1, jpi
                        zcff = fft_abl(ji,jj) * ( u_abl ( ji , jj  , jk, nt_n ) - pgu_dta(ji  ,jj  ,jk)  )
                        v_abl( ji, jj, jk, nt_a ) =                v_abl( ji, jj, jk, nt_n ) - rDt_abl * zcff
                        zcff = fft_abl(ji,jj) * ( v_abl ( ji , jj  , jk, nt_a ) - pgv_dta(ji  ,jj  ,jk)  )
                        u_abl( ji, jj, jk, nt_a ) = e3t_abl(jk) *( u_abl( ji, jj, jk, nt_n ) + rDt_abl * zcff )
                        v_abl( ji, jj, jk, nt_a ) = e3t_abl(jk) *  v_abl( ji, jj, jk, nt_a )
                     END DO
                  END DO
               END IF
               !
            !-------------
            END DO             ! end outer loop  !<-- u_abl and v_abl are properly updated on (1:jpi) x (1:jpj)
            !-------------

         ENDIF ! ln_geos_winds

      ENDIF ! SemiImp_Cor
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  4 *** Advance u,v to time n+1
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !
      !  Vertical diffusion for u_abl
      !-------------
      DO jj = 1, jpj    ! outer loop
      !-------------

         DO jk = 3, jpkam1
            DO ji = 1, jpi
               z_elem_a( ji, jk ) = - rDt_abl * Avm_abl( ji, jj, jk-1 ) / e3w_abl( jk-1 )   ! lower-diagonal
               z_elem_c( ji, jk ) = - rDt_abl * Avm_abl( ji, jj, jk   ) / e3w_abl( jk   )   ! upper-diagonal
               z_elem_b( ji, jk ) = e3t_abl(jk) - z_elem_a( ji, jk ) - z_elem_c( ji, jk )   !       diagonal
            END DO
         END DO

         DO ji = 2, jpi   ! boundary conditions (Avm_abl and pcd_du must be available at ji=jpi)
            !++ Surface boundary condition
            z_elem_a( ji, 2 ) = 0._wp
            z_elem_c( ji, 2 ) = - rDt_abl * Avm_abl( ji, jj, 2 ) / e3w_abl( 2 )
            !
            zztmp1 = pcd_du(ji, jj)
            zztmp2 = 0.5_wp * pcd_du(ji, jj) * ( pssu(ji-1, jj) + pssu(ji, jj  ) ) * rn_vfac
#if defined key_si3
            zztmp1 = zztmp1 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * pcd_du_ice(ji, jj)
            zzice  = 0.5_wp * ( pssu_ice(ji-1, jj) + pssu_ice(ji, jj  ) ) * rn_vfac
            zztmp2 = zztmp2 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * pcd_du_ice(ji, jj) * zzice
#endif
            z_elem_b( ji,     2       ) = e3t_abl( 2 ) - z_elem_c( ji, 2 ) + rDt_abl * zztmp1
            u_abl( ji, jj,    2, nt_a ) =         u_abl( ji, jj, 2, nt_a ) + rDt_abl * zztmp2

            ! idealized test cases only
            !IF( ln_topbc_neumann ) THEN
            !   !++ Top Neumann B.C.
            !   z_elem_a( ji,     jpka ) = - rDt_abl * Avm_abl( ji, jj, jpka ) / e3w_abl( jpka )
            !   z_elem_c( ji,     jpka ) = 0._wp
            !   z_elem_b( ji,     jpka ) = e3t_abl( jpka ) - z_elem_a( ji,     jpka )
            !   !u_abl   ( ji, jj, jpka, nt_a ) = e3t_abl( jpka ) * u_abl   ( ji, jj, jpka, nt_a )
            !ELSE
               !++ Top Dirichlet B.C.
               z_elem_a( ji,     jpka )       = 0._wp
               z_elem_c( ji,     jpka )       = 0._wp
               z_elem_b( ji,     jpka )       = e3t_abl( jpka )
               u_abl   ( ji, jj, jpka, nt_a ) = e3t_abl( jpka ) * pu_dta(ji,jj,jk)
            !ENDIF

         END DO
         !!
         !! Matrix inversion
         !! ----------------------------------------------------------
         DO ji = 1, jpi  !DO ji = 2, jpi !!GS: TBI
            zcff                 =   1._wp / z_elem_b( ji, 2 )
            zCF   (ji,   2     ) =  - zcff * z_elem_c( ji,     2       )
            u_abl (ji,jj,2,nt_a) =    zcff * u_abl   ( ji, jj, 2, nt_a )
         END DO

         DO jk = 3, jpka
            DO ji = 2, jpi
               zcff = 1._wp / ( z_elem_b( ji, jk ) + z_elem_a( ji, jk ) * zCF   (ji, jk-1 ) )
               zCF(ji,jk) = - zcff * z_elem_c( ji, jk )
               u_abl(ji,jj,jk,nt_a) = zcff * ( u_abl(ji,jj,jk  ,nt_a)   &
               &          - z_elem_a(ji, jk) * u_abl(ji,jj,jk-1,nt_a) )
            END DO
         END DO

         DO jk = jpkam1,2,-1
            DO ji = 2, jpi
               u_abl(ji,jj,jk,nt_a) = u_abl(ji,jj,jk,nt_a) + zCF(ji,jk) * u_abl(ji,jj,jk+1,nt_a)
            END DO
         END DO

      !-------------
      END DO             ! end outer loop
      !-------------

      !
      !  Vertical diffusion for v_abl
      !-------------
      DO jj = 2, jpj   ! outer loop
      !-------------
         !
         DO jk = 3, jpkam1
            DO ji = 1, jpi
               z_elem_a( ji, jk ) = - rDt_abl * Avm_abl( ji, jj, jk-1 ) / e3w_abl( jk-1 )   ! lower-diagonal
               z_elem_c( ji, jk ) = - rDt_abl * Avm_abl( ji, jj, jk   ) / e3w_abl( jk   )   ! upper-diagonal
               z_elem_b( ji, jk ) = e3t_abl(jk) - z_elem_a( ji, jk ) - z_elem_c( ji, jk )   !       diagonal
            END DO
         END DO

         DO ji = 1, jpi   ! boundary conditions (Avm_abl and pcd_du must be available at jj=jpj)
            !++ Surface boundary condition
            z_elem_a( ji, 2 ) = 0._wp
            z_elem_c( ji, 2 ) = - rDt_abl * Avm_abl( ji, jj, 2 ) / e3w_abl( 2 )
            !
            zztmp1 = pcd_du(ji, jj)
            zztmp2 = 0.5_wp * pcd_du(ji, jj) * ( pssv(ji, jj) + pssv(ji, jj-1) ) * rn_vfac
#if defined key_si3
            zztmp1 = zztmp1 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * pcd_du_ice(ji, jj)
            zzice  = 0.5_wp * ( pssv_ice(ji, jj) + pssv_ice(ji, jj-1) ) * rn_vfac
            zztmp2 = zztmp2 * pfrac_oce(ji,jj) + (1._wp - pfrac_oce(ji,jj)) * pcd_du_ice(ji, jj) * zzice
#endif
            z_elem_b( ji,     2       ) = e3t_abl( 2 ) - z_elem_c( ji, 2 ) + rDt_abl * zztmp1
            v_abl( ji, jj,    2, nt_a ) =         v_abl( ji, jj, 2, nt_a ) + rDt_abl * zztmp2

            ! idealized test cases only
            !IF( ln_topbc_neumann ) THEN
            !   !++ Top Neumann B.C.
            !   z_elem_a( ji,     jpka ) = - rDt_abl * Avm_abl( ji, jj, jpka ) / e3w_abl( jpka )
            !   z_elem_c( ji,     jpka ) = 0._wp
            !   z_elem_b( ji,     jpka ) = e3t_abl( jpka ) - z_elem_a( ji,     jpka )
            !   !v_abl   ( ji, jj, jpka, nt_a ) = e3t_abl( jpka ) * v_abl   ( ji, jj, jpka, nt_a )
            !ELSE
               !++ Top Dirichlet B.C.
               z_elem_a( ji,     jpka )       = 0._wp
               z_elem_c( ji,     jpka )       = 0._wp
               z_elem_b( ji,     jpka )       = e3t_abl( jpka )
               v_abl   ( ji, jj, jpka, nt_a ) = e3t_abl( jpka ) * pv_dta(ji,jj,jk)
            !ENDIF

         END DO
         !!
         !! Matrix inversion
         !! ----------------------------------------------------------
         DO ji = 1, jpi
            zcff                 =   1._wp / z_elem_b( ji, 2 )
            zCF   (ji,   2     ) =  - zcff * z_elem_c( ji,     2       )
            v_abl (ji,jj,2,nt_a) =    zcff * v_abl   ( ji, jj, 2, nt_a )
         END DO

         DO jk = 3, jpka
            DO ji = 1, jpi
               zcff = 1._wp / ( z_elem_b( ji, jk ) + z_elem_a( ji, jk ) * zCF   (ji, jk-1 ) )
               zCF(ji,jk) = - zcff * z_elem_c( ji, jk )
               v_abl(ji,jj,jk,nt_a) = zcff * ( v_abl(ji,jj,jk  ,nt_a)   &
               &          - z_elem_a(ji, jk) * v_abl(ji,jj,jk-1,nt_a) )
            END DO
         END DO

         DO jk = jpkam1,2,-1
            DO ji = 1, jpi
               v_abl(ji,jj,jk,nt_a) = v_abl(ji,jj,jk,nt_a) + zCF(ji,jk) * v_abl(ji,jj,jk+1,nt_a)
            END DO
         END DO
         !
      !-------------
      END DO             ! end outer loop
      !-------------

      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  5 *** Apply nudging on the dynamics and the tracers
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

      IF( nn_dyn_restore > 0  ) THEN
         !-------------
         DO jk = 2, jpka    ! outer loop
         !-------------
            DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls )
               zcff1 = pblh( ji, jj )
               zsig  = ght_abl(jk) / MAX( jp_pblh_min,  MIN(  jp_pblh_max, zcff1  ) )
               zsig  =               MIN( jp_bmax    ,  MAX(         zsig, jp_bmin) )
               zmsk  = msk_abl(ji,jj)
               zcff2 = jp_alp3_dyn * zsig**3 + jp_alp2_dyn * zsig**2   &
                  &  + jp_alp1_dyn * zsig    + jp_alp0_dyn
               zcff  = (1._wp-zmsk) + zmsk * zcff2 * rDt_abl   ! zcff = 1 for masked points
                                                               ! rn_Dt = rDt_abl / nn_fsbc
               zcff  = zcff * rest_eq(ji,jj)
               u_abl( ji, jj, jk, nt_a ) = (1._wp - zcff ) *  u_abl( ji, jj, jk, nt_a )   &
                  &                               + zcff   * pu_dta( ji, jj, jk       )
               v_abl( ji, jj, jk, nt_a ) = (1._wp - zcff ) *  v_abl( ji, jj, jk, nt_a )   &
                  &                               + zcff   * pv_dta( ji, jj, jk       )
            END_2D
         !-------------
         END DO             ! end outer loop
         !-------------
      END IF

      !-------------
      DO jk = 2, jpka    ! outer loop
      !-------------
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            zcff1 = pblh( ji, jj )
            zsig  = ght_abl(jk) / MAX( jp_pblh_min,  MIN(  jp_pblh_max, zcff1  ) )
            zsig  =               MIN( jp_bmax    ,  MAX(         zsig, jp_bmin) )
            zmsk  = msk_abl(ji,jj)
            zcff2 = jp_alp3_tra * zsig**3 + jp_alp2_tra * zsig**2   &
               &  + jp_alp1_tra * zsig    + jp_alp0_tra
            zcff  = (1._wp-zmsk) + zmsk * zcff2 * rDt_abl   ! zcff = 1 for masked points
                                                            ! rn_Dt = rDt_abl / nn_fsbc
            tq_abl( ji, jj, jk, nt_a, jp_ta ) = (1._wp - zcff ) * tq_abl( ji, jj, jk, nt_a, jp_ta )   &
               &                                       + zcff   * pt_dta( ji, jj, jk )

            tq_abl( ji, jj, jk, nt_a, jp_qa ) = (1._wp - zcff ) * tq_abl( ji, jj, jk, nt_a, jp_qa )   &
               &                                       + zcff   * pq_dta( ji, jj, jk )

         END_2D
      !-------------
      END DO             ! end outer loop
      !-------------
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  6 *** MPI exchanges & IOM outputs
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !
      CALL lbc_lnk( 'ablmod',  u_abl(:,:,:,nt_a      ), 'T', -1._wp,  v_abl(:,:,:,nt_a)      , 'T', -1._wp                            )
      !CALL lbc_lnk( 'ablmod', tq_abl(:,:,:,nt_a,jp_ta), 'T',  1._wp, tq_abl(:,:,:,nt_a,jp_qa), 'T',  1._wp, kfillmode = jpfillnothing )   ! ++++ this should not be needed...
      !
#if defined key_xios
      ! 2D & first ABL level
      IF ( iom_use("pblh"   ) ) CALL iom_put (    "pblh",    pblh(:,:             ) )
      IF ( iom_use("uz1_abl") ) CALL iom_put ( "uz1_abl",   u_abl(:,:,2,nt_a      ) )
      IF ( iom_use("vz1_abl") ) CALL iom_put ( "vz1_abl",   v_abl(:,:,2,nt_a      ) )
      IF ( iom_use("tz1_abl") ) CALL iom_put ( "tz1_abl",  tq_abl(:,:,2,nt_a,jp_ta) )
      IF ( iom_use("qz1_abl") ) CALL iom_put ( "qz1_abl",  tq_abl(:,:,2,nt_a,jp_qa) )
      IF ( iom_use("uz1_dta") ) CALL iom_put ( "uz1_dta",  pu_dta(:,:,2           ) )
      IF ( iom_use("vz1_dta") ) CALL iom_put ( "vz1_dta",  pv_dta(:,:,2           ) )
      IF ( iom_use("tz1_dta") ) CALL iom_put ( "tz1_dta",  pt_dta(:,:,2           ) )
      IF ( iom_use("qz1_dta") ) CALL iom_put ( "qz1_dta",  pq_dta(:,:,2           ) )
      ! debug 2D
      IF( ln_geos_winds ) THEN
         IF ( iom_use("uz1_geo") ) CALL iom_put ( "uz1_geo", pgu_dta(:,:,2) )
         IF ( iom_use("vz1_geo") ) CALL iom_put ( "vz1_geo", pgv_dta(:,:,2) )
      END IF
      IF( ln_hpgls_frc ) THEN
         IF ( iom_use("uz1_geo") ) CALL iom_put ( "uz1_geo", -pgv_dta(:,:,2)/MAX( ABS( fft_abl(:,:)), 2.5e-5_wp)*fft_abl(:,:)/ABS(fft_abl(:,:)) )
         IF ( iom_use("vz1_geo") ) CALL iom_put ( "vz1_geo",  pgu_dta(:,:,2)/MAX( ABS( fft_abl(:,:)), 2.5e-5_wp)*fft_abl(:,:)/ABS(fft_abl(:,:)) )
      END IF
      ! 3D (all ABL levels)
      IF ( iom_use("u_abl"   ) ) CALL iom_put ( "u_abl"   ,    u_abl(:,:,2:jpka,nt_a      ) )
      IF ( iom_use("v_abl"   ) ) CALL iom_put ( "v_abl"   ,    v_abl(:,:,2:jpka,nt_a      ) )
      IF ( iom_use("t_abl"   ) ) CALL iom_put ( "t_abl"   ,   tq_abl(:,:,2:jpka,nt_a,jp_ta) )
      IF ( iom_use("q_abl"   ) ) CALL iom_put ( "q_abl"   ,   tq_abl(:,:,2:jpka,nt_a,jp_qa) )
      IF ( iom_use("tke_abl" ) ) CALL iom_put ( "tke_abl" ,  tke_abl(:,:,2:jpka,nt_a      ) )
      IF ( iom_use("avm_abl" ) ) CALL iom_put ( "avm_abl" ,  avm_abl(:,:,2:jpka           ) )
      IF ( iom_use("avt_abl" ) ) CALL iom_put ( "avt_abl" ,  avt_abl(:,:,2:jpka           ) )
      IF ( iom_use("mxlm_abl") ) CALL iom_put ( "mxlm_abl", mxlm_abl(:,:,2:jpka           ) )
      IF ( iom_use("mxld_abl") ) CALL iom_put ( "mxld_abl", mxld_abl(:,:,2:jpka           ) )
      ! debug 3D
      IF ( iom_use("u_dta") ) CALL iom_put ( "u_dta",  pu_dta(:,:,2:jpka) )
      IF ( iom_use("v_dta") ) CALL iom_put ( "v_dta",  pv_dta(:,:,2:jpka) )
      IF ( iom_use("t_dta") ) CALL iom_put ( "t_dta",  pt_dta(:,:,2:jpka) )
      IF ( iom_use("q_dta") ) CALL iom_put ( "q_dta",  pq_dta(:,:,2:jpka) )
      IF( ln_geos_winds ) THEN
         IF ( iom_use("u_geo") ) CALL iom_put ( "u_geo", pgu_dta(:,:,2:jpka) )
         IF ( iom_use("v_geo") ) CALL iom_put ( "v_geo", pgv_dta(:,:,2:jpka) )
      END IF
      IF( ln_hpgls_frc ) THEN
         IF ( iom_use("u_geo") ) CALL iom_put ( "u_geo", -pgv_dta(:,:,2:jpka)/MAX( ABS( RESHAPE( fft_abl(:,:), (/jpi,jpj,jpka-1/), fft_abl(:,:))), 2.5e-5_wp) * RESHAPE( fft_abl(:,:)/ABS(fft_abl(:,:)), (/jpi,jpj,jpka-1/), fft_abl(:,:)/ABS(fft_abl(:,:))) )
         IF ( iom_use("v_geo") ) CALL iom_put ( "v_geo",  pgu_dta(:,:,2:jpka)/MAX( ABS( RESHAPE( fft_abl(:,:), (/jpi,jpj,jpka-1/), fft_abl(:,:))), 2.5e-5_wp) * RESHAPE( fft_abl(:,:)/ABS(fft_abl(:,:)), (/jpi,jpj,jpka-1/), fft_abl(:,:)/ABS(fft_abl(:,:))) )
      END IF
#endif
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  7 *** Finalize flux computation
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         ztemp          = tq_abl( ji, jj, 2, nt_a, jp_ta )
         zhumi          = tq_abl( ji, jj, 2, nt_a, jp_qa )
         zpre( ji, jj ) = pres_temp( zhumi, pslp_dta(ji,jj), ght_abl(2), ptpot=ztemp, pta=ztabs( ji, jj ) )
         zcff           = rho_air( ztabs( ji, jj ), zhumi, zpre( ji, jj ) )
         psen( ji, jj ) =    - cp_air(zhumi) * zcff * psen(ji,jj) * ( zsspt(ji,jj) - ztemp )         !GS: negative sign to respect aerobulk convention
         pevp( ji, jj ) = rn_efac*MAX( 0._wp,  zcff * pevp(ji,jj) * ( pssq(ji,jj)  - zhumi ) )
         plat( ji, jj ) = - L_vap( psst(ji,jj) ) * pevp( ji, jj )
         rhoa( ji, jj ) = zcff
      END_2D

      DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls )
         zwnd_i(ji,jj) = u_abl(ji  ,jj,2,nt_a) - 0.5_wp * ( pssu(ji  ,jj) + pssu(ji-1,jj) ) * rn_vfac
         zwnd_j(ji,jj) = v_abl(ji,jj  ,2,nt_a) - 0.5_wp * ( pssv(ji,jj  ) + pssv(ji,jj-1) ) * rn_vfac
      END_2D
      !
      CALL lbc_lnk( 'ablmod', zwnd_i(:,:) , 'T', -1.0_wp, zwnd_j(:,:) , 'T', -1.0_wp )
      !
      ! ... scalar wind ( = | U10m - U_oce | ) at T-point (masked)
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         zcff          = SQRT(  zwnd_i(ji,jj) * zwnd_i(ji,jj)   &
            &                 + zwnd_j(ji,jj) * zwnd_j(ji,jj) )   ! * msk_abl(ji,jj)
         zztmp         = rhoa(ji,jj) * pcd_du(ji,jj)

         pwndm (ji,jj) =         zcff
         ptaum (ji,jj) = zztmp * zcff
         zwnd_i(ji,jj) = zztmp * zwnd_i(ji,jj)
         zwnd_j(ji,jj) = zztmp * zwnd_j(ji,jj)
      END_2D
      ! ... utau, vtau at T-points
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         ptaui(ji,jj) = zwnd_i(ji,jj) * msk_abl(ji,jj) !!clem tau: check
         ptauj(ji,jj) = zwnd_j(ji,jj) * msk_abl(ji,jj) !!clem tau: check
      END_2D

      CALL iom_put( "taum_oce", ptaum )

      IF(sn_cfctl%l_prtctl) THEN
         CALL prt_ctl( tab2d_1=ptaui , clinfo1=' abl_stp: utau   : ', mask1=tmask,   &
            &          tab2d_2=ptauj , clinfo2='          vtau   : ', mask2=tmask )
         CALL prt_ctl( tab2d_1=pwndm , clinfo1=' abl_stp: wndm   : ' )
      ENDIF

#if defined key_si3
      ! ------------------------------------------------------------ !
      !    Wind stress relative to the moving ice ( U10m - U_ice )   !
      ! ------------------------------------------------------------ !
      !DO_2D( 0, 0, 0, 0 )
      !   ptaui_ice(ji,jj) = 0.5_wp * ( rhoa(ji+1,jj) * pCd_du_ice(ji+1,jj) + rhoa(ji,jj) * pCd_du_ice(ji,jj)      )   &
      !      &                      * ( 0.5_wp * ( u_abl(ji+1,jj,2,nt_a) + u_abl(ji,jj,2,nt_a) ) - pssu_ice(ji,jj) )
      !   ptauj_ice(ji,jj) = 0.5_wp * ( rhoa(ji,jj+1) * pCd_du_ice(ji,jj+1) + rhoa(ji,jj) * pCd_du_ice(ji,jj)      )   &
      !      &                      * ( 0.5_wp * ( v_abl(ji,jj+1,2,nt_a) + v_abl(ji,jj,2,nt_a) ) - pssv_ice(ji,jj) )
      !END_2D
      !CALL lbc_lnk( 'ablmod', ptaui_ice, 'U', -1.0_wp, ptauj_ice, 'V', -1.0_wp )
      !!
      !IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab2d_1=ptaui_ice  , clinfo1=' abl_stp: putaui : '   &
      !   &                                , tab2d_2=ptauj_ice  , clinfo2='          pvtaui : ' )

      ! ------------------------------------------------------------ !
      !    Wind stress relative to the moving ice ( U10m - U_ice )   !
      ! ------------------------------------------------------------ !
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         ptaui_ice(ji,jj) = rhoa(ji,jj) * pCd_du_ice(ji,jj) * ( u_abl(ji,jj,2,nt_a) - pssu_ice(ji,jj) * rn_vfac )
         ptauj_ice(ji,jj) = rhoa(ji,jj) * pCd_du_ice(ji,jj) * ( v_abl(ji,jj,2,nt_a) - pssv_ice(ji,jj) * rn_vfac )
      END_2D
      !
      IF(sn_cfctl%l_prtctl) THEN
         CALL prt_ctl( tab2d_1=ptaui_ice , clinfo1=' abl_stp: utau_ice : ', mask1=tmask,   &
            &          tab2d_2=ptauj_ice , clinfo2='          vtau_ice : ', mask2=tmask )
      END IF
#endif
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  8 *** Swap time indices for the next timestep
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      nt_n = 1 + MOD( nt_n, 2)
      nt_a = 1 + MOD( nt_a, 2)
      !
!---------------------------------------------------------------------------------------------------
   END SUBROUTINE abl_stp
!===================================================================================================




!===================================================================================================
   SUBROUTINE abl_zdf_tke( )
!---------------------------------------------------------------------------------------------------

      !!----------------------------------------------------------------------
      !!                   ***  ROUTINE abl_zdf_tke  ***
      !!
      !! ** Purpose :   Time-step Turbulente Kinetic Energy (TKE) equation
      !!
      !! ** Method  : - source term due to shear
      !!              - source term due to stratification
      !!              - resolution of the TKE equation by inverting
      !!                a tridiagonal linear system
      !!
      !! ** Action  : - en : now turbulent kinetic energy)
      !!              - avmu, avmv : production of TKE by shear at u and v-points
      !!                (= Kz dz[Ub] * dz[Un] )
      !! ---------------------------------------------------------------------
      INTEGER                                 ::   ji, jj, jk, tind, jbak, jkup, jkdwn
      INTEGER, DIMENSION(1:jpi          )     ::   ikbl
      REAL(wp)                                ::   zcff, zcff2, ztken, zesrf, zetop, ziRic, ztv
      REAL(wp)                                ::   zdU , zdV , zcff1, zshear, zbuoy, zsig, zustar2
      REAL(wp)                                ::   zdU2, zdV2, zbuoy1, zbuoy2    ! zbuoy for BL89
      REAL(wp)                                ::   zwndi, zwndj
      REAL(wp), DIMENSION(1:jpi,      1:jpka) ::   zsh2
      REAL(wp), DIMENSION(1:jpi,1:jpj,1:jpka) ::   zbn2
      REAL(wp), DIMENSION(1:jpi,1:jpka  )     ::   zFC, zRH, zCF
      REAL(wp), DIMENSION(1:jpi,1:jpka  )     ::   z_elem_a
      REAL(wp), DIMENSION(1:jpi,1:jpka  )     ::   z_elem_b
      REAL(wp), DIMENSION(1:jpi,1:jpka  )     ::   z_elem_c
      LOGICAL                                 ::   ln_Patankar    = .FALSE.
      LOGICAL                                 ::   ln_dumpvar     = .FALSE.
      LOGICAL , DIMENSION(1:jpi         )     ::   ln_foundl
      !
      tind  = nt_n
      ziRic = 1._wp / rn_Ric
      ! if tind = nt_a it is required to apply lbc_lnk on u_abl(nt_a) and v_abl(nt_a)
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  Advance TKE equation to time n+1
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !-------------
      DO jj = 1, jpj    ! outer loop
      !-------------
         !
         ! Compute vertical shear
         DO jk = 2, jpkam1
            DO ji = 1, jpi
               zcff        = 1.0_wp / e3w_abl( jk )**2
               zdU         = zcff* Avm_abl(ji,jj,jk) * (u_abl( ji, jj, jk+1, tind)-u_abl( ji, jj, jk  , tind) )**2
               zdV         = zcff* Avm_abl(ji,jj,jk) * (v_abl( ji, jj, jk+1, tind)-v_abl( ji, jj, jk  , tind) )**2
               zsh2(ji,jk) = zdU+zdV   !<-- zsh2 = Km ( ( du/dz )^2 + ( dv/dz )^2 )
            END DO
         END DO
         !
         ! Compute brunt-vaisala frequency
         DO jk = 2, jpkam1
            DO ji = 1,jpi
               zcff  = grav * itvref / e3w_abl( jk )
               zcff1 =  tq_abl( ji, jj, jk+1, tind, jp_ta) - tq_abl( ji, jj, jk  , tind, jp_ta)
               zcff2 =  tq_abl( ji, jj, jk+1, tind, jp_ta) * tq_abl( ji, jj, jk+1, tind, jp_qa)        &
                  &   - tq_abl( ji, jj, jk  , tind, jp_ta) * tq_abl( ji, jj, jk  , tind, jp_qa)
               zbn2(ji,jj,jk) = zcff * ( zcff1 + rctv0 * zcff2 )  !<-- zbn2 defined on (2,jpi)
            END DO
         END DO
         !
         ! Terms for the tridiagonal problem
         DO jk = 2, jpkam1
            DO ji = 1, jpi
               zshear      = zsh2( ji, jk )                           ! zsh2 is already multiplied by Avm_abl at this point
               zsh2(ji,jk) = zsh2( ji, jk ) / Avm_abl( ji, jj, jk )   ! reformulate zsh2 as a 'true' vertical shear for PBLH computation
               zbuoy       = - Avt_abl( ji, jj, jk ) * zbn2( ji, jj, jk )

               z_elem_a( ji, jk ) = - 0.5_wp * rDt_abl * rn_Sch * ( Avm_abl( ji, jj, jk ) + Avm_abl( ji, jj, jk-1 ) ) / e3t_abl( jk   ) ! lower-diagonal
               z_elem_c( ji, jk ) = - 0.5_wp * rDt_abl * rn_Sch * ( Avm_abl( ji, jj, jk ) + Avm_abl( ji, jj, jk+1 ) ) / e3t_abl( jk+1 ) ! upper-diagonal
               IF( (zbuoy + zshear) .gt. 0.) THEN    ! Patankar trick to avoid negative values of TKE
                  z_elem_b( ji, jk ) = e3w_abl(jk) - z_elem_a( ji, jk ) - z_elem_c( ji, jk )   &
                     &               + e3w_abl(jk) * rDt_abl * rn_Ceps * sqrt(tke_abl( ji, jj, jk, nt_n )) / mxld_abl(ji,jj,jk)    ! diagonal
                  tke_abl( ji, jj, jk, nt_a ) = e3w_abl(jk) * ( tke_abl( ji, jj, jk, nt_n ) + rDt_abl * ( zbuoy + zshear ) )       ! right-hand-side
               ELSE
                  z_elem_b( ji, jk ) = e3w_abl(jk) - z_elem_a( ji, jk ) - z_elem_c( ji, jk )   &
                     &               + e3w_abl(jk) * rDt_abl * rn_Ceps * sqrt(tke_abl( ji, jj, jk, nt_n )) / mxld_abl(ji,jj,jk)   &  ! diagonal
                     &               - e3w_abl(jk) * rDt_abl * zbuoy
                  tke_abl( ji, jj, jk, nt_a ) = e3w_abl(jk) * ( tke_abl( ji, jj, jk, nt_n ) + rDt_abl *  zshear )                    ! right-hand-side
               END IF
            END DO
         END DO

         DO ji = 1,jpi    ! vector opt.
            zesrf = MAX( rn_Esfc * ustar2(ji,jj), tke_min )
            zetop = tke_min

            z_elem_a ( ji,     1       ) = 0._wp
            z_elem_c ( ji,     1       ) = 0._wp
            z_elem_b ( ji,     1       ) = 1._wp
            tke_abl  ( ji, jj, 1, nt_a ) = zesrf
            !++ Top Neumann B.C.
            !z_elem_a ( ji,     jpka       ) = - 0.5 * rDt_abl * rn_Sch * (Avm_abl(ji,jj, jpka-1 )+Avm_abl(ji,jj, jpka ))  / e3t_abl( jpka )
            !z_elem_c ( ji,     jpka       ) = 0._wp
            !z_elem_b ( ji,     jpka       ) = e3w_abl(jpka) - z_elem_a(ji, jpka )
            !tke_abl  ( ji, jj, jpka, nt_a ) = e3w_abl(jpka) * tke_abl( ji,jj, jpka, nt_n )

            !++ Top Dirichlet B.C.
            z_elem_a ( ji,     jpka       ) = 0._wp
            z_elem_c ( ji,     jpka       ) = 0._wp
            z_elem_b ( ji,     jpka       ) = 1._wp
            tke_abl  ( ji, jj, jpka, nt_a ) = zetop

            zbn2 ( ji, jj,    1 ) = zbn2 ( ji, jj,      2 )
            zsh2 ( ji,        1 ) = zsh2 ( ji,          2 )
            zbn2 ( ji, jj, jpka ) = zbn2 ( ji, jj, jpkam1 )
            zsh2 ( ji,     jpka ) = zsh2 ( ji    , jpkam1 )
         END DO
         !!
         !! Matrix inversion
         !! ----------------------------------------------------------
         DO ji = 1,jpi
            zcff                  =  1._wp / z_elem_b( ji, 1 )
            zCF    (ji,   1     ) = - zcff * z_elem_c( ji,     1       )
            tke_abl(ji,jj,1,nt_a) =   zcff * tke_abl ( ji, jj, 1, nt_a )
         END DO

         DO jk = 2, jpka
            DO ji = 1,jpi
               zcff = 1._wp / ( z_elem_b( ji, jk ) + z_elem_a( ji, jk ) * zCF(ji, jk-1 ) )
               zCF(ji,jk) = - zcff * z_elem_c( ji, jk )
               tke_abl(ji,jj,jk,nt_a) =   zcff * ( tke_abl(ji,jj,jk  ,nt_a)   &
               &          - z_elem_a(ji, jk) * tke_abl(ji,jj,jk-1,nt_a) )
            END DO
         END DO

         DO jk = jpkam1,1,-1
            DO ji = 1,jpi
               tke_abl(ji,jj,jk,nt_a) = tke_abl(ji,jj,jk,nt_a) + zCF(ji,jk) * tke_abl(ji,jj,jk+1,nt_a)
            END DO
         END DO

!!FL should not be needed because of Patankar procedure
         tke_abl(2:jpi,jj,1:jpka,nt_a) = MAX( tke_abl(2:jpi,jj,1:jpka,nt_a), tke_min )

         !!
         !! Diagnose PBL height
         !! ----------------------------------------------------------


         !
         ! arrays zRH, zFC and zCF are available at this point
         ! and zFC(:, 1 ) = 0.
         ! diagnose PBL height based on zsh2 and zbn2
         zFC (  :  ,1) = 0._wp
         ikbl( 1:jpi ) = 0

         DO jk = 2,jpka
            DO ji = 1, jpi
               zcff  = ghw_abl( jk-1 )
               zcff1 = zcff / ( zcff + rn_epssfc * pblh ( ji, jj ) )
               zcff  = ghw_abl( jk   )
               zcff2 = zcff / ( zcff + rn_epssfc * pblh ( ji, jj ) )
               zFC( ji, jk ) = zFC( ji, jk-1) + 0.5_wp * e3t_abl( jk )*(                 &
                               zcff2 * ( zsh2( ji, jk  ) - ziRic * zbn2( ji, jj, jk   ) &
                           - rn_Cek  * ( fft_abl( ji, jj  ) * fft_abl( ji, jj ) ) ) &
                             + zcff1 * ( zsh2( ji, jk-1) - ziRic * zbn2( ji, jj, jk-1 ) &
                           - rn_Cek  * ( fft_abl( ji, jj  ) * fft_abl( ji, jj ) ) ) &
                           &                                                 )
               IF( ikbl(ji) == 0 .and. zFC( ji, jk ).lt.0._wp ) ikbl(ji)=jk
            END DO
         END DO
         !
         ! finalize the computation of the PBL height
         DO ji = 1, jpi
            jk = ikbl(ji)
            IF( jk > 2 ) THEN ! linear interpolation to get subgrid value of pblh
               pblh( ji, jj ) =  (  ghw_abl( jk-1 ) * zFC( ji, jk   )       &
                  &              -  ghw_abl( jk   ) * zFC( ji, jk-1 )       &
                  &              ) / ( zFC( ji, jk   ) - zFC( ji, jk-1 ) )
            ELSE IF( jk==2 ) THEN
               pblh( ji, jj ) = ghw_abl(2   )
            ELSE
               pblh( ji, jj ) = ghw_abl(jpka)
            END IF
         END DO
      !-------------
      END DO
      !-------------
      !
      ! Optional : could add pblh smoothing if pblh is noisy horizontally ...
      IF(ln_smth_pblh) THEN
         CALL lbc_lnk( 'ablmod', pblh, 'T', 1.0_wp) !, kfillmode = jpfillnothing)
         CALL smooth_pblh( pblh, msk_abl )
         CALL lbc_lnk( 'ablmod', pblh, 'T', 1.0_wp) !, kfillmode = jpfillnothing)
      ENDIF
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  Diagnostic mixing length computation
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !
      SELECT CASE ( nn_amxl )
      !
      CASE ( 0 )           ! Deardroff 80 length-scale bounded by the distance to surface and bottom
#   define zlup zRH
#   define zldw zFC
         DO jj = 1, jpj     ! outer loop
            !
            DO ji = 1, jpi
               mxld_abl( ji, jj,    1 ) = mxl_min
               mxld_abl( ji, jj, jpka ) = mxl_min
               mxlm_abl( ji, jj,    1 ) = mxl_min
               mxlm_abl( ji, jj, jpka ) = mxl_min
               zldw    ( ji,        1 ) = zrough(ji,jj) * rn_Lsfc
               zlup    ( ji,     jpka ) = mxl_min
            END DO
            !
            DO jk = 2, jpkam1
               DO ji = 1, jpi
                  zbuoy = MAX( zbn2(ji, jj, jk), rsmall )
                  mxlm_abl( ji, jj, jk ) = MAX( mxl_min,  &
                     &               SQRT( 2._wp * tke_abl( ji, jj, jk, nt_a ) / zbuoy ) )
               END DO
            END DO
            !
            ! Limit mxl
            DO jk = jpkam1,1,-1
               DO ji = 1, jpi
                  zlup(ji,jk) = MIN( zlup(ji,jk+1) + (ghw_abl(jk+1)-ghw_abl(jk)) , mxlm_abl(ji, jj, jk) )
               END DO
            END DO
            !
            DO jk = 2, jpka
               DO ji = 1, jpi
                  zldw(ji,jk) = MIN( zldw(ji,jk-1) + (ghw_abl(jk)-ghw_abl(jk-1)) , mxlm_abl(ji, jj, jk) )
               END DO
            END DO
            !
!            DO jk = 1, jpka
!               DO ji = 1, jpi
!                  mxlm_abl( ji, jj, jk ) = SQRT( zldw( ji, jk ) * zlup( ji, jk ) )
!                  mxld_abl( ji, jj, jk ) = MIN ( zldw( ji, jk ),  zlup( ji, jk ) )
!               END DO
!            END DO
            !
            DO jk = 1, jpka
               DO ji = 1, jpi
!                  zcff = 2.*SQRT(2.)*(  zldw( ji, jk )**(-2._wp/3._wp) + zlup( ji, jk )**(-2._wp/3._wp)  )**(-3._wp/2._wp)
                  zcff = SQRT( zldw( ji, jk ) * zlup( ji, jk ) )
                  mxlm_abl( ji, jj, jk ) = MAX( zcff, mxl_min )
                  mxld_abl( ji, jj, jk ) = MAX( MIN( zldw( ji, jk ),  zlup( ji, jk ) ), mxl_min )
               END DO
            END DO
            !
         END DO
#   undef zlup
#   undef zldw
         !
         !
      CASE ( 1 )           ! Modified Deardroff 80 length-scale bounded by the distance to surface and bottom
#   define zlup zRH
#   define zldw zFC
         DO jj = 1, jpj     ! outer loop
            !
            DO jk = 2, jpkam1
               DO ji = 1,jpi
                              zcff        = 1.0_wp / e3w_abl( jk )**2
                  zdU         = zcff* (u_abl( ji, jj, jk+1, tind)-u_abl( ji, jj, jk  , tind) )**2
                  zdV         = zcff* (v_abl( ji, jj, jk+1, tind)-v_abl( ji, jj, jk  , tind) )**2
                  zsh2(ji,jk) = SQRT(zdU+zdV)   !<-- zsh2 = SQRT ( ( du/dz )^2 + ( dv/dz )^2 )
                           ENDDO
                        ENDDO
                        !
            DO ji = 1, jpi
               zcff                      = zrough(ji,jj) * rn_Lsfc
               mxld_abl ( ji, jj,    1 ) = zcff
               mxld_abl ( ji, jj, jpka ) = mxl_min
               mxlm_abl ( ji, jj,    1 ) = zcff
               mxlm_abl ( ji, jj, jpka ) = mxl_min
               zldw     ( ji,        1 ) = zcff
               zlup     ( ji,     jpka ) = mxl_min
            END DO
            !
            DO jk = 2, jpkam1
               DO ji = 1, jpi
                  zbuoy    = MAX( zbn2(ji, jj, jk), rsmall )
                  zcff     = 2.0_wp*SQRT(tke_abl( ji, jj, jk, nt_a )) / ( rn_Rod*zsh2(ji,jk) &
                                &             + SQRT(rn_Rod*rn_Rod*zsh2(ji,jk)*zsh2(ji,jk)+2.0_wp*zbuoy ) )
                                  mxlm_abl( ji, jj, jk ) = MAX( mxl_min, zcff )
               END DO
            END DO
            !
            ! Limit mxl
            DO jk = jpkam1,1,-1
               DO ji = 1, jpi
                  zlup(ji,jk) = MIN( zlup(ji,jk+1) + (ghw_abl(jk+1)-ghw_abl(jk)) , mxlm_abl(ji, jj, jk) )
               END DO
            END DO
            !
            DO jk = 2, jpka
               DO ji = 1, jpi
                  zldw(ji,jk) = MIN( zldw(ji,jk-1) + (ghw_abl(jk)-ghw_abl(jk-1)) , mxlm_abl(ji, jj, jk) )
               END DO
            END DO
            !
            DO jk = 1, jpka
               DO ji = 1, jpi
                  !mxlm_abl( ji, jj, jk ) = SQRT( zldw( ji, jk ) * zlup( ji, jk ) )
                  !zcff = 2.*SQRT(2.)*(  zldw( ji, jk )**(-2._wp/3._wp) + zlup( ji, jk )**(-2._wp/3._wp)  )**(-3._wp/2._wp)
                  zcff = SQRT( zldw( ji, jk ) * zlup( ji, jk ) )
                  mxlm_abl( ji, jj, jk ) = MAX( zcff, mxl_min )
                  !mxld_abl( ji, jj, jk ) = MIN( zldw( ji, jk ), zlup( ji, jk ) )
                  mxld_abl( ji, jj, jk ) = MAX( MIN( zldw( ji, jk ),  zlup( ji, jk ) ), mxl_min )
               END DO
            END DO
 !
         END DO
#   undef zlup
#   undef zldw
         !
      CASE ( 2 )           ! Bougeault & Lacarrere 89 length-scale
         !
#   define zlup zRH
#   define zldw zFC
! zCF is used for matrix inversion
!
       DO jj = 1, jpj      ! outer loop

         DO ji = 1, jpi
            zcff             = zrough(ji,jj) * rn_Lsfc
            zlup( ji,    1 ) = zcff
            zldw( ji,    1 ) = zcff
            zlup( ji, jpka ) = mxl_min
            zldw( ji, jpka ) = mxl_min
         END DO

         DO jk = 2,jpka-1
            DO ji = 1, jpi
               zlup(ji,jk) = ghw_abl(jpka) - ghw_abl(jk)
               zldw(ji,jk) = ghw_abl(jk  ) - ghw_abl( 1)
            END DO
         END DO
         !!
         !! BL89 search for lup
         !! ----------------------------------------------------------
         DO jk=2,jpka-1
            !
            DO ji = 1, jpi
               zCF(ji,1:jpka) = 0._wp
               zCF(ji,  jk  ) = - tke_abl( ji, jj, jk, nt_a )
               ln_foundl(ji ) = .false.
            END DO
            !
            DO jkup=jk+1,jpka-1
               DO ji = 1, jpi
                  zbuoy1 = MAX( zbn2(ji,jj,jkup  ), rsmall )
                  zbuoy2 = MAX( zbn2(ji,jj,jkup-1), rsmall )
                  zCF (ji,jkup) = zCF (ji,jkup-1) + 0.5_wp * e3t_abl(jkup) * &
                     &               ( zbuoy1*(ghw_abl(jkup  )-ghw_abl(jk)) &
                     &               + zbuoy2*(ghw_abl(jkup-1)-ghw_abl(jk)) )
                  IF( zCF (ji,jkup) * zCF (ji,jkup-1) .le. 0._wp .and. .not. ln_foundl(ji) ) THEN
                     zcff2 = ghw_abl(jkup  ) - ghw_abl(jk)
                     zcff1 = ghw_abl(jkup-1) - ghw_abl(jk)
                     zcff  = ( zcff1 * zCF(ji,jkup) - zcff2 * zCF(ji,jkup-1) ) /   &
                        &    (         zCF(ji,jkup) -         zCF(ji,jkup-1) )
                     zlup(ji,jk) = zcff
                     zlup(ji,jk) = ghw_abl(jkup  ) - ghw_abl(jk)
                     ln_foundl(ji) = .true.
                  END IF
               END DO
            END DO
            !
         END DO
         !!
         !! BL89 search for ldwn
         !! ----------------------------------------------------------
         DO jk=2,jpka-1
            !
            DO ji = 1, jpi
               zCF(ji,1:jpka) = 0._wp
               zCF(ji,  jk  ) = - tke_abl( ji, jj, jk, nt_a )
               ln_foundl(ji ) = .false.
            END DO
            !
            DO jkdwn=jk-1,1,-1
               DO ji = 1, jpi
                  zbuoy1 = MAX( zbn2(ji,jj,jkdwn+1), rsmall )
                  zbuoy2 = MAX( zbn2(ji,jj,jkdwn  ), rsmall )
                  zCF (ji,jkdwn) = zCF (ji,jkdwn+1) + 0.5_wp * e3t_abl(jkdwn+1)  &
                     &               * ( zbuoy1*(ghw_abl(jk)-ghw_abl(jkdwn+1)) &
                                       + zbuoy2*(ghw_abl(jk)-ghw_abl(jkdwn  )) )
                  IF(zCF (ji,jkdwn) * zCF (ji,jkdwn+1) .le. 0._wp  .and. .not. ln_foundl(ji) ) THEN
                     zcff2 = ghw_abl(jk) - ghw_abl(jkdwn+1)
                     zcff1 = ghw_abl(jk) - ghw_abl(jkdwn  )
                     zcff  = ( zcff1 * zCF(ji,jkdwn+1) - zcff2 * zCF(ji,jkdwn) ) /   &
                        &    (         zCF(ji,jkdwn+1) -         zCF(ji,jkdwn) )
                     zldw(ji,jk) = zcff
                     zldw(ji,jk) = ghw_abl(jk) - ghw_abl(jkdwn  )
                     ln_foundl(ji) = .true.
                  END IF
               END DO
            END DO
            !
         END DO

         DO jk = 1, jpka
            DO ji = 1, jpi
               !zcff = 2.*SQRT(2.)*(  zldw( ji, jk )**(-2._wp/3._wp) + zlup( ji, jk )**(-2._wp/3._wp)  )**(-3._wp/2._wp)
               zcff = SQRT( zldw( ji, jk ) * zlup( ji, jk ) )
               mxlm_abl( ji, jj, jk ) = MAX( zcff, mxl_min )
               mxld_abl( ji, jj, jk ) = MAX( MIN( zldw( ji, jk ),  zlup( ji, jk ) ), mxl_min )
            END DO
         END DO

      END DO
#   undef zlup
#   undef zldw
         !
     CASE ( 3 )           ! Bougeault & Lacarrere 89 length-scale
         !
#   define zlup zRH
#   define zldw zFC
! zCF is used for matrix inversion
!
       DO jj = 1, jpj      ! outer loop
          !
          DO jk = 2, jpkam1
             DO ji = 1,jpi
                            zcff        = 1.0_wp / e3w_abl( jk )**2
                zdU         = zcff* (u_abl( ji, jj, jk+1, tind)-u_abl( ji, jj, jk  , tind) )**2
                zdV         = zcff* (v_abl( ji, jj, jk+1, tind)-v_abl( ji, jj, jk  , tind) )**2
                zsh2(ji,jk) = SQRT(zdU+zdV)   !<-- zsh2 = SQRT ( ( du/dz )^2 + ( dv/dz )^2 )
                         ENDDO
                  ENDDO
          zsh2(:,      1) = zsh2( :,      2)
          zsh2(:,   jpka) = zsh2( :, jpkam1)

                 DO ji = 1, jpi
            zcff              = zrough(ji,jj) * rn_Lsfc
                        zlup( ji,    1 )  = zcff
            zldw( ji,    1 )  = zcff
            zlup( ji, jpka ) = mxl_min
            zldw( ji, jpka ) = mxl_min
         END DO

         DO jk = 2,jpka-1
            DO ji = 1, jpi
               zlup(ji,jk) = ghw_abl(jpka) - ghw_abl(jk)
               zldw(ji,jk) = ghw_abl(jk  ) - ghw_abl( 1)
            END DO
         END DO
         !!
         !! BL89 search for lup
         !! ----------------------------------------------------------
         DO jk=2,jpka-1
            !
            DO ji = 1, jpi
               zCF(ji,1:jpka) = 0._wp
               zCF(ji,  jk  ) = - tke_abl( ji, jj, jk, nt_a )
               ln_foundl(ji ) = .false.
            END DO
            !
            DO jkup=jk+1,jpka-1
               DO ji = 1, jpi
                  zbuoy1             = MAX( zbn2(ji,jj,jkup  ), rsmall )
                  zbuoy2             = MAX( zbn2(ji,jj,jkup-1), rsmall )
                  zCF (ji,jkup) = zCF (ji,jkup-1) + 0.5_wp * e3t_abl(jkup) *                 &
                     &               ( zbuoy1*(ghw_abl(jkup  )-ghw_abl(jk))      &
                     &               + zbuoy2*(ghw_abl(jkup-1)-ghw_abl(jk)) )    &
                                         &                            + 0.5_wp * e3t_abl(jkup) * rn_Rod *        &
                                         &               ( SQRT(tke_abl( ji, jj, jkup  , nt_a ))*zsh2(ji,jkup  ) &
                                         &               + SQRT(tke_abl( ji, jj, jkup-1, nt_a ))*zsh2(ji,jkup-1) )

                  IF( zCF (ji,jkup) * zCF (ji,jkup-1) .le. 0._wp .and. .not. ln_foundl(ji) ) THEN
                     zcff2 = ghw_abl(jkup  ) - ghw_abl(jk)
                     zcff1 = ghw_abl(jkup-1) - ghw_abl(jk)
                     zcff  = ( zcff1 * zCF(ji,jkup) - zcff2 * zCF(ji,jkup-1) ) /   &
                        &    (         zCF(ji,jkup) -         zCF(ji,jkup-1) )
                     zlup(ji,jk) = zcff
                     zlup(ji,jk) = ghw_abl(jkup  ) - ghw_abl(jk)
                     ln_foundl(ji) = .true.
                  END IF
               END DO
            END DO
            !
         END DO
         !!
         !! BL89 search for ldwn
         !! ----------------------------------------------------------
         DO jk=2,jpka-1
            !
            DO ji = 1, jpi
               zCF(ji,1:jpka) = 0._wp
               zCF(ji,  jk  ) = - tke_abl( ji, jj, jk, nt_a )
               ln_foundl(ji ) = .false.
            END DO
            !
            DO jkdwn=jk-1,1,-1
               DO ji = 1, jpi
                  zbuoy1             = MAX( zbn2(ji,jj,jkdwn+1), rsmall )
                  zbuoy2             = MAX( zbn2(ji,jj,jkdwn  ), rsmall )
                  zCF (ji,jkdwn) = zCF (ji,jkdwn+1) + 0.5_wp * e3t_abl(jkdwn+1)  &
                     &               * (zbuoy1*(ghw_abl(jk)-ghw_abl(jkdwn+1))    &
                     &                 +zbuoy2*(ghw_abl(jk)-ghw_abl(jkdwn  )) )  &
                                         &                            + 0.5_wp * e3t_abl(jkup) * rn_Rod *          &
                                         &               ( SQRT(tke_abl( ji, jj, jkdwn+1, nt_a ))*zsh2(ji,jkdwn+1) &
                                         &               + SQRT(tke_abl( ji, jj, jkdwn  , nt_a ))*zsh2(ji,jkdwn  ) )

                  IF(zCF (ji,jkdwn) * zCF (ji,jkdwn+1) .le. 0._wp  .and. .not. ln_foundl(ji) ) THEN
                     zcff2 = ghw_abl(jk) - ghw_abl(jkdwn+1)
                     zcff1 = ghw_abl(jk) - ghw_abl(jkdwn  )
                     zcff  = ( zcff1 * zCF(ji,jkdwn+1) - zcff2 * zCF(ji,jkdwn) ) /   &
                        &    (         zCF(ji,jkdwn+1) -         zCF(ji,jkdwn) )
                     zldw(ji,jk) = zcff
                     zldw(ji,jk) = ghw_abl(jk) - ghw_abl(jkdwn  )
                     ln_foundl(ji) = .true.
                  END IF
               END DO
            END DO
            !
         END DO
         DO jk = 1, jpka
            DO ji = 1, jpi
               !zcff = 2.*SQRT(2.)*(  zldw( ji, jk )**(-2._wp/3._wp) + zlup( ji, jk )**(-2._wp/3._wp)  )**(-3._wp/2._wp)
               zcff = SQRT( zldw( ji, jk ) * zlup( ji, jk ) )
               mxlm_abl( ji, jj, jk ) = MAX( zcff, mxl_min )
               mxld_abl( ji, jj, jk ) = MAX(  MIN( zldw( ji, jk ),  zlup( ji, jk ) ), mxl_min )
            END DO
         END DO

      END DO
#   undef zlup
#   undef zldw
         !
         !
      END SELECT
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !                            !  Finalize the computation of turbulent visc./diff.
      !                            !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

      !-------------
      DO jj = 1, jpj     ! outer loop
      !-------------
         DO jk = 1, jpka
            DO ji = 1, jpi  ! vector opt.
               zcff  = MAX( rn_phimax, rn_Ric * mxlm_abl( ji, jj, jk ) * mxld_abl( ji, jj, jk )  &
               &     * MAX( zbn2(ji, jj, jk), rsmall ) / tke_abl( ji, jj, jk, nt_a ) )
               zcff2 =  1. / ( 1. + zcff )   !<-- phi_z(z)
               zcff  = mxlm_abl( ji, jj, jk ) * SQRT( tke_abl( ji, jj, jk, nt_a ) )
               !!FL: MAX function probably useless because of the definition of mxl_min
               Avm_abl( ji, jj, jk ) = MAX( rn_Cm * zcff         , avm_bak   )
               Avt_abl( ji, jj, jk ) = MAX( rn_Ct * zcff * zcff2 , avt_bak   )
            END DO
         END DO
      !-------------
      END DO
      !-------------

!---------------------------------------------------------------------------------------------------
   END SUBROUTINE abl_zdf_tke
!===================================================================================================


!===================================================================================================
   SUBROUTINE smooth_pblh( pvar2d, msk )
!---------------------------------------------------------------------------------------------------

      !!----------------------------------------------------------------------
      !!                   ***  ROUTINE smooth_pblh  ***
      !!
      !! ** Purpose :   2D Hanning filter on atmospheric PBL height
      !!
      !! ---------------------------------------------------------------------
      REAL(wp), DIMENSION(jpi,jpj), INTENT(in   ) :: msk
      REAL(wp), DIMENSION(jpi,jpj), INTENT(inout) :: pvar2d
      INTEGER                                     :: ji,jj
      REAL(wp)                                    :: smth_a, smth_b
      REAL(wp), DIMENSION(jpi,jpj)                :: zdX,zdY,zFX,zFY
      REAL(wp)                                    :: zumsk,zvmsk
      !!
      !!=========================================================
      !!
      !! Hanning filter
      smth_a = 1._wp / 8._wp
      smth_b = 1._wp / 4._wp
      !
      DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls )
         zumsk = msk(ji,jj) * msk(ji+1,jj)
         zdX ( ji, jj ) = ( pvar2d( ji+1,jj ) - pvar2d( ji  ,jj ) ) * zumsk
      END_2D
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls-1 )
         zvmsk = msk(ji,jj) * msk(ji,jj+1)
         zdY ( ji, jj ) = ( pvar2d( ji, jj+1 ) - pvar2d( ji  ,jj ) ) * zvmsk
      END_2D

      DO_2D( nn_hls-1, nn_hls-1, nn_hls, nn_hls-1 )
         zFY ( ji, jj  ) =   zdY ( ji, jj   )                        &
            & +  smth_a*  ( (zdX ( ji, jj+1 ) - zdX( ji-1, jj+1 ))   &
            &            -  (zdX ( ji, jj   ) - zdX( ji-1, jj   ))  )
      END_2D

      DO_2D( nn_hls, nn_hls-1, nn_hls-1, nn_hls-1 )
         zFX( ji, jj  ) =    zdX( ji, jj   )                         &
           &    + smth_a*(  (zdY( ji+1, jj ) - zdY( ji+1, jj-1))     &
           &             -  (zdY( ji  , jj ) - zdY( ji  , jj-1)) )
      END_2D

      DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pvar2d( ji  ,jj ) = pvar2d( ji  ,jj )              &
  &         + msk(ji,jj) * smth_b * (                       &
  &                  zFX( ji, jj ) - zFX( ji-1, jj )        &
  &                 +zFY( ji, jj ) - zFY( ji, jj-1 )  )
      END_2D

!---------------------------------------------------------------------------------------------------
   END SUBROUTINE smooth_pblh
!===================================================================================================

!!======================================================================
END MODULE ablmod