Forked from
NEMO Workspace / Nemo
951 commits behind, 66 commits ahead of the upstream repository.
-
Sebastien Masson authorede0e6ed97
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
icesbc.F90 17.76 KiB
MODULE icesbc
!!======================================================================
!! *** MODULE icesbc ***
!! Sea-Ice : air-ice sbc fields
!!=====================================================================
!! History : 4.0 ! 2017-08 (C. Rousset) Original code
!! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube]
!!----------------------------------------------------------------------
#if defined key_si3
!!----------------------------------------------------------------------
!! 'key_si3' : SI3 sea-ice model
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and tracers
USE dom_oce ! ocean space and time domain
USE ice ! sea-ice: variables
USE sbc_oce ! Surface boundary condition: ocean fields
USE sbc_ice ! Surface boundary condition: ice fields
USE usrdef_sbc ! Surface boundary condition: user defined
USE sbcblk ! Surface boundary condition: bulk
USE sbccpl ! Surface boundary condition: coupled interface
USE icealb, ONLY : rn_alb_oce ! sea-ice: albedo !#LB
!
USE in_out_manager ! I/O manager
USE iom ! I/O manager library
USE lib_mpp ! MPP library
USE lib_fortran ! fortran utilities (glob_sum + no signed zero)
USE lbclnk ! lateral boundary conditions (or mpp links)
USE timing ! Timing
USE fldread !!GS: needed by agrif
IMPLICIT NONE
PRIVATE
PUBLIC ice_sbc_tau ! called by icestp.F90
PUBLIC ice_sbc_flx ! called by icestp.F90
PUBLIC ice_sbc_init ! called by icestp.F90
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/ICE 4.0 , NEMO Consortium (2018)
!! $Id: icesbc.F90 13472 2020-09-16 13:05:19Z smasson $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE ice_sbc_tau( kt, ksbc, utau_ice, vtau_ice )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_sbc_tau ***
!!
!! ** Purpose : provide surface boundary condition for sea ice (momentum)
!!
!! ** Action : It provides the following fields:
!! utau_ice, vtau_ice : surface ice stress (U- & V-points) [N/m2]
!!-------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time step
INTEGER , INTENT(in ) :: ksbc ! type of sbc flux
REAL(wp), DIMENSION(jpi,jpj), INTENT( out) :: utau_ice, vtau_ice ! air-ice stress [N/m2]
!!
INTEGER :: ji, jj ! dummy loop index
REAL(wp), DIMENSION(jpi,jpj) :: zutau_ice, zvtau_ice
!!-------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('ice_sbc')
!
IF( kt == nit000 .AND. lwp ) THEN
WRITE(numout,*)
WRITE(numout,*)'ice_sbc_tau: Surface boundary condition for sea ice (momentum)'
WRITE(numout,*)'~~~~~~~~~~~~~~~'
ENDIF
!
SELECT CASE( ksbc )
!
CASE( jp_usr )
CALL usrdef_sbc_ice_tau( kt ) ! user defined formulation
!
CASE( jp_blk )
CALL blk_ice_1( sf(jp_wndi)%fnow(:,:,1), sf(jp_wndj)%fnow(:,:,1), &
& theta_air_zt(:,:), q_air_zt(:,:), & ! #LB: known from "sbc_oce" module...
& sf(jp_slp )%fnow(:,:,1), u_ice, v_ice, tm_su , & ! inputs
& putaui = utau_ice, pvtaui = vtau_ice ) ! outputs
! CASE( jp_abl ) utau_ice & vtau_ice are computed in ablmod
CASE( jp_purecpl )
CALL sbc_cpl_ice_tau( utau_ice , vtau_ice ) ! Coupled formulation
END SELECT
!
IF( ln_mixcpl) THEN ! Case of a mixed Bulk/Coupled formulation
CALL sbc_cpl_ice_tau( zutau_ice , zvtau_ice )
DO_2D( 0, 0, 0, 0 )
utau_ice(ji,jj) = utau_ice(ji,jj) * xcplmask(ji,jj,0) + zutau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) )
vtau_ice(ji,jj) = vtau_ice(ji,jj) * xcplmask(ji,jj,0) + zvtau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) )
END_2D
CALL lbc_lnk( 'icesbc', utau_ice, 'U', -1.0_wp, vtau_ice, 'V', -1.0_wp )
ENDIF
!
IF( ln_timing ) CALL timing_stop('ice_sbc')
!
END SUBROUTINE ice_sbc_tau
SUBROUTINE ice_sbc_flx( kt, ksbc )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_sbc_flx ***
!!
!! ** Purpose : provide surface boundary condition for sea ice (flux)
!!
!! ** Action : It provides the following fields used in sea ice model:
!! emp_oce , emp_ice = E-P over ocean and sea ice [Kg/m2/s]
!! sprecip = solid precipitation [Kg/m2/s]
!! evap_ice = sublimation [Kg/m2/s]
!! qsr_tot , qns_tot = solar & non solar heat flux (total) [W/m2]
!! qsr_ice , qns_ice = solar & non solar heat flux over ice [W/m2]
!! dqns_ice = non solar heat sensistivity [W/m2]
!! qemp_oce, qemp_ice, qprec_ice, qevap_ice = sensible heat (associated with evap & precip) [W/m2]
!! + some fields that are not used outside this module:
!! qla_ice = latent heat flux over ice [W/m2]
!! dqla_ice = latent heat sensistivity [W/m2]
!! tprecip = total precipitation [Kg/m2/s]
!! alb_ice = albedo above sea ice
!!-------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! ocean time step
INTEGER, INTENT(in) :: ksbc ! flux formulation (user defined, bulk or Pure Coupled)
!
INTEGER :: ji, jj, jl ! dummy loop index
REAL(wp) :: zmiss_val ! missing value retrieved from xios
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: zalb, zmsk00 ! 2D workspace
!!--------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('ice_sbc_flx')
IF( kt == nit000 .AND. lwp ) THEN
WRITE(numout,*)
WRITE(numout,*)'ice_sbc_flx: Surface boundary condition for sea ice (flux)'
WRITE(numout,*)'~~~~~~~~~~~~~~~'
ENDIF
! get missing value from xml
CALL iom_miss_val( "icetemp", zmiss_val )
! --- ice albedo --- !
!#LB:CALL ice_alb( t_su, h_i, h_s, ln_pnd_alb, a_ip_eff, h_ip, cloud_fra, alb_ice )
!
SELECT CASE( ksbc ) !== fluxes over sea ice ==!
!
CASE( jp_usr ) !--- user defined formulation
CALL usrdef_sbc_ice_flx( kt, h_s, h_i )
!
CASE( jp_blk, jp_abl ) !--- bulk formulation & ABL formulation
CALL blk_ice_2 ( t_su, h_s, h_i, alb_ice, &
& theta_air_zt(:,:), q_air_zt(:,:), & ! #LB: known from "sbc_oce" module...
& sf(jp_slp)%fnow(:,:,1), sf(jp_qlw)%fnow(:,:,1), &
& sf(jp_prec)%fnow(:,:,1), sf(jp_snow)%fnow(:,:,1) )
!
IF( ln_mixcpl ) CALL sbc_cpl_ice_flx( kt, picefr=at_i_b, palbi=alb_ice, psst=sst_m, pist=t_su, phs=h_s, phi=h_i )
IF( nn_flxdist /= -1 ) CALL ice_flx_dist ( t_su, alb_ice, qns_ice, qsr_ice, dqns_ice, evap_ice, devap_ice, nn_flxdist )
! ! compute conduction flux and surface temperature (as in Jules surface module)
IF( ln_cndflx .AND. .NOT.ln_cndemulate ) &
& CALL blk_ice_qcn ( ln_virtual_itd, t_su, t_bo, h_s, h_i )
CASE ( jp_purecpl ) !--- coupled formulation
CALL sbc_cpl_ice_flx( kt, picefr=at_i_b, palbi=alb_ice, psst=sst_m, pist=t_su, phs=h_s, phi=h_i )
IF( nn_flxdist /= -1 ) CALL ice_flx_dist ( t_su, alb_ice, qns_ice, qsr_ice, dqns_ice, evap_ice, devap_ice, nn_flxdist )
END SELECT
!--- output ice albedo and surface albedo ---!
IF( iom_use('icealb') .OR. iom_use('albedo') ) THEN
ALLOCATE( zalb(jpi,jpj), zmsk00(jpi,jpj) )
WHERE( at_i_b < 1.e-03 )
zmsk00(:,:) = 0._wp
zalb (:,:) = rn_alb_oce
ELSEWHERE
zmsk00(:,:) = 1._wp
zalb (:,:) = SUM( alb_ice * a_i_b, dim=3 ) / at_i_b
END WHERE
! ice albedo
CALL iom_put( 'icealb' , zalb * zmsk00 + zmiss_val * ( 1._wp - zmsk00 ) )
! ice+ocean albedo
zalb(:,:) = SUM( alb_ice * a_i_b, dim=3 ) + rn_alb_oce * ( 1._wp - at_i_b )
CALL iom_put( 'albedo' , zalb )
DEALLOCATE( zalb, zmsk00 )
ENDIF
!
IF( ln_timing ) CALL timing_stop('ice_sbc_flx')
!
END SUBROUTINE ice_sbc_flx
SUBROUTINE ice_flx_dist( ptn_ice, palb_ice, pqns_ice, pqsr_ice, pdqn_ice, pevap_ice, pdevap_ice, k_flxdist )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_flx_dist ***
!!
!! ** Purpose : update the ice surface boundary condition by averaging
!! and/or redistributing fluxes on ice categories
!!
!! ** Method : average then redistribute
!!
!! ** Action : depends on k_flxdist
!! = -1 Do nothing (needs N(cat) fluxes)
!! = 0 Average N(cat) fluxes then apply the average over the N(cat) ice
!! = 1 Average N(cat) fluxes then redistribute over the N(cat) ice
!! using T-ice and albedo sensitivity
!! = 2 Redistribute a single flux over categories
!!-------------------------------------------------------------------
INTEGER , INTENT(in ) :: k_flxdist ! redistributor
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: ptn_ice ! ice surface temperature
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: palb_ice ! ice albedo
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pqns_ice ! non solar flux
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pqsr_ice ! net solar flux
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pdqn_ice ! non solar flux sensitivity
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pevap_ice ! sublimation
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pdevap_ice ! sublimation sensitivity
!
INTEGER :: jl ! dummy loop index
!
REAL(wp), DIMENSION(jpi,jpj) :: z1_at_i ! inverse of concentration
!
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_qsr_m ! Mean solar heat flux over all categories
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_qns_m ! Mean non solar heat flux over all categories
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_evap_m ! Mean sublimation over all categories
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_dqn_m ! Mean d(qns)/dT over all categories
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_devap_m ! Mean d(evap)/dT over all categories
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zalb_m ! Mean albedo over all categories
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: ztem_m ! Mean temperature over all categories
!!----------------------------------------------------------------------
!
WHERE ( at_i (:,:) > 0._wp )
z1_at_i(:,:) = 1._wp / at_i (:,:)
ELSEWHERE
z1_at_i(:,:) = 0._wp
END WHERE
SELECT CASE( k_flxdist ) !== averaged on all ice categories ==!
!
CASE( 0 , 1 )
!
ALLOCATE( z_qns_m(jpi,jpj), z_qsr_m(jpi,jpj), z_dqn_m(jpi,jpj), z_evap_m(jpi,jpj), z_devap_m(jpi,jpj) )
!
z_qns_m (:,:) = SUM( a_i(:,:,:) * pqns_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
z_qsr_m (:,:) = SUM( a_i(:,:,:) * pqsr_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
z_dqn_m (:,:) = SUM( a_i(:,:,:) * pdqn_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
z_evap_m (:,:) = SUM( a_i(:,:,:) * pevap_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
z_devap_m(:,:) = SUM( a_i(:,:,:) * pdevap_ice(:,:,:) , dim=3 ) * z1_at_i(:,:)
DO jl = 1, jpl
pqns_ice (:,:,jl) = z_qns_m (:,:)
pqsr_ice (:,:,jl) = z_qsr_m (:,:)
pdqn_ice (:,:,jl) = z_dqn_m (:,:)
pevap_ice (:,:,jl) = z_evap_m(:,:)
pdevap_ice(:,:,jl) = z_devap_m(:,:)
END DO
!
DEALLOCATE( z_qns_m, z_qsr_m, z_dqn_m, z_evap_m, z_devap_m )
!
END SELECT
!
SELECT CASE( k_flxdist ) !== redistribution on all ice categories ==!
!
CASE( 1 , 2 )
!
ALLOCATE( zalb_m(jpi,jpj), ztem_m(jpi,jpj) )
!
zalb_m(:,:) = SUM( a_i(:,:,:) * palb_ice(:,:,:) , dim=3 ) * z1_at_i(:,:)
ztem_m(:,:) = SUM( a_i(:,:,:) * ptn_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
DO jl = 1, jpl
pqns_ice (:,:,jl) = pqns_ice (:,:,jl) + pdqn_ice (:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) )
pevap_ice(:,:,jl) = pevap_ice(:,:,jl) + pdevap_ice(:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) )
pqsr_ice (:,:,jl) = pqsr_ice (:,:,jl) * ( 1._wp - palb_ice(:,:,jl) ) / ( 1._wp - zalb_m(:,:) )
END DO
!
DEALLOCATE( zalb_m, ztem_m )
!
END SELECT
!
END SUBROUTINE ice_flx_dist
SUBROUTINE ice_sbc_init
!!-------------------------------------------------------------------
!! *** ROUTINE ice_sbc_init ***
!!
!! ** Purpose : Physical constants and parameters linked to the ice dynamics
!!
!! ** Method : Read the namsbc namelist and check the ice-dynamic
!! parameter values called at the first timestep (nit000)
!!
!! ** input : Namelist namsbc
!!-------------------------------------------------------------------
INTEGER :: ios, ioptio ! Local integer
!!
NAMELIST/namsbc/ rn_cio, nn_snwfra, rn_snwblow, nn_flxdist, ln_cndflx, ln_cndemulate, nn_qtrice
!!-------------------------------------------------------------------
!
READ ( numnam_ice_ref, namsbc, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc in reference namelist' )
READ ( numnam_ice_cfg, namsbc, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc in configuration namelist' )
IF(lwm) WRITE( numoni, namsbc )
!
IF(lwp) THEN ! control print
WRITE(numout,*)
WRITE(numout,*) 'ice_sbc_init: ice parameters for ice dynamics '
WRITE(numout,*) '~~~~~~~~~~~~~~~~'
WRITE(numout,*) ' Namelist namsbc:'
WRITE(numout,*) ' drag coefficient for oceanic stress rn_cio = ', rn_cio
WRITE(numout,*) ' fraction of ice covered by snow (options 0,1,2) nn_snwfra = ', nn_snwfra
WRITE(numout,*) ' coefficient for ice-lead partition of snowfall rn_snwblow = ', rn_snwblow
WRITE(numout,*) ' Multicategory heat flux formulation nn_flxdist = ', nn_flxdist
WRITE(numout,*) ' Use conduction flux as surface condition ln_cndflx = ', ln_cndflx
WRITE(numout,*) ' emulate conduction flux ln_cndemulate = ', ln_cndemulate
WRITE(numout,*) ' solar flux transmitted thru the surface scattering layer nn_qtrice = ', nn_qtrice
WRITE(numout,*) ' = 0 Grenfell and Maykut 1977'
WRITE(numout,*) ' = 1 Lebrun 2019'
ENDIF
!
IF(lwp) WRITE(numout,*)
SELECT CASE( nn_flxdist ) ! SI3 Multi-category heat flux formulation
CASE( -1 )
IF(lwp) WRITE(numout,*) ' SI3: use per-category fluxes (nn_flxdist = -1) '
CASE( 0 )
IF(lwp) WRITE(numout,*) ' SI3: use average per-category fluxes (nn_flxdist = 0) '
CASE( 1 )
IF(lwp) WRITE(numout,*) ' SI3: use average then redistribute per-category fluxes (nn_flxdist = 1) '
IF( ln_cpl ) CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in coupled mode must be /=1' )
CASE( 2 )
IF(lwp) WRITE(numout,*) ' SI3: Redistribute a single flux over categories (nn_flxdist = 2) '
IF( .NOT. ln_cpl ) CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in forced mode must be /=2' )
CASE DEFAULT
CALL ctl_stop( 'ice_thd_init: SI3 option, nn_flxdist, should be between -1 and 2' )
END SELECT
!
END SUBROUTINE ice_sbc_init
#else
!!----------------------------------------------------------------------
!! Default option : Empty module NO SI3 sea-ice model
!!----------------------------------------------------------------------
#endif
!!======================================================================
END MODULE icesbc