Forked from
NEMO Workspace / Nemo
1133 commits behind the upstream repository.
-
Guillaume Samson authored89746a6d
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
dynspg.F90 13.04 KiB
MODULE dynspg
!!======================================================================
!! *** MODULE dynspg ***
!! Ocean dynamics: surface pressure gradient control
!!======================================================================
!! History : 1.0 ! 2005-12 (C. Talandier, G. Madec, V. Garnier) Original code
!! 3.2 ! 2009-07 (R. Benshila) Suppression of rigid-lid option
!! 4.2 ! 2020-12 (G. Madec, E. Clementi) add Bernoulli Head for
!! wave coupling
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! dyn_spg : update the dynamics trend with surface pressure gradient
!! dyn_spg_init: initialization, namelist read, and parameters control
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and tracers variables
USE dom_oce ! ocean space and time domain variables
USE c1d ! 1D vertical configuration
USE phycst ! physical constants
USE sbc_oce ! surface boundary condition: ocean
USE sbc_ice , ONLY : snwice_mass, snwice_mass_b
USE sbcapr ! surface boundary condition: atmospheric pressure
USE sbcwave, ONLY : bhd_wave
USE dynspg_exp ! surface pressure gradient (dyn_spg_exp routine)
USE dynspg_ts ! surface pressure gradient (dyn_spg_ts routine)
USE tide_mod !
USE trd_oce ! trends: ocean variables
USE trddyn ! trend manager: dynamics
!
USE prtctl ! Print control (prt_ctl routine)
USE in_out_manager ! I/O manager
USE lib_mpp ! MPP library
USE timing ! Timing
IMPLICIT NONE
PRIVATE
PUBLIC dyn_spg ! routine called by step module
PUBLIC dyn_spg_init ! routine called by opa module
INTEGER :: nspg = 0 ! type of surface pressure gradient scheme defined from lk_dynspg_...
! ! Parameter to control the surface pressure gradient scheme
INTEGER, PARAMETER :: np_TS = 1 ! split-explicit time stepping (Time-Splitting)
INTEGER, PARAMETER :: np_EXP = 0 ! explicit time stepping
INTEGER, PARAMETER :: np_NO =-1 ! no surface pressure gradient, no scheme
!
REAL(wp) :: zt0step ! Time of day at the beginning of the time step
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: dynspg.F90 14225 2020-12-19 14:58:39Z smasson $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE dyn_spg( kt, Kbb, Kmm, Krhs, puu, pvv, pssh, puu_b, pvv_b, Kaa, k_only_ADV )
!!----------------------------------------------------------------------
!! *** ROUTINE dyn_spg ***
!!
!! ** Purpose : compute surface pressure gradient including the
!! atmospheric pressure forcing (ln_apr_dyn=T).
!!
!! ** Method : Two schemes:
!! - explicit : the spg is evaluated at now
!! - split-explicit : a time splitting technique is used
!!
!! ln_apr_dyn=T : the atmospheric pressure forcing is applied
!! as the gradient of the inverse barometer ssh:
!! apgu = - 1/rho0 di[apr] = 0.5*grav di[ssh_ib+ssh_ibb]
!! apgv = - 1/rho0 dj[apr] = 0.5*grav dj[ssh_ib+ssh_ibb]
!! Note that as all external forcing a time averaging over a two rn_Dt
!! period is used to prevent the divergence of odd and even time step.
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: kt ! ocean time-step index
INTEGER , INTENT( in ) :: Kbb, Kmm, Krhs, Kaa ! ocean time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! ocean velocities and RHS of momentum equation
REAL(wp), DIMENSION(jpi,jpj,jpt) , INTENT(inout) :: pssh, puu_b, pvv_b ! SSH and barotropic velocities at main time levels
INTEGER , OPTIONAL , INTENT( in ) :: k_only_ADV ! only Advection in the RHS
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: z2dt, zg_2, zintp, zgrho0r, zld ! local scalars
REAL(wp) , DIMENSION(jpi,jpj) :: zpgu, zpgv ! 2D workspace
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zpice
REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: ztrdu, ztrdv
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('dyn_spg')
!
IF( l_trddyn ) THEN ! temporary save of ta and sa trends
ALLOCATE( ztrdu(jpi,jpj,jpk) , ztrdv(jpi,jpj,jpk) )
ztrdu(:,:,:) = puu(:,:,:,Krhs)
ztrdv(:,:,:) = pvv(:,:,:,Krhs)
ENDIF
!
IF( ln_apr_dyn & ! atmos. pressure
.OR. ( .NOT.ln_dynspg_ts .AND. (ln_tide_pot .AND. ln_tide) ) & ! tide potential (no time slitting)
.OR. ln_ice_embd & ! embedded sea-ice
.OR. ( ln_wave .and. ln_bern_srfc ) ) THEN ! depth-independent Bernoulli head
!
DO_2D( 0, 0, 0, 0 )
zpgu(ji,jj) = 0._wp
zpgv(ji,jj) = 0._wp
END_2D
!
IF( ln_apr_dyn .AND. .NOT.ln_dynspg_ts ) THEN !== Atmospheric pressure gradient (added later in time-split case) ==!
zg_2 = grav * 0.5
DO_2D( 0, 0, 0, 0 ) ! gradient of Patm using inverse barometer ssh
zpgu(ji,jj) = zpgu(ji,jj) + zg_2 * ( ssh_ib (ji+1,jj) - ssh_ib (ji,jj) &
& + ssh_ibb(ji+1,jj) - ssh_ibb(ji,jj) ) * r1_e1u(ji,jj)
zpgv(ji,jj) = zpgv(ji,jj) + zg_2 * ( ssh_ib (ji,jj+1) - ssh_ib (ji,jj) &
& + ssh_ibb(ji,jj+1) - ssh_ibb(ji,jj) ) * r1_e2v(ji,jj)
END_2D
ENDIF
!
! !== tide potential forcing term ==!
IF( .NOT.ln_dynspg_ts .AND. ( ln_tide_pot .AND. ln_tide ) ) THEN ! N.B. added directly at sub-time-step in ts-case
!
! Update tide potential at the beginning of current time step
zt0step = REAL(nsec_day, wp)-0.5_wp*rn_Dt
CALL upd_tide(zt0step, Kmm)
!
DO_2D( 0, 0, 0, 0 ) ! add tide potential forcing
zpgu(ji,jj) = zpgu(ji,jj) + grav * ( pot_astro(ji+1,jj) - pot_astro(ji,jj) ) * r1_e1u(ji,jj)
zpgv(ji,jj) = zpgv(ji,jj) + grav * ( pot_astro(ji,jj+1) - pot_astro(ji,jj) ) * r1_e2v(ji,jj)
END_2D
!
IF (ln_scal_load) THEN
zld = rn_scal_load * grav
DO_2D( 0, 0, 0, 0 ) ! add scalar approximation for load potential
zpgu(ji,jj) = zpgu(ji,jj) + zld * ( pssh(ji+1,jj,Kmm) - pssh(ji,jj,Kmm) ) * r1_e1u(ji,jj)
zpgv(ji,jj) = zpgv(ji,jj) + zld * ( pssh(ji,jj+1,Kmm) - pssh(ji,jj,Kmm) ) * r1_e2v(ji,jj)
END_2D
ENDIF
ENDIF
!
IF( ln_ice_embd ) THEN !== embedded sea ice: Pressure gradient due to snow-ice mass ==!
ALLOCATE( zpice(jpi,jpj) )
zintp = REAL( MOD( kt-1, nn_fsbc ) ) / REAL( nn_fsbc )
zgrho0r = - grav * r1_rho0
zpice(:,:) = ( zintp * snwice_mass(:,:) + ( 1.- zintp ) * snwice_mass_b(:,:) ) * zgrho0r
DO_2D( 0, 0, 0, 0 )
zpgu(ji,jj) = zpgu(ji,jj) + ( zpice(ji+1,jj) - zpice(ji,jj) ) * r1_e1u(ji,jj)
zpgv(ji,jj) = zpgv(ji,jj) + ( zpice(ji,jj+1) - zpice(ji,jj) ) * r1_e2v(ji,jj)
END_2D
DEALLOCATE( zpice )
ENDIF
!
IF( ln_wave .and. ln_bern_srfc ) THEN !== Add J terms: depth-independent Bernoulli head
DO_2D( 0, 0, 0, 0 )
zpgu(ji,jj) = zpgu(ji,jj) + ( bhd_wave(ji+1,jj) - bhd_wave(ji,jj) ) / e1u(ji,jj) !++ bhd_wave from wave model in m2/s2 [BHD parameters in WW3]
zpgv(ji,jj) = zpgv(ji,jj) + ( bhd_wave(ji,jj+1) - bhd_wave(ji,jj) ) / e2v(ji,jj)
END_2D
ENDIF
!
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) !== Add all terms to the general trend
puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) + zpgu(ji,jj)
pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) + zpgv(ji,jj)
END_3D
!
!!gm add here a call to dyn_trd for ice pressure gradient, the surf pressure trends ????
!
ENDIF
!
SELECT CASE ( nspg ) !== surface pressure gradient computed and add to the general trend ==!
CASE ( np_EXP ) ; CALL dyn_spg_exp( kt, Kmm, puu, pvv, Krhs ) ! explicit
CASE ( np_TS ) ; CALL dyn_spg_ts ( kt, Kbb, Kmm, Krhs, puu, pvv, pssh, puu_b, pvv_b, Kaa, k_only_ADV ) ! time-splitting
END SELECT
!
IF( l_trddyn ) THEN ! save the surface pressure gradient trends for further diagnostics
ztrdu(:,:,:) = puu(:,:,:,Krhs) - ztrdu(:,:,:)
ztrdv(:,:,:) = pvv(:,:,:,Krhs) - ztrdv(:,:,:)
CALL trd_dyn( ztrdu, ztrdv, jpdyn_spg, kt, Kmm )
DEALLOCATE( ztrdu , ztrdv )
ENDIF
! ! print mean trends (used for debugging)
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=puu(:,:,:,Krhs), clinfo1=' spg - Ua: ', mask1=umask, &
& tab3d_2=pvv(:,:,:,Krhs), clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' )
!
IF( ln_timing ) CALL timing_stop('dyn_spg')
!
END SUBROUTINE dyn_spg
SUBROUTINE dyn_spg_init
!!---------------------------------------------------------------------
!! *** ROUTINE dyn_spg_init ***
!!
!! ** Purpose : Control the consistency between namelist options for
!! surface pressure gradient schemes
!!----------------------------------------------------------------------
INTEGER :: ioptio, ios ! local integers
!
NAMELIST/namdyn_spg/ ln_dynspg_exp , ln_dynspg_ts, &
& ln_bt_fw, ln_bt_av , ln_bt_auto , &
& nn_e , rn_bt_cmax, nn_bt_flt, rn_bt_alpha
!!----------------------------------------------------------------------
!
IF(lwp) THEN
WRITE(numout,*)
WRITE(numout,*) 'dyn_spg_init : choice of the surface pressure gradient scheme'
WRITE(numout,*) '~~~~~~~~~~~~'
ENDIF
!
READ ( numnam_ref, namdyn_spg, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namdyn_spg in reference namelist' )
!
READ ( numnam_cfg, namdyn_spg, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namdyn_spg in configuration namelist' )
IF(lwm) WRITE ( numond, namdyn_spg )
!
IF(lwp) THEN ! Namelist print
WRITE(numout,*) ' Namelist : namdyn_spg '
WRITE(numout,*) ' Explicit free surface ln_dynspg_exp = ', ln_dynspg_exp
WRITE(numout,*) ' Free surface with time splitting ln_dynspg_ts = ', ln_dynspg_ts
ENDIF
! ! Control of surface pressure gradient scheme options
nspg = np_NO ; ioptio = 0
IF( ln_dynspg_exp ) THEN ; nspg = np_EXP ; ioptio = ioptio + 1 ; ENDIF
IF( ln_dynspg_ts ) THEN ; nspg = np_TS ; ioptio = ioptio + 1 ; ENDIF
!
IF( ioptio > 1 ) CALL ctl_stop( 'Choose only one surface pressure gradient scheme' )
IF( ioptio == 0 ) CALL ctl_warn( 'NO surface pressure gradient trend in momentum Eqs.' )
IF( ln_dynspg_exp .AND. ln_isfcav ) &
& CALL ctl_stop( ' dynspg_exp not tested with ice shelf cavity ' )
!
IF(lwp) THEN
WRITE(numout,*)
IF( nspg == np_EXP ) WRITE(numout,*) ' ==>>> explicit free surface'
IF( nspg == np_TS ) WRITE(numout,*) ' ==>>> free surface with time splitting scheme'
IF( nspg == np_NO ) WRITE(numout,*) ' ==>>> No surface surface pressure gradient trend in momentum Eqs.'
ENDIF
!
IF( nspg == np_TS ) THEN ! split-explicit scheme initialisation
CALL dyn_spg_ts_init ! do it first: set nn_e used to allocate some arrays later on
ENDIF
!
END SUBROUTINE dyn_spg_init
!!======================================================================
END MODULE dynspg