Skip to content
Snippets Groups Projects
Forked from NEMO Workspace / Nemo
947 commits behind, 61 commits ahead of the upstream repository.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
icesbc.F90 26.99 KiB
MODULE icesbc
   !!======================================================================
   !!                       ***  MODULE  icesbc  ***
   !! Sea-Ice :   air-ice sbc fields
   !!=====================================================================
   !! History :  4.0  !  2017-08  (C. Rousset)       Original code
   !!            4.0  !  2018     (many people)      SI3 [aka Sea Ice cube]
   !!----------------------------------------------------------------------
#if defined key_si3
   !!----------------------------------------------------------------------
   !!   'key_si3' :                                     SI3 sea-ice model
   !!----------------------------------------------------------------------
   USE oce            ! ocean dynamics and tracers
   USE dom_oce        ! ocean space and time domain
   USE ice            ! sea-ice: variables
   USE sbc_oce        ! Surface boundary condition: ocean fields
   USE sbc_ice        ! Surface boundary condition: ice   fields
   USE usrdef_sbc     ! Surface boundary condition: user defined
   USE sbcblk         ! Surface boundary condition: bulk
   USE sbccpl         ! Surface boundary condition: coupled interface
   USE icealb         ! sea-ice: albedo
   !
   USE in_out_manager ! I/O manager
   USE iom            ! I/O manager library
   USE lib_mpp        ! MPP library
   USE lib_fortran    ! fortran utilities (glob_sum + no signed zero)
   USE lbclnk         ! lateral boundary conditions (or mpp links)
   USE timing         ! Timing
   USE fldread        !!GS: needed by agrif

   IMPLICIT NONE
   PRIVATE

   PUBLIC ice_sbc_tau   ! called by icestp.F90
   PUBLIC ice_sbc_flx   ! called by icestp.F90
   PUBLIC ice_sbc_init  ! called by icestp.F90

   !! * Substitutions
#  include "do_loop_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/ICE 4.0 , NEMO Consortium (2018)
   !! $Id: icesbc.F90 15388 2021-10-17 11:33:47Z clem $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE ice_sbc_tau( kt, ksbc, utau_ice, vtau_ice )
      !!-------------------------------------------------------------------
      !!                  ***  ROUTINE ice_sbc_tau  ***
      !!
      !! ** Purpose : provide surface boundary condition for sea ice (momentum)
      !!
      !! ** Action  : It provides the following fields:
      !!              utau_ice, vtau_ice : surface ice stress (U- & V-points) [N/m2]
      !!-------------------------------------------------------------------
      INTEGER                     , INTENT(in   ) ::   kt                   ! ocean time step
      INTEGER                     , INTENT(in   ) ::   ksbc                 ! type of sbc flux
      REAL(wp), DIMENSION(jpi,jpj), INTENT(  out) ::   utau_ice, vtau_ice   ! air-ice stress   [N/m2]
      !!
      INTEGER  ::   ji, jj                 ! dummy loop index
      REAL(wp), DIMENSION(A2D(0)) ::   zutau_ice, zvtau_ice
      !!-------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('icesbc')
      !
      IF( kt == nit000 .AND. lwp ) THEN
         WRITE(numout,*)
         WRITE(numout,*)'ice_sbc_tau: Surface boundary condition for sea ice (momentum)'
         WRITE(numout,*)'~~~~~~~~~~~~~~~'
      ENDIF
      !
      SELECT CASE( ksbc )
         !
      CASE( jp_usr     )                 !--- User defined formulation
         !
         CALL usrdef_sbc_ice_tau( kt )
         !
      CASE( jp_blk     )                 !--- Forced formulation
         !
         CALL blk_ice_1( sf(jp_wndi)%fnow(:,:,1), sf(jp_wndj)%fnow(:,:,1), theta_air_zt(:,:), q_air_zt(:,:), & ! <<== in
            &            sf(jp_slp )%fnow(:,:,1), u_ice(A2D(0)), v_ice(A2D(0)), tm_su(:,:),                  & ! <<== in
            &            putaui = utau_ice(A2D(0)), pvtaui = vtau_ice(A2D(0)) )                                ! ==>> out
         !
         !CASE( jp_abl    )              !--- ABL formulation (utau_ice & vtau_ice are computed in ablmod)
         !
      CASE( jp_purecpl )                 !--- Coupled formulation
         !
         CALL sbc_cpl_ice_tau( utau_ice(A2D(0)) , vtau_ice(A2D(0)) )
         !
      END SELECT
      !
      IF( ln_mixcpl) THEN                !--- Case of a mixed Bulk/Coupled formulation
         !
         CALL sbc_cpl_ice_tau( zutau_ice , zvtau_ice )
         !
         DO_2D( 0, 0, 0, 0 )
            utau_ice(ji,jj) = utau_ice(ji,jj) * xcplmask(ji,jj,0) + zutau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) )
            vtau_ice(ji,jj) = vtau_ice(ji,jj) * xcplmask(ji,jj,0) + zvtau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) )
         END_2D
         !
      ENDIF
      !
      CALL lbc_lnk( 'icesbc', utau_ice, 'T', -1.0_wp, vtau_ice, 'T', -1.0_wp )
      !
      IF( ln_timing )   CALL timing_stop('icesbc')
      !
   END SUBROUTINE ice_sbc_tau


   SUBROUTINE ice_sbc_flx( kt, ksbc )
      !!-------------------------------------------------------------------
      !!                  ***  ROUTINE ice_sbc_flx  ***
      !!
      !! ** Purpose : provide surface boundary condition for sea ice (flux)
      !!
      !! ** Action  : It provides the following fields used in sea ice model:
      !!                emp_oce , emp_ice                        = E-P over ocean and sea ice                    [Kg/m2/s]
      !!                sprecip                                  = solid precipitation                           [Kg/m2/s]
      !!                evap_ice                                 = sublimation                                   [Kg/m2/s]
      !!                qsr_tot , qns_tot                        = solar & non solar heat flux (total)           [W/m2]
      !!                qsr_ice , qns_ice                        = solar & non solar heat flux over ice          [W/m2]
      !!                dqns_ice                                 = non solar  heat sensistivity                  [W/m2]
      !!                qemp_oce, qemp_ice, qprec_ice, qevap_ice = sensible heat (associated with evap & precip) [W/m2]
      !!            + these fields
      !!                qsb_ice_bot                              = sensible heat at the ice bottom               [W/m2]
      !!                fhld, qlead                              = heat budget in the leads                      [W/m2]
      !!            + some fields that are not used outside this module:
      !!                qla_ice                                  = latent heat flux over ice                     [W/m2]
      !!                dqla_ice                                 = latent heat sensistivity                      [W/m2]
      !!                tprecip                                  = total  precipitation                          [Kg/m2/s]
      !!                alb_ice                                  = albedo above sea ice
      !!-------------------------------------------------------------------
      INTEGER, INTENT(in) ::   kt     ! ocean time step
      INTEGER, INTENT(in) ::   ksbc   ! flux formulation (user defined, bulk or Pure Coupled)
      !!--------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('icesbc')

      IF( kt == nit000 .AND. lwp ) THEN
         WRITE(numout,*)
         WRITE(numout,*)'ice_sbc_flx: Surface boundary condition for sea ice (flux)'
         WRITE(numout,*)'~~~~~~~~~~~~~~~'
      ENDIF
      !                     !== ice albedo ==!
      CALL ice_alb( ln_pnd_alb, t_su(A2D(0),:), h_i(A2D(0),:), h_s(A2D(0),:), a_ip_eff(:,:,:), h_ip(A2D(0),:), cloud_fra(:,:), & ! <<== in
         &                                                                                                      alb_ice(:,:,:) ) ! ==>> out
      !
      SELECT CASE( ksbc )   !== fluxes over sea ice ==!
      !
      CASE( jp_usr )              !--- user defined formulation
         !
                                  CALL usrdef_sbc_ice_flx( kt, h_s, h_i )
         !
      CASE( jp_blk, jp_abl )      !--- bulk formulation & ABL formulation
         !
                                  CALL blk_ice_2( t_su(A2D(0),:), h_s(A2D(0),:), h_i(A2D(0),:),       &   ! <<== in 
                                     &            alb_ice(:,:,:), theta_air_zt(:,:), q_air_zt(:,:),   &   ! <<== in
                                     &            sf(jp_slp)%fnow(:,:,1), sf(jp_qlw)%fnow(:,:,1),     &   ! <<== in
                                     &            sf(jp_prec)%fnow(:,:,1), sf(jp_snow)%fnow(:,:,1) )      ! <<== in
                                  !
         IF( ln_mixcpl        )   CALL sbc_cpl_ice_flx( kt, picefr=at_i_b(:,:), palbi=alb_ice(:,:,:), &
                                     &                      psst=sst_m(A2D(0)), pist=t_su(A2D(0),:),  &
                                     &                      phs=h_s(A2D(0),:), phi=h_i(A2D(0),:) )
                                  CALL lbc_lnk( 'icesbc', t_su, 'T', 1.0_wp ) ! clem: t_su is needed for Met-Office only => necessary?
         !
         IF( nn_flxdist /= -1 )   CALL ice_flx_dist( nn_flxdist, at_i(A2D(0)), a_i(A2D(0),:), t_su(A2D(0),:), alb_ice(:,:,:), &   ! <<== in
            &                                                    qns_ice(:,:,:), qsr_ice(:,:,:), dqns_ice(:,:,:),             &   ! ==>> inout
            &                                                    evap_ice(:,:,:), devap_ice(:,:,:) )                              ! ==>> inout
         !
         !                        !    compute conduction flux and surface temperature (as in Jules surface module)
         IF( ln_cndflx .AND. .NOT.ln_cndemulate ) THEN
                                  CALL blk_ice_qcn( ln_virtual_itd, t_bo(A2D(0)), h_s(A2D(0),:), h_i(A2D(0),:), &   ! <<== in
                                     &                              qcn_ice(:,:,:), qml_ice(:,:,:),             &   ! ==>> out
                                     &                              qns_ice(:,:,:), t_su(A2D(0),:) )                ! ==>> inout
                                  CALL lbc_lnk( 'icesbc', t_su, 'T', 1.0_wp ) ! clem: t_su is updated in ice_qcn => necessary?
         ENDIF
         !
      CASE ( jp_purecpl )         !--- coupled formulation
         !
                                  CALL sbc_cpl_ice_flx( kt, picefr=at_i_b(:,:), palbi=alb_ice(:,:,:), psst=sst_m(A2D(0)), &
                                     &                      pist=t_su(A2D(0),:), phs=h_s(A2D(0),:), phi=h_i(A2D(0),:) )
                                  CALL lbc_lnk( 'icesbc', t_su, 'T', 1.0_wp ) ! clem: t_su is needed for Met-Office only => necessary?
                                  !
         IF( nn_flxdist /= -1 )   CALL ice_flx_dist( nn_flxdist, at_i(A2D(0)), a_i(A2D(0),:), t_su(A2D(0),:), alb_ice(:,:,:), &   ! <<== in
            &                                                    qns_ice(:,:,:), qsr_ice(:,:,:), dqns_ice(:,:,:),             &   ! ==>> inout
            &                                                    evap_ice(:,:,:), devap_ice(:,:,:) )                              ! ==>> inout
         !
      END SELECT
      !                     !== some fluxes at the ice-ocean interface and in the leads
      CALL ice_flx_other
      !
      IF( ln_timing )   CALL timing_stop('icesbc')
      !
   END SUBROUTINE ice_sbc_flx


   SUBROUTINE ice_flx_dist( k_flxdist, pat_i, pa_i, ptn_ice, palb_ice, &
      &                                pqns_ice, pqsr_ice, pdqn_ice, pevap_ice, pdevap_ice )
      !!-------------------------------------------------------------------
      !!                  ***  ROUTINE ice_flx_dist  ***
      !!
      !! ** Purpose :   update the ice surface boundary condition by averaging
      !!              and/or redistributing fluxes on ice categories
      !!
      !! ** Method  :   average then redistribute
      !!
      !! ** Action  :   depends on k_flxdist
      !!                = -1  Do nothing (needs N(cat) fluxes)
      !!                =  0  Average N(cat) fluxes then apply the average over the N(cat) ice
      !!                =  1  Average N(cat) fluxes then redistribute over the N(cat) ice
      !!                                                 using T-ice and albedo sensitivity
      !!                =  2  Redistribute a single flux over categories
      !!-------------------------------------------------------------------
      INTEGER                        , INTENT(in   ) ::   k_flxdist  ! redistributor
      REAL(wp), DIMENSION(A2D(0))    , INTENT(in   ) ::   pat_i      ! ice concentration
      REAL(wp), DIMENSION(A2D(0),jpl), INTENT(in   ) ::   pa_i       ! ice concentration
      REAL(wp), DIMENSION(A2D(0),jpl), INTENT(in   ) ::   ptn_ice    ! ice surface temperature
      REAL(wp), DIMENSION(A2D(0),jpl), INTENT(in   ) ::   palb_ice   ! ice albedo
      REAL(wp), DIMENSION(A2D(0),jpl), INTENT(inout) ::   pqns_ice   ! non solar flux
      REAL(wp), DIMENSION(A2D(0),jpl), INTENT(inout) ::   pqsr_ice   ! net solar flux
      REAL(wp), DIMENSION(A2D(0),jpl), INTENT(inout) ::   pdqn_ice   ! non solar flux sensitivity
      REAL(wp), DIMENSION(A2D(0),jpl), INTENT(inout) ::   pevap_ice  ! sublimation
      REAL(wp), DIMENSION(A2D(0),jpl), INTENT(inout) ::   pdevap_ice ! sublimation sensitivity
      !
      INTEGER  ::   jl      ! dummy loop index
      !
      REAL(wp), DIMENSION(A2D(0)) ::   z1_at_i   ! inverse of concentration
      !
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   z_qsr_m   ! Mean solar heat flux over all categories
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   z_qns_m   ! Mean non solar heat flux over all categories
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   z_evap_m  ! Mean sublimation over all categories
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   z_dqn_m   ! Mean d(qns)/dT over all categories
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   z_devap_m ! Mean d(evap)/dT over all categories
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zalb_m    ! Mean albedo over all categories
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   ztem_m    ! Mean temperature over all categories
      !!----------------------------------------------------------------------
      !
      WHERE ( pat_i(:,:) > 0._wp )   ; z1_at_i(:,:) = 1._wp / pat_i(:,:)
      ELSEWHERE                      ; z1_at_i(:,:) = 0._wp
      END WHERE

      SELECT CASE( k_flxdist )       !==  averaged on all ice categories  ==!
      !
      CASE( 0 , 1 )
         !
         ALLOCATE( z_qns_m(A2D(0)), z_qsr_m(A2D(0)), z_dqn_m(A2D(0)), z_evap_m(A2D(0)), z_devap_m(A2D(0)) )
         !
         z_qns_m  (:,:) = SUM( pa_i(:,:,:) * pqns_ice  (:,:,:) , dim=3 ) * z1_at_i(:,:)
         z_qsr_m  (:,:) = SUM( pa_i(:,:,:) * pqsr_ice  (:,:,:) , dim=3 ) * z1_at_i(:,:)
         z_dqn_m  (:,:) = SUM( pa_i(:,:,:) * pdqn_ice  (:,:,:) , dim=3 ) * z1_at_i(:,:)
         z_evap_m (:,:) = SUM( pa_i(:,:,:) * pevap_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
         z_devap_m(:,:) = SUM( pa_i(:,:,:) * pdevap_ice(:,:,:) , dim=3 ) * z1_at_i(:,:)
         DO jl = 1, jpl
            pqns_ice  (:,:,jl) = z_qns_m (:,:)
            pqsr_ice  (:,:,jl) = z_qsr_m (:,:)
            pdqn_ice  (:,:,jl) = z_dqn_m  (:,:)
            pevap_ice (:,:,jl) = z_evap_m(:,:)
            pdevap_ice(:,:,jl) = z_devap_m(:,:)
         END DO
         !
         DEALLOCATE( z_qns_m, z_qsr_m, z_dqn_m, z_evap_m, z_devap_m )
         !
      END SELECT
      !
      SELECT CASE( k_flxdist )       !==  redistribution on all ice categories  ==!
      !
      CASE( 1 , 2 )
         !
         ALLOCATE( zalb_m(A2D(0)), ztem_m(A2D(0)) )
         !
         zalb_m(:,:) = SUM( pa_i(:,:,:) * palb_ice(:,:,:) , dim=3 ) * z1_at_i(:,:)
         ztem_m(:,:) = SUM( pa_i(:,:,:) * ptn_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
         DO jl = 1, jpl
            pqns_ice (:,:,jl) = pqns_ice (:,:,jl) + pdqn_ice  (:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) )
            pevap_ice(:,:,jl) = pevap_ice(:,:,jl) + pdevap_ice(:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) )
            pqsr_ice (:,:,jl) = pqsr_ice (:,:,jl) * ( 1._wp - palb_ice(:,:,jl) ) / ( 1._wp - zalb_m(:,:) )
         END DO
         !
         DEALLOCATE( zalb_m, ztem_m )
         !
      END SELECT
      !
   END SUBROUTINE ice_flx_dist


   SUBROUTINE ice_flx_other
      !!-----------------------------------------------------------------------
      !!                   ***  ROUTINE ice_flx_other ***
      !!
      !! ** Purpose :   prepare necessary fields for thermo calculations
      !!
      !! ** Inputs  :   u_ice, v_ice, ssu_m, ssv_m, utau, vtau
      !!                frq_m, qsr_oce, qns_oce, qemp_oce, e3t_m, sst_m
      !! ** Outputs :   qsb_ice_bot, fhld, qlead
      !!-----------------------------------------------------------------------
      INTEGER  ::   ji, jj             ! dummy loop indices
      REAL(wp) ::   zfric_u, zqld, zqfr, zqfr_neg, zqfr_pos, zu_io, zv_io, zu_iom1, zv_iom1
      REAL(wp), PARAMETER ::   zfric_umin = 0._wp       ! lower bound for the friction velocity (cice value=5.e-04)
      REAL(wp), PARAMETER ::   zch        = 0.0057_wp   ! heat transfer coefficient
      REAL(wp), DIMENSION(A2D(0)) ::  zfric, zvel       ! ice-ocean velocity (m/s) and frictional velocity (m2/s2)
      !!-----------------------------------------------------------------------
      !
      ! computation of friction velocity at T points
      IF( ln_icedyn ) THEN
         DO_2D( 0, 0, 0, 0 )
            zu_io   = u_ice(ji  ,jj  ) - ssu_m(ji  ,jj  )
            zu_iom1 = u_ice(ji-1,jj  ) - ssu_m(ji-1,jj  )
            zv_io   = v_ice(ji  ,jj  ) - ssv_m(ji  ,jj  )
            zv_iom1 = v_ice(ji  ,jj-1) - ssv_m(ji  ,jj-1)
            !
            zfric(ji,jj) = rn_cio * ( 0.5_wp * ( zu_io*zu_io + zu_iom1*zu_iom1 + zv_io*zv_io + zv_iom1*zv_iom1 ) ) * smask0(ji,jj)
            zvel (ji,jj) = 0.5_wp * SQRT( ( u_ice(ji-1,jj  ) + u_ice(ji,jj) ) * ( u_ice(ji-1,jj  ) + u_ice(ji,jj) ) + &
               &                          ( v_ice(ji  ,jj-1) + v_ice(ji,jj) ) * ( v_ice(ji  ,jj-1) + v_ice(ji,jj) ) )
         END_2D
      ELSE      !  if no ice dynamics => transfer directly the atmospheric stress to the ocean
         DO_2D( 0, 0, 0, 0 )
            zfric(ji,jj) = r1_rho0 * SQRT( utau(ji,jj)*utau(ji,jj) + vtau(ji,jj)*vtau(ji,jj) ) * smask0(ji,jj)
            zvel (ji,jj) = 0._wp
         END_2D
      ENDIF
      !
      !--------------------------------------------------------------------!
      ! Partial computation of forcing for the thermodynamic sea ice model
      !--------------------------------------------------------------------!
      DO_2D( 0, 0, 0, 0 )   ! needed for qlead
         rswitch  = smask0(ji,jj) * MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) ! 0 if no ice
         !
         ! --- Energy received in the lead from atm-oce exchanges, zqld is defined everywhere (J.m-2) --- !
         zqld =  smask0(ji,jj) * rDt_ice *  &
            &    ( ( 1._wp - at_i_b(ji,jj) ) * qsr_oce(ji,jj) * frq_m(ji,jj) +  &
            &      ( 1._wp - at_i_b(ji,jj) ) * qns_oce(ji,jj) + qemp_oce(ji,jj) )

         ! --- Energy needed to bring ocean surface layer until its freezing, zqfr is defined everywhere (J.m-2) --- !
         !     (mostly<0 but >0 if supercooling)
         zqfr     = rho0 * rcp * e3t_m(ji,jj) * ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) * smask0(ji,jj)  ! both < 0 (t_bo < sst) and > 0 (t_bo > sst)
         zqfr_neg = MIN( zqfr , 0._wp )                                                                   ! only < 0
         zqfr_pos = MAX( zqfr , 0._wp )                                                                   ! only > 0

         ! --- Sensible ocean-to-ice heat flux (W/m2) --- !
         !     (mostly>0 but <0 if supercooling)
         zfric_u            = MAX( SQRT( zfric(ji,jj) ), zfric_umin )
         qsb_ice_bot(ji,jj) = rswitch * rho0 * rcp * zch * zfric_u * ( ( sst_m(ji,jj) + rt0 ) - t_bo(ji,jj) )

         ! upper bound for qsb_ice_bot: the heat retrieved from the ocean must be smaller than the heat necessary to reach
         !                              the freezing point, so that we do not have SST < T_freeze
         !                              This implies: qsb_ice_bot(ji,jj) * at_i(ji,jj) * rtdice <= - zqfr_neg
         !                              The following formulation is ok for both normal conditions and supercooling
         qsb_ice_bot(ji,jj) = rswitch * MIN( qsb_ice_bot(ji,jj), - zqfr_neg * r1_Dt_ice / MAX( at_i(ji,jj), epsi10 ) )

         ! If conditions are always supercooled (such as at the mouth of ice-shelves), then ice grows continuously
         ! ==> stop ice formation by artificially setting up the turbulent fluxes to 0 when volume > 20m (arbitrary)
         IF( ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) > 0._wp .AND. vt_i(ji,jj) >= 20._wp ) THEN
            zqfr               = 0._wp
            zqfr_pos           = 0._wp
            qsb_ice_bot(ji,jj) = 0._wp
         ENDIF
         !
         ! --- Energy Budget of the leads (qlead, J.m-2) --- !
         !     qlead is the energy received from the atm. in the leads.
         !     If warming (zqld >= 0), then the energy in the leads is used to melt ice (bottom melting) => fhld  (W/m2)
         !     If cooling (zqld <  0), then the energy in the leads is used to grow ice in open water    => qlead (J.m-2)
         IF( zqld >= 0._wp .AND. at_i(ji,jj) > 0._wp ) THEN
            ! upper bound for fhld: fhld should be equal to zqld
            !                        but we have to make sure that this heat will not make the sst drop below the freezing point
            !                        so the max heat that can be pulled out of the ocean is zqld - qsb - zqfr_pos
            !                        The following formulation is ok for both normal conditions and supercooling
            fhld (ji,jj) = rswitch * MAX( 0._wp, ( zqld - zqfr_pos ) * r1_Dt_ice / MAX( at_i(ji,jj), epsi10 ) &  ! divided by at_i since this is (re)multiplied by a_i in icethd_dh.F90
               &                                 - qsb_ice_bot(ji,jj) )
            qlead(ji,jj) = 0._wp
         ELSE
            fhld (ji,jj) = 0._wp
            ! upper bound for qlead: qlead should be equal to zqld
            !                        but before using this heat for ice formation, we suppose that the ocean cools down till the freezing point.
            !                        The energy for this cooling down is zqfr. Also some heat will be removed from the ocean from turbulent fluxes (qsb)
            !                        and freezing point is reached if zqfr = zqld - qsb*a/dt
            !                        so the max heat that can be pulled out of the ocean is zqld - qsb - zqfr
            !                        The following formulation is ok for both normal conditions and supercooling
            qlead(ji,jj) = MIN( 0._wp , zqld - ( qsb_ice_bot(ji,jj) * at_i(ji,jj) * rDt_ice ) - zqfr )
         ENDIF
         !
         ! If ice is landfast and ice concentration reaches its max
         ! => stop ice formation in open water
         IF(  zvel(ji,jj) <= 5.e-04_wp .AND. at_i(ji,jj) >= rn_amax_2d(ji,jj)-epsi06 )   qlead(ji,jj) = 0._wp
         !
         ! If the grid cell is almost fully covered by ice (no leads)
         ! => stop ice formation in open water
         IF( at_i(ji,jj) >= (1._wp - epsi10) )   qlead(ji,jj) = 0._wp
         !
         ! If ln_leadhfx is false
         ! => do not use energy of the leads to melt sea-ice
         IF( .NOT.ln_leadhfx )   fhld(ji,jj) = 0._wp
         !
      END_2D

      ! In case we bypass open-water ice formation
      IF( .NOT. ln_icedO )  qlead(:,:) = 0._wp
      ! In case we bypass growing/melting from top and bottom
      IF( .NOT. ln_icedH ) THEN
         qsb_ice_bot(:,:) = 0._wp
         fhld       (:,:) = 0._wp
      ENDIF
      
   END SUBROUTINE ice_flx_other
   
   
   SUBROUTINE ice_sbc_init
      !!-------------------------------------------------------------------
      !!                  ***  ROUTINE ice_sbc_init  ***
      !!
      !! ** Purpose :   Physical constants and parameters linked to the ice dynamics
      !!
      !! ** Method  :   Read the namsbc namelist and check the ice-dynamic
      !!              parameter values called at the first timestep (nit000)
      !!
      !! ** input   :   Namelist namsbc
      !!-------------------------------------------------------------------
      INTEGER ::   ios, ioptio   ! Local integer
      !!
      NAMELIST/namsbc/ rn_cio, nn_snwfra, rn_snwblow, nn_flxdist, ln_cndflx, ln_cndemulate, nn_qtrice
      !!-------------------------------------------------------------------
      !
      READ  ( numnam_ice_ref, namsbc, IOSTAT = ios, ERR = 901)
901   IF( ios /= 0 )   CALL ctl_nam ( ios , 'namsbc in reference namelist' )
      READ  ( numnam_ice_cfg, namsbc, IOSTAT = ios, ERR = 902 )
902   IF( ios >  0 )   CALL ctl_nam ( ios , 'namsbc in configuration namelist' )
      IF(lwm) WRITE( numoni, namsbc )
      !
      IF(lwp) THEN                     ! control print
         WRITE(numout,*)
         WRITE(numout,*) 'ice_sbc_init: ice parameters for ice dynamics '
         WRITE(numout,*) '~~~~~~~~~~~~~~~~'
         WRITE(numout,*) '   Namelist namsbc:'
         WRITE(numout,*) '      drag coefficient for oceanic stress                       rn_cio        = ', rn_cio
         WRITE(numout,*) '      fraction of ice covered by snow (options 0,1,2)           nn_snwfra     = ', nn_snwfra
         WRITE(numout,*) '      coefficient for ice-lead partition of snowfall            rn_snwblow    = ', rn_snwblow
         WRITE(numout,*) '      Multicategory heat flux formulation                       nn_flxdist    = ', nn_flxdist
         WRITE(numout,*) '      Use conduction flux as surface condition                  ln_cndflx     = ', ln_cndflx
         WRITE(numout,*) '         emulate conduction flux                                ln_cndemulate = ', ln_cndemulate
         WRITE(numout,*) '      solar flux transmitted thru the surface scattering layer  nn_qtrice     = ', nn_qtrice
         WRITE(numout,*) '         = 0  Grenfell and Maykut 1977'
         WRITE(numout,*) '         = 1  Lebrun 2019'
      ENDIF
      !
      IF(lwp) WRITE(numout,*)
      SELECT CASE( nn_flxdist )         ! SI3 Multi-category heat flux formulation
      CASE( -1  )
         IF(lwp) WRITE(numout,*) '   SI3: use per-category fluxes (nn_flxdist = -1) '
      CASE(  0  )
         IF(lwp) WRITE(numout,*) '   SI3: use average per-category fluxes (nn_flxdist = 0) '
      CASE(  1  )
         IF(lwp) WRITE(numout,*) '   SI3: use average then redistribute per-category fluxes (nn_flxdist = 1) '
         IF( ln_cpl )         CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in coupled mode must be /=1' )
      CASE(  2  )
         IF(lwp) WRITE(numout,*) '   SI3: Redistribute a single flux over categories (nn_flxdist = 2) '
         IF( .NOT. ln_cpl )   CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in forced mode must be /=2' )
      CASE DEFAULT
         CALL ctl_stop( 'ice_thd_init: SI3 option, nn_flxdist, should be between -1 and 2' )
      END SELECT
      !
   END SUBROUTINE ice_sbc_init

#else
   !!----------------------------------------------------------------------
   !!   Default option :         Empty module         NO SI3 sea-ice model
   !!----------------------------------------------------------------------
#endif

   !!======================================================================
END MODULE icesbc