Forked from
NEMO Workspace / Nemo
960 commits behind, 37 commits ahead of the upstream repository.
-
Sebastien Masson authored6cc152df
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
icesbc.F90 24.84 KiB
MODULE icesbc
!!======================================================================
!! *** MODULE icesbc ***
!! Sea-Ice : air-ice sbc fields
!!=====================================================================
!! History : 4.0 ! 2017-08 (C. Rousset) Original code
!! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube]
!!----------------------------------------------------------------------
#if defined key_si3
!!----------------------------------------------------------------------
!! 'key_si3' : SI3 sea-ice model
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and tracers
USE dom_oce ! ocean space and time domain
USE ice ! sea-ice: variables
USE sbc_oce ! Surface boundary condition: ocean fields
USE sbc_ice ! Surface boundary condition: ice fields
USE usrdef_sbc ! Surface boundary condition: user defined
USE sbcblk ! Surface boundary condition: bulk
USE sbccpl ! Surface boundary condition: coupled interface
USE icealb ! sea-ice: albedo
!
USE in_out_manager ! I/O manager
USE iom ! I/O manager library
USE lib_mpp ! MPP library
USE lib_fortran ! fortran utilities (glob_sum + no signed zero)
USE lbclnk ! lateral boundary conditions (or mpp links)
USE timing ! Timing
USE fldread !!GS: needed by agrif
IMPLICIT NONE
PRIVATE
PUBLIC ice_sbc_tau ! called by icestp.F90
PUBLIC ice_sbc_flx ! called by icestp.F90
PUBLIC ice_sbc_init ! called by icestp.F90
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/ICE 4.0 , NEMO Consortium (2018)
!! $Id: icesbc.F90 15388 2021-10-17 11:33:47Z clem $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE ice_sbc_tau( kt, ksbc, utau_ice, vtau_ice )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_sbc_tau ***
!!
!! ** Purpose : provide surface boundary condition for sea ice (momentum)
!!
!! ** Action : It provides the following fields:
!! utau_ice, vtau_ice : surface ice stress (U- & V-points) [N/m2]
!!-------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time step
INTEGER , INTENT(in ) :: ksbc ! type of sbc flux
REAL(wp), DIMENSION(jpi,jpj), INTENT( out) :: utau_ice, vtau_ice ! air-ice stress [N/m2]
!!
INTEGER :: ji, jj ! dummy loop index
REAL(wp), DIMENSION(jpi,jpj) :: zutau_ice, zvtau_ice
!!-------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('icesbc')
!
IF( kt == nit000 .AND. lwp ) THEN
WRITE(numout,*)
WRITE(numout,*)'ice_sbc_tau: Surface boundary condition for sea ice (momentum)'
WRITE(numout,*)'~~~~~~~~~~~~~~~'
ENDIF
!
SELECT CASE( ksbc )
CASE( jp_usr ) ; CALL usrdef_sbc_ice_tau( kt ) ! user defined formulation
CASE( jp_blk )
CALL blk_ice_1( sf(jp_wndi)%fnow(:,:,1), sf(jp_wndj)%fnow(:,:,1), &
& theta_air_zt(:,:), q_air_zt(:,:), & ! #LB: known from "sbc_oce" module...
& sf(jp_slp )%fnow(:,:,1), u_ice, v_ice, tm_su , & ! inputs
& putaui = utau_ice, pvtaui = vtau_ice ) ! outputs
! CASE( jp_abl ) utau_ice & vtau_ice are computed in ablmod
CASE( jp_purecpl ) ; CALL sbc_cpl_ice_tau( utau_ice , vtau_ice ) ! Coupled formulation
END SELECT
!
IF( ln_mixcpl) THEN ! Case of a mixed Bulk/Coupled formulation
CALL sbc_cpl_ice_tau( zutau_ice , zvtau_ice )
DO_2D( 0, 0, 0, 0 )
utau_ice(ji,jj) = utau_ice(ji,jj) * xcplmask(ji,jj,0) + zutau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) )
vtau_ice(ji,jj) = vtau_ice(ji,jj) * xcplmask(ji,jj,0) + zvtau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) )
END_2D
CALL lbc_lnk( 'icesbc', utau_ice, 'U', -1.0_wp, vtau_ice, 'V', -1.0_wp )
ENDIF
!
IF( ln_timing ) CALL timing_stop('icesbc')
!
END SUBROUTINE ice_sbc_tau
SUBROUTINE ice_sbc_flx( kt, ksbc )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_sbc_flx ***
!!
!! ** Purpose : provide surface boundary condition for sea ice (flux)
!!
!! ** Action : It provides the following fields used in sea ice model:
!! emp_oce , emp_ice = E-P over ocean and sea ice [Kg/m2/s]
!! sprecip = solid precipitation [Kg/m2/s]
!! evap_ice = sublimation [Kg/m2/s]
!! qsr_tot , qns_tot = solar & non solar heat flux (total) [W/m2]
!! qsr_ice , qns_ice = solar & non solar heat flux over ice [W/m2]
!! dqns_ice = non solar heat sensistivity [W/m2]
!! qemp_oce, qemp_ice, qprec_ice, qevap_ice = sensible heat (associated with evap & precip) [W/m2]
!! + these fields
!! qsb_ice_bot = sensible heat at the ice bottom [W/m2]
!! fhld, qlead = heat budget in the leads [W/m2]
!! + some fields that are not used outside this module:
!! qla_ice = latent heat flux over ice [W/m2]
!! dqla_ice = latent heat sensistivity [W/m2]
!! tprecip = total precipitation [Kg/m2/s]
!! alb_ice = albedo above sea ice
!!-------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! ocean time step
INTEGER, INTENT(in) :: ksbc ! flux formulation (user defined, bulk or Pure Coupled)
!!--------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('icesbc')
IF( kt == nit000 .AND. lwp ) THEN
WRITE(numout,*)
WRITE(numout,*)'ice_sbc_flx: Surface boundary condition for sea ice (flux)'
WRITE(numout,*)'~~~~~~~~~~~~~~~'
ENDIF
! !== ice albedo ==!
CALL ice_alb( t_su, h_i, h_s, ln_pnd_alb, a_ip_eff, h_ip, cloud_fra, alb_ice )
!
SELECT CASE( ksbc ) !== fluxes over sea ice ==!
!
CASE( jp_usr ) !--- user defined formulation
CALL usrdef_sbc_ice_flx( kt, h_s, h_i )
CASE( jp_blk, jp_abl ) !--- bulk formulation & ABL formulation
CALL blk_ice_2 ( t_su, h_s, h_i, alb_ice, &
& theta_air_zt(:,:), q_air_zt(:,:), & ! #LB: known from "sbc_oce" module...
& sf(jp_slp)%fnow(:,:,1), sf(jp_qlw)%fnow(:,:,1), &
& sf(jp_prec)%fnow(:,:,1), sf(jp_snow)%fnow(:,:,1) )
IF( ln_mixcpl ) CALL sbc_cpl_ice_flx( kt, picefr=at_i_b, palbi=alb_ice, psst=sst_m, pist=t_su, phs=h_s, phi=h_i )
IF( nn_flxdist /= -1 ) CALL ice_flx_dist ( t_su, alb_ice, qns_ice, qsr_ice, dqns_ice, evap_ice, devap_ice, nn_flxdist )
! ! compute conduction flux and surface temperature (as in Jules surface module)
IF( ln_cndflx .AND. .NOT.ln_cndemulate ) &
& CALL blk_ice_qcn ( ln_virtual_itd, t_su, t_bo, h_s, h_i )
CASE ( jp_purecpl ) !--- coupled formulation
CALL sbc_cpl_ice_flx( kt, picefr=at_i_b, palbi=alb_ice, psst=sst_m, pist=t_su, phs=h_s, phi=h_i )
IF( nn_flxdist /= -1 ) CALL ice_flx_dist ( t_su, alb_ice, qns_ice, qsr_ice, dqns_ice, evap_ice, devap_ice, nn_flxdist )
END SELECT
! !== some fluxes at the ice-ocean interface and in the leads
CALL ice_flx_other
!
IF( ln_timing ) CALL timing_stop('icesbc')
!
END SUBROUTINE ice_sbc_flx
SUBROUTINE ice_flx_dist( ptn_ice, palb_ice, pqns_ice, pqsr_ice, pdqn_ice, pevap_ice, pdevap_ice, k_flxdist )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_flx_dist ***
!!
!! ** Purpose : update the ice surface boundary condition by averaging
!! and/or redistributing fluxes on ice categories
!!
!! ** Method : average then redistribute
!!
!! ** Action : depends on k_flxdist
!! = -1 Do nothing (needs N(cat) fluxes)
!! = 0 Average N(cat) fluxes then apply the average over the N(cat) ice
!! = 1 Average N(cat) fluxes then redistribute over the N(cat) ice
!! using T-ice and albedo sensitivity
!! = 2 Redistribute a single flux over categories
!!-------------------------------------------------------------------
INTEGER , INTENT(in ) :: k_flxdist ! redistributor
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: ptn_ice ! ice surface temperature
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: palb_ice ! ice albedo
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pqns_ice ! non solar flux
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pqsr_ice ! net solar flux
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pdqn_ice ! non solar flux sensitivity
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pevap_ice ! sublimation
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pdevap_ice ! sublimation sensitivity
!
INTEGER :: jl ! dummy loop index
!
REAL(wp), DIMENSION(jpi,jpj) :: z1_at_i ! inverse of concentration
!
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_qsr_m ! Mean solar heat flux over all categories
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_qns_m ! Mean non solar heat flux over all categories
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_evap_m ! Mean sublimation over all categories
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_dqn_m ! Mean d(qns)/dT over all categories
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_devap_m ! Mean d(evap)/dT over all categories
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zalb_m ! Mean albedo over all categories
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: ztem_m ! Mean temperature over all categories
!!----------------------------------------------------------------------
!
WHERE ( at_i (:,:) > 0._wp ) ; z1_at_i(:,:) = 1._wp / at_i (:,:)
ELSEWHERE ; z1_at_i(:,:) = 0._wp
END WHERE
SELECT CASE( k_flxdist ) !== averaged on all ice categories ==!
!
CASE( 0 , 1 )
!
ALLOCATE( z_qns_m(jpi,jpj), z_qsr_m(jpi,jpj), z_dqn_m(jpi,jpj), z_evap_m(jpi,jpj), z_devap_m(jpi,jpj) )
!
z_qns_m (:,:) = SUM( a_i(:,:,:) * pqns_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
z_qsr_m (:,:) = SUM( a_i(:,:,:) * pqsr_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
z_dqn_m (:,:) = SUM( a_i(:,:,:) * pdqn_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
z_evap_m (:,:) = SUM( a_i(:,:,:) * pevap_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
z_devap_m(:,:) = SUM( a_i(:,:,:) * pdevap_ice(:,:,:) , dim=3 ) * z1_at_i(:,:)
DO jl = 1, jpl
pqns_ice (:,:,jl) = z_qns_m (:,:)
pqsr_ice (:,:,jl) = z_qsr_m (:,:)
pdqn_ice (:,:,jl) = z_dqn_m (:,:)
pevap_ice (:,:,jl) = z_evap_m(:,:)
pdevap_ice(:,:,jl) = z_devap_m(:,:)
END DO
!
DEALLOCATE( z_qns_m, z_qsr_m, z_dqn_m, z_evap_m, z_devap_m )
!
END SELECT
!
SELECT CASE( k_flxdist ) !== redistribution on all ice categories ==!
!
CASE( 1 , 2 )
!
ALLOCATE( zalb_m(jpi,jpj), ztem_m(jpi,jpj) )
!
zalb_m(:,:) = SUM( a_i(:,:,:) * palb_ice(:,:,:) , dim=3 ) * z1_at_i(:,:)
ztem_m(:,:) = SUM( a_i(:,:,:) * ptn_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
DO jl = 1, jpl
pqns_ice (:,:,jl) = pqns_ice (:,:,jl) + pdqn_ice (:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) )
pevap_ice(:,:,jl) = pevap_ice(:,:,jl) + pdevap_ice(:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) )
pqsr_ice (:,:,jl) = pqsr_ice (:,:,jl) * ( 1._wp - palb_ice(:,:,jl) ) / ( 1._wp - zalb_m(:,:) )
END DO
!
DEALLOCATE( zalb_m, ztem_m )
!
END SELECT
!
END SUBROUTINE ice_flx_dist
SUBROUTINE ice_flx_other
!!-----------------------------------------------------------------------
!! *** ROUTINE ice_flx_other ***
!!
!! ** Purpose : prepare necessary fields for thermo calculations
!!
!! ** Inputs : u_ice, v_ice, ssu_m, ssv_m, utau, vtau
!! frq_m, qsr_oce, qns_oce, qemp_oce, e3t_m, sst_m
!! ** Outputs : qsb_ice_bot, fhld, qlead
!!-----------------------------------------------------------------------
INTEGER :: ji, jj ! dummy loop indices
REAL(wp) :: zfric_u, zqld, zqfr, zqfr_neg, zqfr_pos, zu_io, zv_io, zu_iom1, zv_iom1
REAL(wp), PARAMETER :: zfric_umin = 0._wp ! lower bound for the friction velocity (cice value=5.e-04)
REAL(wp), PARAMETER :: zch = 0.0057_wp ! heat transfer coefficient
REAL(wp), DIMENSION(jpi,jpj) :: zfric, zvel ! ice-ocean velocity (m/s) and frictional velocity (m2/s2)
!!-----------------------------------------------------------------------
!
! computation of friction velocity at T points
IF( ln_icedyn ) THEN
DO_2D( 0, 0, 0, 0 )
zu_io = u_ice(ji ,jj ) - ssu_m(ji ,jj )
zu_iom1 = u_ice(ji-1,jj ) - ssu_m(ji-1,jj )
zv_io = v_ice(ji ,jj ) - ssv_m(ji ,jj )
zv_iom1 = v_ice(ji ,jj-1) - ssv_m(ji ,jj-1)
!
zfric(ji,jj) = rn_cio * ( 0.5_wp * ( zu_io*zu_io + zu_iom1*zu_iom1 + zv_io*zv_io + zv_iom1*zv_iom1 ) ) * tmask(ji,jj,1)
zvel (ji,jj) = 0.5_wp * SQRT( ( u_ice(ji-1,jj ) + u_ice(ji,jj) ) * ( u_ice(ji-1,jj ) + u_ice(ji,jj) ) + &
& ( v_ice(ji ,jj-1) + v_ice(ji,jj) ) * ( v_ice(ji ,jj-1) + v_ice(ji,jj) ) )
END_2D
CALL lbc_lnk( 'icesbc', zfric, 'T', 1.0_wp, zvel, 'T', 1.0_wp )
ELSE ! if no ice dynamics => transfer directly the atmospheric stress to the ocean
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zfric(ji,jj) = r1_rho0 * SQRT( utau(ji,jj)*utau(ji,jj) + vtau(ji,jj)*vtau(ji,jj) ) * tmask(ji,jj,1)
zvel (ji,jj) = 0._wp
END_2D
ENDIF
!
!--------------------------------------------------------------------!
! Partial computation of forcing for the thermodynamic sea ice model
!--------------------------------------------------------------------!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! needed for qlead
rswitch = tmask(ji,jj,1) * MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) ! 0 if no ice
!
! --- Energy received in the lead from atm-oce exchanges, zqld is defined everywhere (J.m-2) --- !
zqld = tmask(ji,jj,1) * rDt_ice * &
& ( ( 1._wp - at_i_b(ji,jj) ) * qsr_oce(ji,jj) * frq_m(ji,jj) + &
& ( 1._wp - at_i_b(ji,jj) ) * qns_oce(ji,jj) + qemp_oce(ji,jj) )
! --- Energy needed to bring ocean surface layer until its freezing, zqfr is defined everywhere (J.m-2) --- !
! (mostly<0 but >0 if supercooling)
zqfr = rho0 * rcp * e3t_m(ji,jj) * ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) * tmask(ji,jj,1) ! both < 0 (t_bo < sst) and > 0 (t_bo > sst)
zqfr_neg = MIN( zqfr , 0._wp ) ! only < 0
zqfr_pos = MAX( zqfr , 0._wp ) ! only > 0
! --- Sensible ocean-to-ice heat flux (W/m2) --- !
! (mostly>0 but <0 if supercooling)
zfric_u = MAX( SQRT( zfric(ji,jj) ), zfric_umin )
qsb_ice_bot(ji,jj) = rswitch * rho0 * rcp * zch * zfric_u * ( ( sst_m(ji,jj) + rt0 ) - t_bo(ji,jj) )
! upper bound for qsb_ice_bot: the heat retrieved from the ocean must be smaller than the heat necessary to reach
! the freezing point, so that we do not have SST < T_freeze
! This implies: qsb_ice_bot(ji,jj) * at_i(ji,jj) * rtdice <= - zqfr_neg
! The following formulation is ok for both normal conditions and supercooling
qsb_ice_bot(ji,jj) = rswitch * MIN( qsb_ice_bot(ji,jj), - zqfr_neg * r1_Dt_ice / MAX( at_i(ji,jj), epsi10 ) )
! If conditions are always supercooled (such as at the mouth of ice-shelves), then ice grows continuously
! ==> stop ice formation by artificially setting up the turbulent fluxes to 0 when volume > 20m (arbitrary)
IF( ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) > 0._wp .AND. vt_i(ji,jj) >= 20._wp ) THEN
zqfr = 0._wp
zqfr_pos = 0._wp
qsb_ice_bot(ji,jj) = 0._wp
ENDIF
!
! --- Energy Budget of the leads (qlead, J.m-2) --- !
! qlead is the energy received from the atm. in the leads.
! If warming (zqld >= 0), then the energy in the leads is used to melt ice (bottom melting) => fhld (W/m2)
! If cooling (zqld < 0), then the energy in the leads is used to grow ice in open water => qlead (J.m-2)
IF( zqld >= 0._wp .AND. at_i(ji,jj) > 0._wp ) THEN
! upper bound for fhld: fhld should be equal to zqld
! but we have to make sure that this heat will not make the sst drop below the freezing point
! so the max heat that can be pulled out of the ocean is zqld - qsb - zqfr_pos
! The following formulation is ok for both normal conditions and supercooling
fhld (ji,jj) = rswitch * MAX( 0._wp, ( zqld - zqfr_pos ) * r1_Dt_ice / MAX( at_i(ji,jj), epsi10 ) & ! divided by at_i since this is (re)multiplied by a_i in icethd_dh.F90
& - qsb_ice_bot(ji,jj) )
qlead(ji,jj) = 0._wp
ELSE
fhld (ji,jj) = 0._wp
! upper bound for qlead: qlead should be equal to zqld
! but before using this heat for ice formation, we suppose that the ocean cools down till the freezing point.
! The energy for this cooling down is zqfr. Also some heat will be removed from the ocean from turbulent fluxes (qsb)
! and freezing point is reached if zqfr = zqld - qsb*a/dt
! so the max heat that can be pulled out of the ocean is zqld - qsb - zqfr
! The following formulation is ok for both normal conditions and supercooling
qlead(ji,jj) = MIN( 0._wp , zqld - ( qsb_ice_bot(ji,jj) * at_i(ji,jj) * rDt_ice ) - zqfr )
ENDIF
!
! If ice is landfast and ice concentration reaches its max
! => stop ice formation in open water
IF( zvel(ji,jj) <= 5.e-04_wp .AND. at_i(ji,jj) >= rn_amax_2d(ji,jj)-epsi06 ) qlead(ji,jj) = 0._wp
!
! If the grid cell is almost fully covered by ice (no leads)
! => stop ice formation in open water
IF( at_i(ji,jj) >= (1._wp - epsi10) ) qlead(ji,jj) = 0._wp
!
! If ln_leadhfx is false
! => do not use energy of the leads to melt sea-ice
IF( .NOT.ln_leadhfx ) fhld(ji,jj) = 0._wp
!
END_2D
! In case we bypass open-water ice formation
IF( .NOT. ln_icedO ) qlead(:,:) = 0._wp
! In case we bypass growing/melting from top and bottom
IF( .NOT. ln_icedH ) THEN
qsb_ice_bot(:,:) = 0._wp
fhld (:,:) = 0._wp
ENDIF
END SUBROUTINE ice_flx_other
SUBROUTINE ice_sbc_init
!!-------------------------------------------------------------------
!! *** ROUTINE ice_sbc_init ***
!!
!! ** Purpose : Physical constants and parameters linked to the ice dynamics
!!
!! ** Method : Read the namsbc namelist and check the ice-dynamic
!! parameter values called at the first timestep (nit000)
!!
!! ** input : Namelist namsbc
!!-------------------------------------------------------------------
INTEGER :: ios, ioptio ! Local integer
!!
NAMELIST/namsbc/ rn_cio, nn_snwfra, rn_snwblow, nn_flxdist, ln_cndflx, ln_cndemulate, nn_qtrice
!!-------------------------------------------------------------------
!
READ ( numnam_ice_ref, namsbc, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc in reference namelist' )
READ ( numnam_ice_cfg, namsbc, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc in configuration namelist' )
IF(lwm) WRITE( numoni, namsbc )
!
IF(lwp) THEN ! control print
WRITE(numout,*)
WRITE(numout,*) 'ice_sbc_init: ice parameters for ice dynamics '
WRITE(numout,*) '~~~~~~~~~~~~~~~~'
WRITE(numout,*) ' Namelist namsbc:'
WRITE(numout,*) ' drag coefficient for oceanic stress rn_cio = ', rn_cio
WRITE(numout,*) ' fraction of ice covered by snow (options 0,1,2) nn_snwfra = ', nn_snwfra
WRITE(numout,*) ' coefficient for ice-lead partition of snowfall rn_snwblow = ', rn_snwblow
WRITE(numout,*) ' Multicategory heat flux formulation nn_flxdist = ', nn_flxdist
WRITE(numout,*) ' Use conduction flux as surface condition ln_cndflx = ', ln_cndflx
WRITE(numout,*) ' emulate conduction flux ln_cndemulate = ', ln_cndemulate
WRITE(numout,*) ' solar flux transmitted thru the surface scattering layer nn_qtrice = ', nn_qtrice
WRITE(numout,*) ' = 0 Grenfell and Maykut 1977'
WRITE(numout,*) ' = 1 Lebrun 2019'
ENDIF
!
IF(lwp) WRITE(numout,*)
SELECT CASE( nn_flxdist ) ! SI3 Multi-category heat flux formulation
CASE( -1 )
IF(lwp) WRITE(numout,*) ' SI3: use per-category fluxes (nn_flxdist = -1) '
CASE( 0 )
IF(lwp) WRITE(numout,*) ' SI3: use average per-category fluxes (nn_flxdist = 0) '
CASE( 1 )
IF(lwp) WRITE(numout,*) ' SI3: use average then redistribute per-category fluxes (nn_flxdist = 1) '
IF( ln_cpl ) CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in coupled mode must be /=1' )
CASE( 2 )
IF(lwp) WRITE(numout,*) ' SI3: Redistribute a single flux over categories (nn_flxdist = 2) '
IF( .NOT. ln_cpl ) CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in forced mode must be /=2' )
CASE DEFAULT
CALL ctl_stop( 'ice_thd_init: SI3 option, nn_flxdist, should be between -1 and 2' )
END SELECT
!
END SUBROUTINE ice_sbc_init
#else
!!----------------------------------------------------------------------
!! Default option : Empty module NO SI3 sea-ice model
!!----------------------------------------------------------------------
#endif
!!======================================================================
END MODULE icesbc