Forked from
NEMO Workspace / Nemo
964 commits behind, 8 commits ahead of the upstream repository.
-
Sebastien Masson authored8e6733b2
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
diaptr.F90 35.19 KiB
MODULE diaptr
!!======================================================================
!! *** MODULE diaptr ***
!! Ocean physics: Computes meridonal transports and zonal means
!!=====================================================================
!! History : 1.0 ! 2003-09 (C. Talandier, G. Madec) Original code
!! 2.0 ! 2006-01 (A. Biastoch) Allow sub-basins computation
!! 3.2 ! 2010-03 (O. Marti, S. Flavoni) Add fields
!! 3.3 ! 2010-10 (G. Madec) dynamical allocation
!! 3.6 ! 2014-12 (C. Ethe) use of IOM
!! 3.6 ! 2016-06 (T. Graham) Addition of diagnostics for CMIP6
!! 4.0 ! 2010-08 ( C. Ethe, J. Deshayes ) Improvment
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! dia_ptr : Poleward Transport Diagnostics module
!! dia_ptr_init : Initialization, namelist read
!! ptr_sjk : "zonal" mean computation of a field - tracer or flux array
!! ptr_sj : "zonal" and vertical sum computation of a "meridional" flux array
!! (Generic interface to ptr_sj_3d, ptr_sj_2d)
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and active tracers
USE dom_oce ! ocean space and time domain
USE domtile
USE phycst ! physical constants
!
USE iom ! IOM library
USE in_out_manager ! I/O manager
USE lib_mpp ! MPP library
USE timing ! preformance summary
IMPLICIT NONE
PRIVATE
INTERFACE ptr_sum
MODULE PROCEDURE ptr_sum_3d, ptr_sum_2d
END INTERFACE
INTERFACE ptr_sj
MODULE PROCEDURE ptr_sj_3d, ptr_sj_2d
END INTERFACE
PUBLIC dia_ptr ! call in step module
PUBLIC dia_ptr_init ! call in stprk3 module
PUBLIC dia_ptr_hst ! called from tra_ldf/tra_adv routines
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hstr_adv, hstr_ldf, hstr_eiv !: Heat/Salt TRansports(adv, diff, Bolus.)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hstr_ove, hstr_btr, hstr_vtr !: heat Salt TRansports(overturn, baro, merional)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: pvtr_int, pzon_int !: Other zonal integrals
LOGICAL, PUBLIC :: l_diaptr !: tracers trend flag
INTEGER, PARAMETER :: jp_msk = 3
INTEGER, PARAMETER :: jp_vtr = 4
REAL(wp) :: rc_sv = 1.e-6_wp ! conversion from m3/s to Sverdrup
REAL(wp) :: rc_pwatt = 1.e-15_wp ! conversion from W to PW (further x rho0 x Cp)
REAL(wp) :: rc_ggram = 1.e-9_wp ! conversion from g to Gg (further x rho0)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: btmsk ! T-point basin interior masks
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: btmsk34 ! mask out Southern Ocean (=0 south of 34°S)
LOGICAL :: ll_init = .TRUE. !: tracers trend flag
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: diaptr.F90 15513 2021-11-15 17:31:29Z techene $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
! NOTE: [tiling] tiling sometimes changes the diagnostics very slightly, usually where there are few zonal points e.g. the northern Indian Ocean basin. The difference is usually very small, for one point in one diagnostic. Presumably this is because of the additional zonal integration step over tiles.
SUBROUTINE dia_ptr( kt, Kmm, pvtr )
!!----------------------------------------------------------------------
!! *** ROUTINE dia_ptr ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in) :: kt ! ocean time-step index
INTEGER , INTENT(in) :: Kmm ! time level index
REAL(wp), DIMENSION(A2D(0),jpk) , INTENT(in), OPTIONAL :: pvtr ! j-effective transport
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('dia_ptr')
#if ! defined key_RK3
IF( kt == nit000 .AND. ll_init ) CALL dia_ptr_init ! -> will define l_diaptr and nbasin
#endif
!
IF( l_diaptr ) THEN
! Calculate zonal integrals
IF( PRESENT( pvtr ) ) THEN
CALL dia_ptr_zint( Kmm, pvtr )
ELSE
CALL dia_ptr_zint( Kmm )
ENDIF
! Calculate diagnostics only when zonal integrals have finished
IF( .NOT. l_istiled .OR. ntile == nijtile ) CALL dia_ptr_iom(kt, Kmm, pvtr)
ENDIF
IF( ln_timing ) CALL timing_stop('dia_ptr')
!
END SUBROUTINE dia_ptr
SUBROUTINE dia_ptr_iom( kt, Kmm, pvtr )
!!----------------------------------------------------------------------
!! *** ROUTINE dia_ptr_iom ***
!!----------------------------------------------------------------------
!! ** Purpose : Calculate diagnostics and send to XIOS
!!----------------------------------------------------------------------
INTEGER , INTENT(in) :: kt ! ocean time-step index
INTEGER , INTENT(in) :: Kmm ! time level index
REAL(wp), DIMENSION(:,:,:), INTENT(in), OPTIONAL :: pvtr ! j-effective transport (used only by PRESENT)
!
INTEGER :: ji, jj, jk, jn ! dummy loop indices
REAL(wp), DIMENSION(Nis0:Nie0,Njs0:Nje0) :: z2d ! 2D workspace
REAL(wp), DIMENSION( Njs0:Nje0) :: zvsum, ztsum, zssum ! 1D workspace
!
!overturning calculation
REAL(wp), DIMENSION(:,:,: ), ALLOCATABLE :: sjk, r1_sjk, v_msf ! i-mean i-k-surface and its inverse
REAL(wp), DIMENSION(:,:,: ), ALLOCATABLE :: zt_jk, zs_jk ! i-mean T and S, j-Stream-Function
REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: z4d1, z4d2
REAL(wp), DIMENSION(:,:,: ), ALLOCATABLE :: z3dtr
!!----------------------------------------------------------------------
!
ALLOCATE( z3dtr(Nis0:Nie0,Njs0:Nje0,nbasin) )
IF( PRESENT( pvtr ) ) THEN
IF( iom_use( 'zomsf' ) ) THEN ! effective MSF
ALLOCATE( z4d1(Nis0:Nie0,Njs0:Nje0,jpk,nbasin) )
!
DO jn = 1, nbasin ! by sub-basins
z4d1(Nis0,:,:,jn) = pvtr_int(:,:,jp_vtr,jn) ! zonal cumulative effective transport excluding closed seas
DO jk = jpkm1, 1, -1
z4d1(Nis0,:,jk,jn) = z4d1(Nis0,:,jk+1,jn) - z4d1(Nis0,:,jk,jn) ! effective j-Stream-Function (MSF)
END DO
DO ji = Nis0+1, Nie0
z4d1(ji,:,:,jn) = z4d1(Nis0,:,:,jn)
ENDDO
END DO
CALL iom_put( 'zomsf', z4d1 * rc_sv )
!
DEALLOCATE( z4d1 )
ENDIF
IF( iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) ) THEN
ALLOCATE( sjk( Njs0:Nje0,jpk,nbasin), r1_sjk(Njs0:Nje0,jpk,nbasin), v_msf(Njs0:Nje0,jpk,nbasin), &
& zt_jk(Njs0:Nje0,jpk,nbasin), zs_jk( Njs0:Nje0,jpk,nbasin) )
!
DO jn = 1, nbasin
sjk(:,:,jn) = pvtr_int(:,:,jp_msk,jn)
r1_sjk(:,:,jn) = 0._wp
WHERE( sjk(:,:,jn) /= 0._wp ) r1_sjk(:,:,jn) = 1._wp / sjk(:,:,jn)
! i-mean T and S, j-Stream-Function, basin
zt_jk(:,:,jn) = pvtr_int(:,:,jp_tem,jn) * r1_sjk(:,:,jn)
zs_jk(:,:,jn) = pvtr_int(:,:,jp_sal,jn) * r1_sjk(:,:,jn)
v_msf(:,:,jn) = pvtr_int(:,:,jp_vtr,jn)
hstr_ove(:,jp_tem,jn) = SUM( v_msf(:,:,jn)*zt_jk(:,:,jn), 2 )
hstr_ove(:,jp_sal,jn) = SUM( v_msf(:,:,jn)*zs_jk(:,:,jn), 2 )
!
ENDDO
DO jn = 1, nbasin
z3dtr(Nis0,:,jn) = hstr_ove(:,jp_tem,jn) * rc_pwatt ! (conversion in PW)
DO ji = Nis0+1, Nie0
z3dtr(ji,:,jn) = z3dtr(Nis0,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sophtove', z3dtr )
DO jn = 1, nbasin
z3dtr(Nis0,:,jn) = hstr_ove(:,jp_sal,jn) * rc_ggram ! (conversion in Gg)
DO ji = Nis0+1, Nie0
z3dtr(ji,:,jn) = z3dtr(Nis0,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sopstove', z3dtr )
!
DEALLOCATE( sjk, r1_sjk, v_msf, zt_jk, zs_jk )
ENDIF
IF( iom_use( 'sopstbtr' ) .OR. iom_use( 'sophtbtr' ) ) THEN
! Calculate barotropic heat and salt transport here
ALLOCATE( sjk(A1Dj(0),1,nbasin), r1_sjk(A1Dj(0),1,nbasin) )
!
DO jn = 1, nbasin
sjk(:,1,jn) = SUM( pvtr_int(:,:,jp_msk,jn), 2 )
r1_sjk(:,1,jn) = 0._wp
WHERE( sjk(:,1,jn) /= 0._wp ) r1_sjk(:,1,jn) = 1._wp / sjk(:,1,jn)
!
zvsum(:) = SUM( pvtr_int(:,:,jp_vtr,jn), 2 )
ztsum(:) = SUM( pvtr_int(:,:,jp_tem,jn), 2 )
zssum(:) = SUM( pvtr_int(:,:,jp_sal,jn), 2 )
hstr_btr(:,jp_tem,jn) = zvsum(:) * ztsum(:) * r1_sjk(:,1,jn)
hstr_btr(:,jp_sal,jn) = zvsum(:) * zssum(:) * r1_sjk(:,1,jn)
!
ENDDO
DO jn = 1, nbasin
z3dtr(Nis0,:,jn) = hstr_btr(:,jp_tem,jn) * rc_pwatt ! (conversion in PW)
DO ji = Nis0+1, Nie0
z3dtr(ji,:,jn) = z3dtr(Nis0,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sophtbtr', z3dtr )
DO jn = 1, nbasin
z3dtr(Nis0,:,jn) = hstr_btr(:,jp_sal,jn) * rc_ggram ! (conversion in Gg)
DO ji = Nis0+1, Nie0
z3dtr(ji,:,jn) = z3dtr(Nis0,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sopstbtr', z3dtr )
!
DEALLOCATE( sjk, r1_sjk )
ENDIF
!
hstr_ove(:,:,:) = 0._wp ! Zero before next timestep
hstr_btr(:,:,:) = 0._wp
pvtr_int(:,:,:,:) = 0._wp
ELSE
IF( iom_use( 'zotem' ) .OR. iom_use( 'zosal' ) .OR. iom_use( 'zosrf' ) ) THEN ! i-mean i-k-surface
ALLOCATE( z4d1(Nis0:Nie0,Njs0:Nje0,jpk,nbasin), z4d2(Nis0:Nie0,Njs0:Nje0,jpk,nbasin) )
!
DO jn = 1, nbasin
z4d1(Nis0,:,:,jn) = pzon_int(:,:,jp_msk,jn)
DO ji = Nis0+1, Nie0
z4d1(ji,:,:,jn) = z4d1(Nis0,:,:,jn)
ENDDO
ENDDO
CALL iom_put( 'zosrf', z4d1 )
!
DO jn = 1, nbasin
z4d2(Nis0,:,:,jn) = pzon_int(:,:,jp_tem,jn) / MAX( z4d1(Nis0,:,:,jn), 10.e-15 )
DO ji = Nis0+1, Nie0
z4d2(ji,:,:,jn) = z4d2(Nis0,:,:,jn)
ENDDO
ENDDO
CALL iom_put( 'zotem', z4d2 )
!
DO jn = 1, nbasin
z4d2(Nis0,:,:,jn) = pzon_int(:,:,jp_sal,jn) / MAX( z4d1(Nis0,:,:,jn), 10.e-15 )
DO ji = Nis0+1, Nie0
z4d2(ji,:,:,jn) = z4d2(Nis0,:,:,jn)
ENDDO
ENDDO
CALL iom_put( 'zosal', z4d2 )
!
DEALLOCATE( z4d1, z4d2 )
ENDIF
!
! ! Advective and diffusive heat and salt transport
IF( iom_use( 'sophtadv' ) .OR. iom_use( 'sopstadv' ) ) THEN
!
DO jn = 1, nbasin
z3dtr(Nis0,:,jn) = hstr_adv(:,jp_tem,jn) * rc_pwatt ! (conversion in PW)
DO ji = Nis0+1, Nie0
z3dtr(ji,:,jn) = z3dtr(Nis0,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sophtadv', z3dtr )
DO jn = 1, nbasin
z3dtr(Nis0,:,jn) = hstr_adv(:,jp_sal,jn) * rc_ggram ! (conversion in Gg)
DO ji = Nis0+1, Nie0
z3dtr(ji,:,jn) = z3dtr(Nis0,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sopstadv', z3dtr )
ENDIF
!
IF( iom_use( 'sophtldf' ) .OR. iom_use( 'sopstldf' ) ) THEN
!
DO jn = 1, nbasin
z3dtr(Nis0,:,jn) = hstr_ldf(:,jp_tem,jn) * rc_pwatt ! (conversion in PW)
DO ji = Nis0+1, Nie0
z3dtr(ji,:,jn) = z3dtr(Nis0,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sophtldf', z3dtr )
DO jn = 1, nbasin
z3dtr(Nis0,:,jn) = hstr_ldf(:,jp_sal,jn) * rc_ggram ! (conversion in Gg)
DO ji = Nis0+1, Nie0
z3dtr(ji,:,jn) = z3dtr(Nis0,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sopstldf', z3dtr )
ENDIF
!
IF( iom_use( 'sophteiv' ) .OR. iom_use( 'sopsteiv' ) ) THEN
!
DO jn = 1, nbasin
z3dtr(Nis0,:,jn) = hstr_eiv(:,jp_tem,jn) * rc_pwatt ! (conversion in PW)
DO ji = Nis0+1, Nie0
z3dtr(ji,:,jn) = z3dtr(Nis0,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sophteiv', z3dtr )
DO jn = 1, nbasin
z3dtr(Nis0,:,jn) = hstr_eiv(:,jp_sal,jn) * rc_ggram ! (conversion in Gg)
DO ji = Nis0+1, Nie0
z3dtr(ji,:,jn) = z3dtr(Nis0,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sopsteiv', z3dtr )
ENDIF
!
IF( iom_use( 'sopstvtr' ) .OR. iom_use( 'sophtvtr' ) ) THEN
DO jn = 1, nbasin
z3dtr(Nis0,:,jn) = hstr_vtr(:,jp_tem,jn) * rc_pwatt ! (conversion in PW)
DO ji = Nis0+1, Nie0
z3dtr(ji,:,jn) = z3dtr(Nis0,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sophtvtr', z3dtr )
DO jn = 1, nbasin
z3dtr(Nis0,:,jn) = hstr_vtr(:,jp_sal,jn) * rc_ggram ! (conversion in Gg)
DO ji = Nis0+1, Nie0
z3dtr(ji,:,jn) = z3dtr(Nis0,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sopstvtr', z3dtr )
ENDIF
!
IF( iom_use( 'uocetr_vsum_cumul' ) ) THEN
CALL iom_get_var( 'uocetr_vsum_op', z2d ) ! get uocetr_vsum_op from xml
z2d(:,:) = ptr_ci_2d( z2d(:,:) )
CALL iom_put( 'uocetr_vsum_cumul', z2d )
ENDIF
!
hstr_adv(:,:,:) = 0._wp ! Zero before next timestep
hstr_ldf(:,:,:) = 0._wp
hstr_eiv(:,:,:) = 0._wp
hstr_vtr(:,:,:) = 0._wp
pzon_int(:,:,:,:) = 0._wp
ENDIF
!
DEALLOCATE( z3dtr )
!
END SUBROUTINE dia_ptr_iom
SUBROUTINE dia_ptr_zint( Kmm, pvtr )
!!----------------------------------------------------------------------
!! *** ROUTINE dia_ptr_zint ***
!!----------------------------------------------------------------------
!! ** Purpose : i and i-k sum operations on arrays
!!
!! ** Method : - Call ptr_sjk (i sum) or ptr_sj (i-k sum) to perform the sum operation
!! - Call ptr_sum to add this result to the sum over tiles
!!
!! ** Action : pvtr_int - terms for volume streamfunction, heat/salt transport barotropic/overturning terms
!! pzon_int - terms for i mean temperature/salinity
!!----------------------------------------------------------------------
INTEGER , INTENT(in) :: Kmm ! time level index
REAL(wp), DIMENSION(A2D(0),jpk), INTENT(in), OPTIONAL :: pvtr ! j-effective transport
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: zmask ! 3D workspace
REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: zts ! 4D workspace
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sjk, v_msf ! Zonal sum: i-k surface area, j-effective transport
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: zt_jk, zs_jk ! Zonal sum: i-k surface area * (T, S)
REAL(wp) :: zsfc, zvfc ! i-k surface area
INTEGER :: ji, jj, jk, jn ! dummy loop indices
!!----------------------------------------------------------------------
IF( PRESENT( pvtr ) ) THEN
! i sum of effective j transport excluding closed seas
IF( iom_use( 'zomsf' ) .OR. iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) ) THEN
ALLOCATE( v_msf(A1Dj(0),jpk,nbasin) )
DO jn = 1, nbasin
v_msf(:,:,jn) = ptr_sjk( pvtr(:,:,:), btmsk34(:,:,jn) )
ENDDO
CALL ptr_sum( pvtr_int(:,:,jp_vtr,:), v_msf(:,:,:) )
DEALLOCATE( v_msf )
ENDIF
! i sum of j surface area, j surface area - temperature/salinity product on V grid
IF( iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) .OR. &
& iom_use( 'sopstbtr' ) .OR. iom_use( 'sophtbtr' ) ) THEN
ALLOCATE( zmask( A2D(0),jpk ), zts( A2D(0),jpk,jpts ), &
& sjk( A1Dj(0),jpk,nbasin), &
& zt_jk(A1Dj(0),jpk,nbasin), zs_jk(A1Dj(0),jpk,nbasin) )
zmask(:,:,:) = 0._wp
zts(:,:,:,:) = 0._wp
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
zvfc = e1v(ji,jj) * e3v(ji,jj,jk,Kmm)
zmask(ji,jj,jk) = vmask(ji,jj,jk) * zvfc
zts(ji,jj,jk,jp_tem) = (ts(ji,jj,jk,jp_tem,Kmm)+ts(ji,jj+1,jk,jp_tem,Kmm)) * 0.5 * zvfc !Tracers averaged onto V grid
zts(ji,jj,jk,jp_sal) = (ts(ji,jj,jk,jp_sal,Kmm)+ts(ji,jj+1,jk,jp_sal,Kmm)) * 0.5 * zvfc
END_3D
DO jn = 1, nbasin
sjk(:,:,jn) = ptr_sjk( zmask(:,:,:) , btmsk(:,:,jn) )
zt_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_tem), btmsk(:,:,jn) )
zs_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_sal), btmsk(:,:,jn) )
ENDDO
CALL ptr_sum( pvtr_int(:,:,jp_msk,:), sjk(:,:,:) )
CALL ptr_sum( pvtr_int(:,:,jp_tem,:), zt_jk(:,:,:) )
CALL ptr_sum( pvtr_int(:,:,jp_sal,:), zs_jk(:,:,:) )
DEALLOCATE( zmask, zts, sjk, zt_jk, zs_jk )
ENDIF
ELSE
! i sum of j surface area - temperature/salinity product on T grid
IF( iom_use( 'zotem' ) .OR. iom_use( 'zosal' ) .OR. iom_use( 'zosrf' ) ) THEN
ALLOCATE( zmask( A2D(0),jpk ), zts( A2D(0),jpk,jpts ), &
& sjk( A1Dj(0),jpk,nbasin), &
& zt_jk(A1Dj(0),jpk,nbasin), zs_jk(A1Dj(0),jpk,nbasin) )
zmask(:,:,:) = 0._wp
zts(:,:,:,:) = 0._wp
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
zsfc = e1t(ji,jj) * e3t(ji,jj,jk,Kmm)
zmask(ji,jj,jk) = tmask(ji,jj,jk) * zsfc
zts(ji,jj,jk,jp_tem) = ts(ji,jj,jk,jp_tem,Kmm) * zsfc
zts(ji,jj,jk,jp_sal) = ts(ji,jj,jk,jp_sal,Kmm) * zsfc
END_3D
DO jn = 1, nbasin
sjk(:,:,jn) = ptr_sjk( zmask(:,:,:) , btmsk(:,:,jn) )
zt_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_tem), btmsk(:,:,jn) )
zs_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_sal), btmsk(:,:,jn) )
ENDDO
CALL ptr_sum( pzon_int(:,:,jp_msk,:), sjk(:,:,:) )
CALL ptr_sum( pzon_int(:,:,jp_tem,:), zt_jk(:,:,:) )
CALL ptr_sum( pzon_int(:,:,jp_sal,:), zs_jk(:,:,:) )
DEALLOCATE( zmask, zts, sjk, zt_jk, zs_jk )
ENDIF
! i-k sum of j surface area - temperature/salinity product on V grid
IF( iom_use( 'sopstvtr' ) .OR. iom_use( 'sophtvtr' ) ) THEN
! TODO: Can be A2D(0) once all dia_ptr_hst calls have arguments with consistent declarations
ALLOCATE( zts(A2D(nn_hls),jpk,jpts) )
zts(:,:,:,:) = 0._wp
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
zvfc = e1v(ji,jj) * e3v(ji,jj,jk,Kmm)
zts(ji,jj,jk,jp_tem) = (ts(ji,jj,jk,jp_tem,Kmm)+ts(ji,jj+1,jk,jp_tem,Kmm)) * 0.5 * zvfc !Tracers averaged onto V grid
zts(ji,jj,jk,jp_sal) = (ts(ji,jj,jk,jp_sal,Kmm)+ts(ji,jj+1,jk,jp_sal,Kmm)) * 0.5 * zvfc
END_3D
CALL dia_ptr_hst( jp_tem, 'vtr', zts(:,:,:,jp_tem) )
CALL dia_ptr_hst( jp_sal, 'vtr', zts(:,:,:,jp_sal) )
DEALLOCATE( zts )
ENDIF
ENDIF
END SUBROUTINE dia_ptr_zint
SUBROUTINE dia_ptr_init
!!----------------------------------------------------------------------
!! *** ROUTINE dia_ptr_init ***
!!
!! ** Purpose : Initialization
!!----------------------------------------------------------------------
INTEGER :: inum, jn ! local integers
!!
REAL(wp), DIMENSION(jpi,jpj) :: zmsk
!!----------------------------------------------------------------------
! l_diaptr is defined with iom_use
! --> dia_ptr_init must be done after the call to iom_init
! --> cannot be .TRUE. without cpp key: key_xios --> nbasin define by iom_init is initialized
l_diaptr = iom_use( 'zomsf' ) .OR. iom_use( 'zotem' ) .OR. iom_use( 'zosal' ) .OR. &
& iom_use( 'zosrf' ) .OR. iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) .OR. &
& iom_use( 'sopstbtr' ) .OR. iom_use( 'sophtbtr' ) .OR. iom_use( 'sophtadv' ) .OR. &
& iom_use( 'sopstadv' ) .OR. iom_use( 'sophtldf' ) .OR. iom_use( 'sopstldf' ) .OR. &
& iom_use( 'sophteiv' ) .OR. iom_use( 'sopsteiv' ) .OR. iom_use( 'sopstvtr' ) .OR. &
& iom_use( 'sophtvtr' ) .OR. iom_use( 'uocetr_vsum_cumul' )
IF(lwp) THEN ! Control print
WRITE(numout,*)
WRITE(numout,*) 'dia_ptr_init : poleward transport and msf initialization'
WRITE(numout,*) '~~~~~~~~~~~~'
WRITE(numout,*) ' Poleward heat & salt transport (T) or not (F) l_diaptr = ', l_diaptr
ENDIF
IF( l_diaptr ) THEN
!
IF( dia_ptr_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'dia_ptr_init : unable to allocate arrays' )
!
rc_pwatt = rc_pwatt * rho0_rcp ! conversion from K.s-1 to PetaWatt
rc_ggram = rc_ggram * rho0 ! conversion from m3/s to Gg/s
IF( lk_mpp ) CALL mpp_ini_znl( numout ) ! Define MPI communicator for zonal sum
btmsk(:,:,1) = tmask_i(:,:)
IF( nbasin == 5 ) THEN ! nbasin has been initialized in iom_init to define the axis "basin"
CALL iom_open( 'subbasins', inum )
CALL iom_get( inum, jpdom_global, 'atlmsk', btmsk(:,:,2) ) ! Atlantic basin
CALL iom_get( inum, jpdom_global, 'pacmsk', btmsk(:,:,3) ) ! Pacific basin
CALL iom_get( inum, jpdom_global, 'indmsk', btmsk(:,:,4) ) ! Indian basin
CALL iom_close( inum )
btmsk(:,:,5) = MAX ( btmsk(:,:,3), btmsk(:,:,4) ) ! Indo-Pacific basin
ENDIF
DO jn = 2, nbasin
btmsk(:,:,jn) = btmsk(:,:,jn) * tmask_i(:,:) ! interior domain only
END DO
! JD : modification so that overturning streamfunction is available in Atlantic at 34S to compare with observations
WHERE( gphit(:,:)*tmask_i(:,:) < -34._wp)
zmsk(:,:) = 0._wp ! mask out Southern Ocean
ELSE WHERE
zmsk(:,:) = ssmask(:,:)
END WHERE
btmsk34(:,:,1) = btmsk(:,:,1)
DO jn = 2, nbasin
btmsk34(:,:,jn) = btmsk(:,:,jn) * zmsk(:,:) ! interior domain only
ENDDO
! Initialise arrays to zero because diatpr is called before they are first calculated
! Note that this means diagnostics will not be exactly correct when model run is restarted.
hstr_adv(:,:,:) = 0._wp
hstr_ldf(:,:,:) = 0._wp
hstr_eiv(:,:,:) = 0._wp
hstr_ove(:,:,:) = 0._wp
hstr_btr(:,:,:) = 0._wp !
hstr_vtr(:,:,:) = 0._wp !
pvtr_int(:,:,:,:) = 0._wp
pzon_int(:,:,:,:) = 0._wp
!
ll_init = .FALSE.
!
ENDIF
!
END SUBROUTINE dia_ptr_init
SUBROUTINE dia_ptr_hst( ktra, cptr, pvflx )
!!----------------------------------------------------------------------
!! *** ROUTINE dia_ptr_hst ***
!!----------------------------------------------------------------------
!! Wrapper for heat and salt transport calculations to calculate them for each basin
!! Called from all advection and/or diffusion routines
!!----------------------------------------------------------------------
INTEGER , INTENT(in) :: ktra ! tracer index
CHARACTER(len=3) , INTENT(in) :: cptr ! transport type 'adv'/'ldf'/'eiv'
! TODO: Can be A2D(0) once all dia_ptr_hst calls have arguments with consistent declarations
REAL(wp), DIMENSION(A2D(nn_hls),jpk), INTENT(in) :: pvflx ! 3D input array of advection/diffusion
REAL(wp), DIMENSION(A1Dj(0),nbasin) :: zsj !
INTEGER :: jn !
DO jn = 1, nbasin
zsj(:,jn) = ptr_sj( pvflx(:,:,:), btmsk(:,:,jn) )
ENDDO
!
IF( cptr == 'adv' ) THEN
IF( ktra == jp_tem ) CALL ptr_sum( hstr_adv(:,jp_tem,:), zsj(:,:) )
IF( ktra == jp_sal ) CALL ptr_sum( hstr_adv(:,jp_sal,:), zsj(:,:) )
ELSE IF( cptr == 'ldf' ) THEN
IF( ktra == jp_tem ) CALL ptr_sum( hstr_ldf(:,jp_tem,:), zsj(:,:) )
IF( ktra == jp_sal ) CALL ptr_sum( hstr_ldf(:,jp_sal,:), zsj(:,:) )
ELSE IF( cptr == 'eiv' ) THEN
IF( ktra == jp_tem ) CALL ptr_sum( hstr_eiv(:,jp_tem,:), zsj(:,:) )
IF( ktra == jp_sal ) CALL ptr_sum( hstr_eiv(:,jp_sal,:), zsj(:,:) )
ELSE IF( cptr == 'vtr' ) THEN
IF( ktra == jp_tem ) CALL ptr_sum( hstr_vtr(:,jp_tem,:), zsj(:,:) )
IF( ktra == jp_sal ) CALL ptr_sum( hstr_vtr(:,jp_sal,:), zsj(:,:) )
ENDIF
!
END SUBROUTINE dia_ptr_hst
SUBROUTINE ptr_sum_2d( phstr, pva )
!!----------------------------------------------------------------------
!! *** ROUTINE ptr_sum_2d ***
!!----------------------------------------------------------------------
!! ** Purpose : Add two 2D arrays with (j,nbasin) dimensions
!!
!! ** Method : - phstr = phstr + pva
!! - Call mpp_sum if the final tile
!!
!! ** Action : phstr
!!----------------------------------------------------------------------
REAL(wp), DIMENSION(Njs0:Nje0,nbasin), INTENT(inout) :: phstr !
REAL(wp), DIMENSION(A1Dj(0) ,nbasin), INTENT(in ) :: pva !
INTEGER :: jj
#if ! defined key_mpi_off
INTEGER, DIMENSION(1) :: ish1d
INTEGER, DIMENSION(2) :: ish2d
REAL(wp), DIMENSION(:), ALLOCATABLE :: zwork
#endif
DO jj = ntsj, ntej
phstr(jj,:) = phstr(jj,:) + pva(jj,:)
END DO
#if ! defined key_mpi_off
IF( .NOT. l_istiled .OR. ntile == nijtile ) THEN
ALLOCATE( zwork(Nj_0*nbasin) )
ish1d(1) = Nj_0*nbasin
ish2d(1) = Nj_0 ; ish2d(2) = nbasin
zwork(:) = RESHAPE( phstr(:,:), ish1d )
CALL mpp_sum( 'diaptr', zwork, ish1d(1), ncomm_znl )
phstr(:,:) = RESHAPE( zwork, ish2d )
DEALLOCATE( zwork )
ENDIF
#endif
END SUBROUTINE ptr_sum_2d
SUBROUTINE ptr_sum_3d( phstr, pva )
!!----------------------------------------------------------------------
!! *** ROUTINE ptr_sum_3d ***
!!----------------------------------------------------------------------
!! ** Purpose : Add two 3D arrays with (j,k,nbasin) dimensions
!!
!! ** Method : - phstr = phstr + pva
!! - Call mpp_sum if the final tile
!!
!! ** Action : phstr
!!----------------------------------------------------------------------
REAL(wp), DIMENSION(Njs0:Nje0,jpk,nbasin), INTENT(inout) :: phstr !
REAL(wp), DIMENSION(A1Dj(0) ,jpk,nbasin), INTENT(in ) :: pva !
INTEGER :: jj, jk
#if ! defined key_mpi_off
INTEGER, DIMENSION(1) :: ish1d
INTEGER, DIMENSION(3) :: ish3d
REAL(wp), DIMENSION(:), ALLOCATABLE :: zwork
#endif
DO jk = 1, jpk
DO jj = ntsj, ntej
phstr(jj,jk,:) = phstr(jj,jk,:) + pva(jj,jk,:)
END DO
END DO
#if ! defined key_mpi_off
IF( .NOT. l_istiled .OR. ntile == nijtile ) THEN
ALLOCATE( zwork(Nj_0*jpk*nbasin) )
ish1d(1) = Nj_0*jpk*nbasin
ish3d(1) = Nj_0 ; ish3d(2) = jpk ; ish3d(3) = nbasin
zwork(:) = RESHAPE( phstr(:,:,:), ish1d )
CALL mpp_sum( 'diaptr', zwork, ish1d(1), ncomm_znl )
phstr(:,:,:) = RESHAPE( zwork, ish3d )
DEALLOCATE( zwork )
ENDIF
#endif
END SUBROUTINE ptr_sum_3d
FUNCTION dia_ptr_alloc()
!!----------------------------------------------------------------------
!! *** ROUTINE dia_ptr_alloc ***
!!----------------------------------------------------------------------
INTEGER :: dia_ptr_alloc ! return value
INTEGER, DIMENSION(2) :: ierr
!!----------------------------------------------------------------------
ierr(:) = 0
!
! nbasin has been initialized in iom_init to define the axis "basin"
!
IF( .NOT. ALLOCATED( btmsk ) ) THEN
ALLOCATE( btmsk(jpi,jpj,nbasin) , btmsk34(jpi,jpj,nbasin), &
& hstr_adv(Njs0:Nje0,jpts,nbasin), hstr_eiv(Njs0:Nje0,jpts,nbasin), &
& hstr_ove(Njs0:Nje0,jpts,nbasin), hstr_btr(Njs0:Nje0,jpts,nbasin), &
& hstr_ldf(Njs0:Nje0,jpts,nbasin), hstr_vtr(Njs0:Nje0,jpts,nbasin), STAT=ierr(1) )
!
ALLOCATE( pvtr_int(Njs0:Nje0,jpk,jpts+2,nbasin), &
& pzon_int(Njs0:Nje0,jpk,jpts+1,nbasin), STAT=ierr(2) )
!
dia_ptr_alloc = MAXVAL( ierr )
CALL mpp_sum( 'diaptr', dia_ptr_alloc )
ENDIF
!
END FUNCTION dia_ptr_alloc
FUNCTION ptr_sj_3d( pvflx, pmsk ) RESULT ( p_fval )
!!----------------------------------------------------------------------
!! *** ROUTINE ptr_sj_3d ***
!!
!! ** Purpose : i-k sum computation of a j-flux array
!!
!! ** Method : - i-k sum of pvflx using the interior 2D vmask (vmask_i).
!! pvflx is supposed to be a masked flux (i.e. * vmask*e1v*e3v)
!!
!! ** Action : - p_fval: i-k-mean poleward flux of pvflx
!!----------------------------------------------------------------------
! TODO: Can be A2D(0) once all dia_ptr_hst calls have arguments with consistent declarations
REAL(wp), INTENT(in), DIMENSION(A2D(nn_hls),jpk) :: pvflx ! mask flux array at V-point
REAL(wp), INTENT(in), DIMENSION(jpi,jpj ) :: pmsk ! Optional 2D basin mask
!
INTEGER :: ji, jj, jk ! dummy loop arguments
REAL(wp), DIMENSION(A1Dj(0)) :: p_fval ! function value
!!--------------------------------------------------------------------
!
p_fval(:) = 0._wp
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
p_fval(jj) = p_fval(jj) + pvflx(ji,jj,jk) * pmsk(ji,jj) * tmask_i(ji,jj)
END_3D
END FUNCTION ptr_sj_3d
FUNCTION ptr_sj_2d( pvflx, pmsk ) RESULT ( p_fval )
!!----------------------------------------------------------------------
!! *** ROUTINE ptr_sj_2d ***
!!
!! ** Purpose : "zonal" and vertical sum computation of a j-flux array
!!
!! ** Method : - i-k sum of pvflx using the interior 2D vmask (vmask_i).
!! pvflx is supposed to be a masked flux (i.e. * vmask*e1v*e3v)
!!
!! ** Action : - p_fval: i-k-mean poleward flux of pvflx
!!----------------------------------------------------------------------
! TODO: Can be A2D(0) once all dia_ptr_hst calls have arguments with consistent declarations
REAL(wp) , INTENT(in), DIMENSION(A2D(nn_hls)) :: pvflx ! mask flux array at V-point
REAL(wp) , INTENT(in), DIMENSION(jpi,jpj ) :: pmsk ! Optional 2D basin mask
!
INTEGER :: ji, jj ! dummy loop arguments
REAL(wp), DIMENSION(A1Dj(0)) :: p_fval ! function value
!!--------------------------------------------------------------------
!
p_fval(:) = 0._wp
DO_2D( 0, 0, 0, 0 )
p_fval(jj) = p_fval(jj) + pvflx(ji,jj) * pmsk(ji,jj) * tmask_i(ji,jj)
END_2D
END FUNCTION ptr_sj_2d
FUNCTION ptr_ci_2d( pva ) RESULT ( p_fval )
!!----------------------------------------------------------------------
!! *** ROUTINE ptr_ci_2d ***
!!
!! ** Purpose : "meridional" cumulated sum computation of a j-flux array
!!
!! ** Method : - j cumulated sum of pva using the interior 2D vmask (umask_i).
!!
!! ** Action : - p_fval: j-cumulated sum of pva
!!----------------------------------------------------------------------
REAL(wp) , INTENT(in), DIMENSION(A2D(0)) :: pva ! mask flux array at V-point
!
INTEGER :: ji,jj,jc ! dummy loop arguments
INTEGER :: ijpj ! ???
REAL(wp), DIMENSION(A2D(0)) :: p_fval ! function value
!!--------------------------------------------------------------------
!
p_fval(:,:) = 0._wp
DO jc = 1, jpnj ! looping over all processors in j axis
DO_2D( 0, 0, 0, 0 )
p_fval(ji,jj) = p_fval(ji,jj-1) + pva(ji,jj) * tmask_i(ji,jj)
END_2D
END DO
!
END FUNCTION ptr_ci_2d
FUNCTION ptr_sjk( pta, pmsk ) RESULT ( p_fval )
!!----------------------------------------------------------------------
!! *** ROUTINE ptr_sjk ***
!!
!! ** Purpose : i-sum computation of an array
!!
!! ** Method : - i-sum of field using the interior 2D vmask (pmsk).
!!
!! ** Action : - p_fval: i-sum of masked field
!!----------------------------------------------------------------------
!!
IMPLICIT none
REAL(wp) , INTENT(in), DIMENSION(A2D(0) ,jpk) :: pta ! mask flux array at V-point
REAL(wp) , INTENT(in), DIMENSION(jpi,jpj ) :: pmsk ! Optional 2D basin mask
!!
INTEGER :: ji, jj, jk ! dummy loop arguments
REAL(wp), DIMENSION(A1Dj(0),jpk) :: p_fval ! return function value
!!--------------------------------------------------------------------
!
p_fval(:,:) = 0._wp
!
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
p_fval(jj,jk) = p_fval(jj,jk) + pta(ji,jj,jk) * pmsk(ji,jj) * tmask_i(ji,jj)
END_3D
END FUNCTION ptr_sjk
!!======================================================================
END MODULE diaptr