Skip to content
Snippets Groups Projects
chap_ZDF.tex 100 KiB
Newer Older
\documentclass[../main/NEMO_manual]{subfiles}

\begin{document}

\chapter{Vertical Ocean Physics (ZDF)}
\label{chap:ZDF}

\chaptertoc

\paragraph{Changes record} ~\\

{\footnotesize
  \begin{tabularx}{\textwidth}{l||X|X}
    Release & Author(s) & Modifications \\
    \hline
    {\em  next} & {\em A. Moulin, E. Clementi} & {\em Update of \autoref{subsec:ZDF_tke} in for wave coupling}\\[2mm]
    {\em   4.0} & {\em ...} & {\em ...} \\
    {\em   3.6} & {\em ...} & {\em ...} \\
    {\em   3.4} & {\em ...} & {\em ...} \\
    {\em <=3.4} & {\em ...} & {\em ...}
  \end{tabularx}
}

\clearpage

\cmtgm{ Add here a small introduction to ZDF and naming of the different physics
(similar to what have been written for TRA and DYN).}

%% =================================================================================================
\section{Vertical mixing}
\label{sec:ZDF}

The discrete form of the ocean subgrid scale physics has been presented in
\autoref{sec:TRA_zdf} and \autoref{sec:DYN_zdf}.
At the surface and bottom boundaries, the turbulent fluxes of momentum, heat and salt have to be defined.
At the surface they are prescribed from the surface forcing (see \autoref{chap:SBC}),
while at the bottom they are set to zero for heat and salt,
unless a geothermal flux forcing is prescribed as a bottom boundary condition (\ie\ \np{ln_trabbc}{ln\_trabbc} defined,
see \autoref{subsec:TRA_bbc}), and specified through a bottom friction parameterisation for momentum
(see \autoref{sec:ZDF_drg}).

In this section we briefly discuss the various choices offered to compute the vertical eddy viscosity and
diffusivity coefficients, $A_u^{vm}$ , $A_v^{vm}$ and $A^{vT}$ ($A^{vS}$), defined at $uw$-, $vw$- and $w$- points,
respectively (see \autoref{sec:TRA_zdf} and \autoref{sec:DYN_zdf}).
These coefficients can be assumed to be either constant, or a function of the local Richardson number,
or computed from a turbulent closure model (either TKE or GLS or OSMOSIS formulation).
The computation of these coefficients is initialized in the \mdl{zdfphy} module and performed in
the \mdl{zdfric}, \mdl{zdftke} or \mdl{zdfgls} or \mdl{zdfosm} modules.
The trends due to the vertical momentum and tracer diffusion, including the surface forcing,
are computed and added to the general trend in the \mdl{dynzdf} and \mdl{trazdf} modules, respectively.
%These trends can be computed using either a forward time stepping scheme
%(namelist parameter \np[=.true.]{ln_zdfexp}{ln\_zdfexp}) or a backward time stepping scheme
%(\np[=.false.]{ln_zdfexp}{ln\_zdfexp}) depending on the magnitude of the mixing coefficients,
%and thus of the formulation used (see \autoref{chap:TD}).

\begin{listing}
  \nlst{namzdf}
  \caption{\forcode{&namzdf}}
  \label{lst:namzdf}
\end{listing}

%% =================================================================================================
\subsection[Constant (\forcode{ln_zdfcst})]{Constant (\protect\np{ln_zdfcst}{ln\_zdfcst})}
\label{subsec:ZDF_cst}

Options are defined through the \nam{zdf}{zdf} namelist variables.
When \np{ln_zdfcst}{ln\_zdfcst} is defined, the momentum and tracer vertical eddy coefficients are set to
constant values over the whole ocean.
This is the crudest way to define the vertical ocean physics.
It is recommended to use this option only in process studies, not in basin scale simulations.
Typical values used in this case are:
\begin{align*}
  A_u^{vm} = A_v^{vm} &= 1.2\ 10^{-4}~m^2.s^{-1} 	\\
  A^{vT} = A^{vS} &= 1.2\ 10^{-5}~m^2.s^{-1}
\end{align*}

These values are set through the \np{rn_avm0}{rn\_avm0} and \np{rn_avt0}{rn\_avt0} namelist parameters.
In all cases, do not use values smaller that those associated with the molecular viscosity and diffusivity,
that is $\sim10^{-6}~m^2.s^{-1}$ for momentum, $\sim10^{-7}~m^2.s^{-1}$ for temperature and
$\sim10^{-9}~m^2.s^{-1}$ for salinity.

%% =================================================================================================
\subsection[Richardson number dependent (\forcode{ln_zdfric})]{Richardson number dependent (\protect\np{ln_zdfric}{ln\_zdfric})}
\label{subsec:ZDF_ric}

\begin{listing}
  \nlst{namzdf_ric}
  \caption{\forcode{&namzdf_ric}}
  \label{lst:namzdf_ric}
\end{listing}

When \np[=.true.]{ln_zdfric}{ln\_zdfric}, a local Richardson number dependent formulation for the vertical momentum and
tracer eddy coefficients is set through the \nam{zdf_ric}{zdf\_ric} namelist variables.
The vertical mixing coefficients are diagnosed from the large scale variables computed by the model.
\textit{In situ} measurements have been used to link vertical turbulent activity to large scale ocean structures.
The hypothesis of a mixing mainly maintained by the growth of Kelvin-Helmholtz like instabilities leads to
a dependency between the vertical eddy coefficients and the local Richardson number
(\ie\ the ratio of stratification to vertical shear).
Following \citet{pacanowski.philander_JPO81}, the following formulation has been implemented:
\[
  % \label{eq:ZDF_ric}
  \left\{
    \begin{aligned}
      A^{vm} &= \frac {A_{ric}^{vm}}{\left( 1+a \; Ri \right)^n} + A_b^{vm}       \\
      A^{vT} &= \frac{A^{vm}        }{\left( 1+ a \;Ri  \right)   } + A_b^{vT}
    \end{aligned}
  \right.
\]
where $Ri = N^2 / \left(\partial_z \textbf{U}_h \right)^2$ is the local Richardson number,
$N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \autoref{subsec:TRA_bn2}),
$A_b^{vT} $ and $A_b^{vm}$ are the constant background values set as in the constant case
(see \autoref{subsec:ZDF_cst}), and $A_{ric}^{vT} = 10^{-4}~m^2.s^{-1}$ is the maximum value that
can be reached by the coefficient when $Ri\leq 0$, $a=5$ and $n=2$.
The last three values can be modified by setting the \np{rn_avmri}{rn\_avmri}, \np{rn_alp}{rn\_alp} and
\np{nn_ric}{nn\_ric} namelist parameters, respectively.

A simple mixing-layer model to transfer and dissipate the atmospheric forcings
(wind-stress and buoyancy fluxes) can be activated setting the \np[=.true.]{ln_mldw}{ln\_mldw} in the namelist.

In this case, the local depth of turbulent wind-mixing or "Ekman depth" $h_{e}(x,y,t)$ is evaluated and
the vertical eddy coefficients prescribed within this layer.

This depth is assumed proportional to the "depth of frictional influence" that is limited by rotation:
\[
  h_{e} = Ek \frac {u^{*}} {f_{0}}
\]
where, $Ek$ is an empirical parameter, $u^{*}$ is the friction velocity and $f_{0}$ is the Coriolis parameter.

In this similarity height relationship, the turbulent friction velocity:
\[
  u^{*} = \sqrt \frac {|\tau|} {\rho_o}
\]
is computed from the wind stress vector $|\tau|$ and the reference density $ \rho_o$.
The final $h_{e}$ is further constrained by the adjustable bounds \np{rn_mldmin}{rn\_mldmin} and \np{rn_mldmax}{rn\_mldmax}.
Once $h_{e}$ is computed, the vertical eddy coefficients within $h_{e}$ are set to
the empirical values \np{rn_wtmix}{rn\_wtmix} and \np{rn_wvmix}{rn\_wvmix} \citep{lermusiaux_JMS01}.

%% =================================================================================================
\subsection[TKE turbulent closure scheme (\forcode{ln_zdftke})]{TKE turbulent closure scheme (\protect\np{ln_zdftke}{ln\_zdftke})}
\label{subsec:ZDF_tke}

\begin{listing}
  \nlst{namzdf_tke}
  \caption{\forcode{&namzdf_tke}}
  \label{lst:namzdf_tke}
\end{listing}

The vertical eddy viscosity and diffusivity coefficients are computed from a TKE turbulent closure model based on
a prognostic equation for $\bar{e}$, the turbulent kinetic energy,
and a closure assumption for the turbulent length scales.
This turbulent closure model has been developed by \citet{bougeault.lacarrere_MWR89} in the atmospheric case,
adapted by \citet{gaspar.gregoris.ea_JGR90} for the oceanic case, and embedded in OPA, the ancestor of \NEMO,
by \citet{blanke.delecluse_JPO93} for equatorial Atlantic simulations.
Since then, significant modifications have been introduced by \citet{madec.delecluse.ea_NPM98} in both the implementation and
the formulation of the mixing length scale.
The time evolution of $\bar{e}$ is the result of the production of $\bar{e}$ through vertical shear,
its destruction through stratification, its vertical diffusion, and its dissipation of \citet{kolmogorov_IANS42} type:
\begin{equation}
  \label{eq:ZDF_tke_e}
  \frac{\partial \bar{e}}{\partial t} =
  \frac{K_m}{{e_3}^2 }\;\left[ {\left( {\frac{\partial u}{\partial k}} \right)^2
      +\left( {\frac{\partial v}{\partial k}} \right)^2} \right]
  -K_\rho\,N^2
  +\frac{1}{e_3}	\;\frac{\partial }{\partial k}\left[ {\frac{A^{vm}}{e_3 }
      \;\frac{\partial \bar{e}}{\partial k}} \right]
  - c_\epsilon \;\frac{\bar {e}^{3/2}}{l_\epsilon }
\end{equation}
\[
  % \label{eq:ZDF_tke_kz}
  \begin{split}
    K_m &= C_k\  l_k\  \sqrt {\bar{e}\; }  	\\
    K_\rho &= A^{vm} / P_{rt}
  \end{split}
\]
where $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \autoref{subsec:TRA_bn2}),
$l_{\epsilon }$ and $l_{\kappa }$ are the dissipation and mixing length scales,
$P_{rt}$ is the Prandtl number, $K_m$ and $K_\rho$ are the vertical eddy viscosity and diffusivity coefficients.
The constants $C_k =  0.1$ and $C_\epsilon = \sqrt {2} /2$ $\approx 0.7$ are designed to deal with
vertical mixing at any depth \citep{gaspar.gregoris.ea_JGR90}.
They are set through namelist parameters \np{nn_ediff}{nn\_ediff} and \np{nn_ediss}{nn\_ediss}.
$P_{rt}$ can be set to unity or, following \citet{blanke.delecluse_JPO93}, be a function of the local Richardson number, $R_i$:
\begin{align*}
  % \label{eq:ZDF_prt}
  P_{rt} =
  \begin{cases}
    \ \ \ 1 &      \text{if $\ R_i \leq 0.2$} 	\\
    5\,R_i &      \text{if $\ 0.2 \leq R_i \leq 2$}
  \end{cases}
\end{align*}
The choice of $P_{rt}$ is controlled by the \np{nn_pdl}{nn\_pdl} namelist variable.

At the sea surface, the value of $\bar{e}$ is prescribed from the wind stress field as
$\bar{e}_o = e_{bb} |\tau| / \rho_o$, with $e_{bb}$ the \np{rn_ebb}{rn\_ebb} namelist parameter.
The default value of $e_{bb}$ is 3.75. \citep{gaspar.gregoris.ea_JGR90}), however a much larger value can be used when
taking into account the surface wave breaking (see below \autoref{eq:ZDF_Esbc}).
The bottom value of TKE is assumed to be equal to the value of the level just above.
The time integration of the $\bar{e}$ equation may formally lead to negative values because
the numerical scheme does not ensure its positivity.
To overcome this problem, a cut-off in the minimum value of $\bar{e}$ is used (\np{rn_emin}{rn\_emin} namelist parameter).
Following \citet{gaspar.gregoris.ea_JGR90}, the cut-off value is set to $\sqrt{2}/2~10^{-6}~m^2.s^{-2}$.
This allows the subsequent formulations to match that of \citet{gargett_JMR84} for the diffusion in
the thermocline and deep ocean :  $K_\rho = 10^{-3} / N$.
In addition, a cut-off is applied on $K_m$ and $K_\rho$ to avoid numerical instabilities associated with
too weak vertical diffusion.
They must be specified at least larger than the molecular values, and are set through \np{rn_avm0}{rn\_avm0} and
\np{rn_avt0}{rn\_avt0} (\nam{zdf}{zdf} namelist, see \autoref{subsec:ZDF_cst}).

%% =================================================================================================
\subsubsection{Turbulent length scale}

For computational efficiency, the original formulation of the turbulent length scales proposed by
\citet{gaspar.gregoris.ea_JGR90} has been simplified.
Four formulations are proposed, the choice of which is controlled by the \np{nn_mxl}{nn\_mxl} namelist parameter.
The first two are based on the following first order approximation \citep{blanke.delecluse_JPO93}:
\begin{equation}
  \label{eq:ZDF_tke_mxl0_1}
  l_k = l_\epsilon = \sqrt {2 \bar{e}\; } / N
\end{equation}
which is valid in a stable stratified region with constant values of the Brunt-Vais\"{a}l\"{a} frequency.
The resulting length scale is bounded by the distance to the surface or to the bottom
(\np[=0]{nn_mxl}{nn\_mxl}) or by the local vertical scale factor (\np[=1]{nn_mxl}{nn\_mxl}).
\citet{blanke.delecluse_JPO93} notice that this simplification has two major drawbacks:
it makes no sense for locally unstable stratification and the computation no longer uses all
the information contained in the vertical density profile.
To overcome these drawbacks, \citet{madec.delecluse.ea_NPM98} introduces the \np[=2, 3]{nn_mxl}{nn\_mxl} cases,
which add an extra assumption concerning the vertical gradient of the computed length scale.
So, the length scales are first evaluated as in \autoref{eq:ZDF_tke_mxl0_1} and then bounded such that:
\begin{equation}
  \label{eq:ZDF_tke_mxl_constraint}
  \frac{1}{e_3 }\left| {\frac{\partial l}{\partial k}} \right| \leq 1
  \qquad \text{with }\  l =  l_k = l_\epsilon
\end{equation}
\autoref{eq:ZDF_tke_mxl_constraint} means that the vertical variations of the length scale cannot be larger than
the variations of depth.
It provides a better approximation of the \citet{gaspar.gregoris.ea_JGR90} formulation while being much less
time consuming.
In particular, it allows the length scale to be limited not only by the distance to the surface or
to the ocean bottom but also by the distance to a strongly stratified portion of the water column such as
the thermocline (\autoref{fig:ZDF_mixing_length}).
In order to impose the \autoref{eq:ZDF_tke_mxl_constraint} constraint, we introduce two additional length scales:
$l_{up}$ and $l_{dwn}$, the upward and downward length scales, and
evaluate the dissipation and mixing length scales as
(and note that here we use numerical indexing):
\begin{figure}[!t]
  \centering
  \includegraphics[width=0.66\textwidth]{ZDF_mixing_length}
  \caption[Mixing length computation]{Illustration of the mixing length computation}
  \label{fig:ZDF_mixing_length}
\end{figure}
\[
  % \label{eq:ZDF_tke_mxl2}
  \begin{aligned}
    l_{up\ \ }^{(k)} &= \min \left(  l^{(k)} \ , \ l_{up}^{(k+1)} + e_{3t}^{(k)}\ \ \ \;  \right)
    \quad &\text{ from $k=1$ to $jpk$ }\ \\
    l_{dwn}^{(k)} &= \min \left(  l^{(k)} \ , \ l_{dwn}^{(k-1)} + e_{3t}^{(k-1)}  \right)
    \quad &\text{ from $k=jpk$ to $1$ }\ \\
  \end{aligned}
\]
where $l^{(k)}$ is computed using \autoref{eq:ZDF_tke_mxl0_1}, \ie\ $l^{(k)} = \sqrt {2 {\bar e}^{(k)} / {N^2}^{(k)} }$.

In the \np[=2]{nn_mxl}{nn\_mxl} case, the dissipation and mixing length scales take the same value:
$ l_k=  l_\epsilon = \min \left(\ l_{up} \;,\;  l_{dwn}\ \right)$, while in the \np[=3]{nn_mxl}{nn\_mxl} case,
the dissipation and mixing turbulent length scales are give as in \citet{gaspar.gregoris.ea_JGR90}:
\[
  % \label{eq:ZDF_tke_mxl_gaspar}
  \begin{aligned}
    & l_\epsilon  = \sqrt{\  l_{up} \ \ l_{dwn}\ }  	\\
    & l_k             = \min \left(\ l_{up} \;,\;  l_{dwn}\ \right)
  \end{aligned}
\]

At the ocean surface, a non zero length scale is set through the  \np{rn_mxl0}{rn\_mxl0} namelist parameter.
Usually the surface scale is given by $l_o = \kappa \,z_o$ where $\kappa = 0.4$ is von Karman's constant and
$z_o$ the roughness parameter of the surface.
Assuming $z_o=0.1$~m \citep{craig.banner_JPO94} leads to a 0.04~m, the default value of \np{rn_mxl0}{rn\_mxl0}.
In the ocean interior a minimum length scale is set to recover the molecular viscosity when
$\bar{e}$ reach its minimum value ($1.10^{-6}= C_k\, l_{min} \,\sqrt{\bar{e}_{min}}$ ).

%% =================================================================================================
\subsubsection{Surface wave breaking parameterization (No information from an external wave model)}
\label{subsubsec:ZDF_tke_wave} 

Following \citet{mellor.blumberg_JPO04}, the TKE turbulence closure model has been modified to
include the effect of surface wave breaking energetics.
This results in a reduction of summertime surface temperature when the mixed layer is relatively shallow.
The \citet{mellor.blumberg_JPO04} modifications acts on surface length scale and TKE values and
air-sea drag coefficient.
The latter concerns the bulk formulae and is not discussed here.

Following \citet{craig.banner_JPO94}, the boundary condition on surface TKE value is :
\begin{equation}
  \label{eq:ZDF_Esbc}
  \bar{e}_o = \frac{1}{2}\,\left(  15.8\,\alpha_{CB} \right)^{2/3} \,\frac{|\tau|}{\rho_o}
\end{equation}
where $\alpha_{CB}$ is the \citet{craig.banner_JPO94} constant of proportionality which depends on the ''wave age'',
ranging from 57 for mature waves to 146 for younger waves \citep{mellor.blumberg_JPO04}.
The boundary condition on the turbulent length scale follows the Charnock's relation:
\begin{equation}
  \label{eq:ZDF_Lsbc}
  l_o = \kappa \beta \,\frac{|\tau|}{g\,\rho_o}
\end{equation}
where $\kappa=0.40$ is the von Karman constant, and $\beta$ is the Charnock's constant.
\citet{mellor.blumberg_JPO04} suggest $\beta = 2.10^{5}$ the value chosen by
\citet{stacey_JPO99} citing observation evidence, and
$\alpha_{CB} = 100$ the Craig and Banner's value.
As the surface boundary condition on TKE is prescribed through $\bar{e}_o = e_{bb} |\tau| / \rho_o$,
with $e_{bb}$ the \np{rn_ebb}{rn\_ebb} namelist parameter, setting \np[=67.83]{rn_ebb}{rn\_ebb} corresponds
to $\alpha_{CB} = 100$.

Further setting  \np[=.true.]{ln_mxl0}{ln\_mxl0},  applies \autoref{eq:ZDF_Lsbc} as the surface boundary condition on the length scale, with $\beta$ hard coded to the Stacey's value. Note that a minimal threshold of \np{rn_emin0}{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist parameters) is applied on the surface $\bar{e}$ value.\\

\subsubsection{Surface wave breaking parameterization (using information from an external wave model)}
\label{subsubsec:ZDF_tke_waveco} 

Surface boundary conditions for the turbulent kinetic energy, the mixing length scale and the dissipative length scale can be defined using wave fields provided from an external wave model (see \autoref{chap:SBC}, \autoref{sec:SBC_wave}). 
The injection of turbulent kinetic energy at the surface can be given by the dissipation of the wave field usually dominated by wave breaking. In coupled mode, the wave to ocean energy flux term ($\Phi_o$) from an external wave model can be provided and then converted into an ocean turbulence source by setting ln\_phioc=.true.

The surface TKE can be defined by a Dirichlet boundary condition setting $nn\_bc\_surf=0$ in \nam{zdf}{tke} namelist:
\begin{equation}
  \bar{e}_o  = \frac{1}{2}\,\left( 15.8 \, \frac{\Phi_o}{\rho_o}\right) ^{2/3}
\end{equation}

Nevertheless, due to the definition of the computational grid, the TKE flux is not applied at the free surface but at the centre of the topmost grid cell ($z = z1$). To be more accurate, a Neumann boundary condition amounting to interpreter the half-grid cell at the top as a constant flux layer (consistent with the surface layer Monin–Obukhov theory) can be applied setting $nn\_bc\_surf=1$ in  \nam{zdf}{tke} namelist \citep{couvelard_2020}:

\begin{equation}
  \left(\frac{Km}{e_3}\,\partial_k e \right)_{z=z1} = \frac{\Phi_o}{\rho_o}
\end{equation}


The mixing length scale surface value $l_0$ can be estimated from the surface roughness length z0:
\begin{equation}
  l_o = \kappa \, \frac{ \left( C_k\,C_\epsilon \right) ^{1/4}}{C_k}\, z0
\end{equation}
where $z0$ is directly estimated from the significant wave height ($Hs$) provided by the external wave model as $z0=1.6Hs$. To use this option ln\_mxhsw as well as ln\_wave and ln\_sdw have to be set to .true.

%% =================================================================================================
\subsubsection{Langmuir cells}
\label{subsubsec:ZDF_tke_langmuir}

Langmuir circulations (LC) can be described as ordered large-scale vertical motions in
the surface layer of the oceans.
Although LC have nothing to do with convection, the circulation pattern is rather similar to
so-called convective rolls in the atmospheric boundary layer.
The detailed physics behind LC is described in, for example, \citet{craik.leibovich_JFM76}.
The prevailing explanation is that LC arise from a nonlinear interaction between the Stokes drift and
wind drift currents.

Here we introduced in the TKE turbulent closure the simple parameterization of Langmuir circulations proposed by
\citep{axell_JGR02} for a $k-\epsilon$ turbulent closure.
The parameterization, tuned against large-eddy simulation, includes the whole effect of LC in
an extra source term of TKE, $P_{LC}$.
The presence of $P_{LC}$ in \autoref{eq:ZDF_tke_e}, the TKE equation, is controlled by setting \np{ln_lc}{ln\_lc} to
\forcode{.true.} in the \nam{zdf_tke}{zdf\_tke} namelist.

By making an analogy with the characteristic convective velocity scale (\eg, \citet{dalessio.abdella.ea_JPO98}),
$P_{LC}$ is assumed to be :
\[
P_{LC}(z) = \frac{w_{LC}^3(z)}{H_{LC}}
\]
where $w_{LC}(z)$ is the vertical velocity profile of LC, and $H_{LC}$ is the LC depth.

For the vertical variation, $w_{LC}$ is assumed to be zero at the surface as well as at
a finite depth $H_{LC}$ (which is often close to the mixed layer depth),
and simply varies as a sine function in between (a first-order profile for the Langmuir cell structures).
The resulting expression for $w_{LC}$ is :
\[
  w_{LC}  =
  \begin{cases}
    c_{LC} \,\|u_s^{LC}\| \,\sin(- \pi\,z / H_{LC} )    &      \text{if $-z \leq H_{LC}$} 	\\
    0                 				 &      \text{otherwise}
  \end{cases}
\]


In the absence of information about the wave field, $w_{LC}$ is assumed to be proportional to
the surface Stokes drift ($u_s^{LC}=u_{s0} $) empirically estimated by $ u_{s0} = 0.377\,\,|\tau|^{1/2}$, where $|\tau|$ is the surface wind stress module
\footnote{Following \citet{li.garrett_JMR93}, the surface Stoke drift velocity may be expressed as
  $u_{s0} =  0.016 \,|U_{10m}|$.
  Assuming an air density of $\rho_a=1.22 \,Kg/m^3$ and a drag coefficient of
  $1.5~10^{-3}$ give the expression used of $u_{s0}$ as a function of the module of surface stress
}.

In case of online coupling with an external wave model (see \autoref{chap:SBC} \autoref{sec:SBC_wave}), $w_{LC}$ is proportional to the component of the Stokes drift aligned with the wind \citep{couvelard_2020} and $ u_s^{LC}  = \max(u_{s0}.e_\tau,0)$ where $e_\tau$ is the unit vector in the wind stress direction and $u_{s0}$ is the surface Stokes drift provided by the external wave model.


$c_{LC} = 0.15$ has been chosen by \citep{axell_JGR02} as a good compromise to fit LES data.
The chosen value yields maximum vertical velocities $w_{LC}$ of the order of a few centimetres per second.
The value of $c_{LC}$ is set through the \np{rn_lc}{rn\_lc} namelist parameter,
having in mind that it should stay between 0.15 and 0.54 \citep{axell_JGR02}.

The $H_{LC}$ is estimated in a similar way as the turbulent length scale of TKE equations:
$H_{LC}$ is the depth to which a water parcel with kinetic energy due to Stoke drift can reach on its own by
converting its kinetic energy to potential energy, according to
\[
- \int_{-H_{LC}}^0 { N^2\;z  \;dz} = \frac{1}{2} \|u_s^{LC}\|^2
\]

%% =================================================================================================
\subsubsection{Mixing just below the mixed layer}

Vertical mixing parameterizations commonly used in ocean general circulation models tend to
produce mixed-layer depths that are too shallow during summer months and windy conditions.
This bias is particularly acute over the Southern Ocean.
To overcome this systematic bias, an ad hoc parameterization is introduced into the TKE scheme \cite{rodgers.aumont.ea_B14}.
The parameterization is an empirical one, \ie\ not derived from theoretical considerations,
but rather is meant to account for observed processes that affect the density structure of
the ocean’s planetary boundary layer that are not explicitly captured by default in the TKE scheme
(\ie\ near-inertial oscillations and ocean swells and waves).

When using this parameterization (\ie\ when \np[=1]{nn_etau}{nn\_etau}),
the TKE input to the ocean ($S$) imposed by the winds in the form of near-inertial oscillations,
swell and waves is parameterized by \autoref{eq:ZDF_Esbc} the standard TKE surface boundary condition,
plus a depth depend one given by:
\begin{equation}
  \label{eq:ZDF_Ehtau}
  S = (1-f_i) \; f_r \; e_s \; e^{-z / h_\tau}
\end{equation}
where $z$ is the depth, $e_s$ is TKE surface boundary condition, $f_r$ is the fraction of the surface TKE that
penetrates in the ocean, $h_\tau$ is a vertical mixing length scale that controls exponential shape of
the penetration, and $f_i$ is the ice concentration
(no penetration if $f_i=1$, \ie\ if the ocean is entirely covered by sea-ice).
The value of $f_r$, usually a few percents, is specified through \np{rn_efr}{rn\_efr} namelist parameter.
The vertical mixing length scale, $h_\tau$, can be set as a 10~m uniform value (\np[=0]{nn_etau}{nn\_etau}) or
a latitude dependent value (varying from 0.5~m at the Equator to a maximum value of 30~m at high latitudes
(\np[=1]{nn_etau}{nn\_etau}).

Note that two other option exist, \np[=2, 3]{nn_etau}{nn\_etau}.
They correspond to applying \autoref{eq:ZDF_Ehtau} only at the base of the mixed layer,
or to using the high frequency part of the stress to evaluate the fraction of TKE that penetrates the ocean.
Those two options are obsolescent features introduced for test purposes.
They will be removed in the next release.

% This should be explain better below what this rn_eice parameter is meant for:
In presence of Sea Ice, the value of this mixing can be modulated by the \np{rn_eice}{rn\_eice} namelist parameter.
This parameter varies from \forcode{0} for no effect to \forcode{4} to suppress the TKE input into the ocean when Sea Ice concentration
is greater than 25\%.

% from Burchard et al OM 2008 :
% the most critical process not reproduced by statistical turbulence models is the activity of
% internal waves and their interaction with turbulence. After the Reynolds decomposition,
% internal waves are in principle included in the RANS equations, but later partially
% excluded by the hydrostatic assumption and the model resolution.
% Thus far, the representation of internal wave mixing in ocean models has been relatively crude
% (\eg\ Mellor, 1989; Large et al., 1994; Meier, 2001; Axell, 2002; St. Laurent and Garrett, 2002).

%% =================================================================================================
\subsection[GLS: Generic Length Scale (\forcode{ln_zdfgls})]{GLS: Generic Length Scale (\protect\np{ln_zdfgls}{ln\_zdfgls})}
\label{subsec:ZDF_gls}

\begin{listing}
  \nlst{namzdf_gls}
  \caption{\forcode{&namzdf_gls}}
  \label{lst:namzdf_gls}
\end{listing}

The Generic Length Scale (GLS) scheme is a turbulent closure scheme based on two prognostic equations:
one for the turbulent kinetic energy $\bar {e}$, and another for the generic length scale,
$\psi$ \citep{umlauf.burchard_JMR03, umlauf.burchard_CSR05}.
This later variable is defined as: $\psi = {C_{0\mu}}^{p} \ {\bar{e}}^{m} \ l^{n}$,
where the triplet $(p, m, n)$ value given in Tab.\autoref{tab:ZDF_GLS} allows to recover a number of
well-known turbulent closures ($k$-$kl$ \citep{mellor.yamada_RG82}, $k$-$\epsilon$ \citep{rodi_JGR87},
$k$-$\omega$ \citep{wilcox_AJ88} among others \citep{umlauf.burchard_JMR03,kantha.carniel_JMR03}).
The GLS scheme is given by the following set of equations:
\begin{equation}
  \label{eq:ZDF_gls_e}
  \frac{\partial \bar{e}}{\partial t} =
  \frac{K_m}{\sigma_e e_3 }\;\left[ {\left( \frac{\partial u}{\partial k} \right)^2
      +\left( \frac{\partial v}{\partial k} \right)^2} \right]
  -K_\rho \,N^2
  +\frac{1}{e_3}\,\frac{\partial}{\partial k} \left[ \frac{K_m}{e_3}\,\frac{\partial \bar{e}}{\partial k} \right]
  - \epsilon
\end{equation}

\[
  % \label{eq:ZDF_gls_psi}
  \begin{split}
    \frac{\partial \psi}{\partial t} =& \frac{\psi}{\bar{e}} \left\{
      \frac{C_1\,K_m}{\sigma_{\psi} {e_3}}\;\left[ {\left( \frac{\partial u}{\partial k} \right)^2
          +\left( \frac{\partial v}{\partial k} \right)^2} \right]
      - C_3 \,K_\rho\,N^2   - C_2 \,\epsilon \,Fw   \right\}             \\
    &+\frac{1}{e_3}  \;\frac{\partial }{\partial k}\left[ {\frac{K_m}{e_3 }
        \;\frac{\partial \psi}{\partial k}} \right]\;
  \end{split}
\]

\[
  % \label{eq:ZDF_gls_kz}
  \begin{split}
    K_m    &= C_{\mu} \ \sqrt {\bar{e}} \ l         \\
    K_\rho &= C_{\mu'}\ \sqrt {\bar{e}} \ l
  \end{split}
\]

\[
  % \label{eq:ZDF_gls_eps}
  {\epsilon} = C_{0\mu} \,\frac{\bar {e}^{3/2}}{l} \;
\]
where $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \autoref{subsec:TRA_bn2}) and
$\epsilon$ the dissipation rate.
The constants $C_1$, $C_2$, $C_3$, ${\sigma_e}$, ${\sigma_{\psi}}$ and the wall function ($Fw$) depends of
the choice of the turbulence model.
Four different turbulent models are pre-defined (\autoref{tab:ZDF_GLS}).
They are made available through the \np{nn_clo}{nn\_clo} namelist parameter.

\begin{table}[htbp]
  \centering
  % \begin{tabular}{cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}c}
  \begin{tabular}{ccccc}
    &   $k-kl$   & $k-\epsilon$ & $k-\omega$ &   generic   \\
    % & \citep{mellor.yamada_RG82} &  \citep{rodi_JGR87}       & \citep{wilcox_AJ88} &                 \\
    \hline
    \hline
    \np{nn_clo}{nn\_clo}     & \textbf{0} &   \textbf{1}  &   \textbf{2}   &    \textbf{3}   \\
    \hline
    $( p , n , m )$	       &   ( 0 , 1 , 1 )   & ( 3 , 1.5 , -1 )   & ( -1 , 0.5 , -1 )    &  ( 2 , 1 , -0.67 )  \\
    $\sigma_k$      &    2.44         &     1.              &      2.                &      0.8          \\
    $\sigma_\psi$  &    2.44         &     1.3            &      2.                 &       1.07       \\
    $C_1$              &      0.9         &     1.44          &      0.555          &       1.           \\
    $C_2$              &      0.5         &     1.92          &      0.833          &       1.22       \\
    $C_3$              &      1.           &     1.              &      1.                &       1.           \\
    $F_{wall}$        &      Yes        &       --             &     --                  &      --          \\
    \hline
    \hline
  \end{tabular}
  \caption[Set of predefined GLS parameters or equivalently predefined turbulence models available]{
    Set of predefined GLS parameters, or equivalently predefined turbulence models available with
    \protect\np[=.true.]{ln_zdfgls}{ln\_zdfgls} and controlled by
    the \protect\np{nn_clos}{nn\_clos} namelist variable in \protect\nam{zdf_gls}{zdf\_gls}.}
  \label{tab:ZDF_GLS}
\end{table}

In the Mellor-Yamada model, the negativity of $n$ allows to use a wall function to force the convergence of
the mixing length towards $\kappa z_b$ ($\kappa$ is the Von Karman constant and $z_b$ the rugosity length scale) value near physical boundaries
(logarithmic boundary layer law).
$C_{\mu}$ and $C_{\mu'}$ are calculated from stability function proposed by \citet{galperin.kantha.ea_JAS88},
or by \citet{kantha.clayson_JGR94} or one of the two functions suggested by \citet{canuto.howard.ea_JPO01}
(\np[=0, 3]{nn_stab_func}{nn\_stab\_func}, resp.).
The value of $C_{0\mu}$ depends on the choice of the stability function.

The surface and bottom boundary condition on both $\bar{e}$ and $\psi$ can be calculated thanks to Dirichlet or
Neumann condition through \np{nn_bc_surf}{nn\_bc\_surf} and \np{nn_bc_bot}{nn\_bc\_bot}, resp.
As for TKE closure, the wave effect on the mixing is considered when
\np[ > 0.]{rn_crban}{rn\_crban} \citep{craig.banner_JPO94, mellor.blumberg_JPO04}.
The \np{rn_crban}{rn\_crban} namelist parameter is $\alpha_{CB}$ in \autoref{eq:ZDF_Esbc} and
\np{rn_charn}{rn\_charn} provides the value of $\beta$ in \autoref{eq:ZDF_Lsbc}.

The $\psi$ equation is known to fail in stably stratified flows, and for this reason
almost all authors apply a clipping of the length scale as an \textit{ad hoc} remedy.
With this clipping, the maximum permissible length scale is determined by $l_{max} = c_{lim} \sqrt{2\bar{e}}/ N$.
A value of $c_{lim} = 0.53$ is often used \citep{galperin.kantha.ea_JAS88}.
\cite{umlauf.burchard_CSR05} show that the value of the clipping factor is of crucial importance for
the entrainment depth predicted in stably stratified situations,
and that its value has to be chosen in accordance with the algebraic model for the turbulent fluxes.
The clipping is only activated if \np[=.true.]{ln_length_lim}{ln\_length\_lim},
and the $c_{lim}$ is set to the \np{rn_clim_galp}{rn\_clim\_galp} value.

The time and space discretization of the GLS equations follows the same energetic consideration as for
the TKE case described in \autoref{subsec:ZDF_tke_ene} \citep{burchard_OM02}.
Evaluation of the 4 GLS turbulent closure schemes can be found in \citet{warner.sherwood.ea_OM05} in ROMS model and
 in \citet{reffray.bourdalle-badie.ea_GMD15} for the \NEMO\ model.

% -------------------------------------------------------------------------------------------------------------
%        OSM OSMOSIS BL Scheme
% -------------------------------------------------------------------------------------------------------------
\subsection[OSM: OSMOSIS boundary layer scheme (\forcode{ln_zdfosm = .true.})]
{OSM: OSMOSIS boundary layer scheme (\protect\np{ln_zdfosm}{ln\_zdfosm})}
\label{subsec:ZDF_osm}

\begin{listing}
  \nlst{namzdf_osm}
  \caption{\forcode{&namzdf_osm}}
  \label{lst:namzdf_osm}
\end{listing}

%--------------------------------------------------------------------------------------------------------------
\paragraph{Namelist choices}
Most of the namelist options refer to how to specify the Stokes
surface drift and penetration depth. There are three options:
\begin{description}
  \item \protect\np[=0]{nn_osm_wave}{nn\_osm\_wave} Default value in \texttt{namelist\_ref}. In this case the Stokes drift is
      assumed to be parallel to the surface wind stress, with
      magnitude consistent with a constant turbulent Langmuir number
    $\mathrm{La}_t=$ \protect\np{rn_m_la}{rn\_m\_la} i.e.\
    $u_{s0}=\tau/(\mathrm{La}_t^2\rho_0)$.  Default value of
    \protect\np{rn_m_la}{rn\_m\_la} is 0.3. The Stokes penetration
      depth $\delta = $ \protect\np{rn_osm_dstokes}{rn\_osm\_dstokes}; this has default value
      of 5~m.

  \item \protect\np[=1]{nn_osm_wave}{nn\_osm\_wave} In this case the Stokes drift is
      assumed to be parallel to the surface wind stress, with
      magnitude as in the classical Pierson-Moskowitz wind-sea
      spectrum.  Significant wave height and
      wave-mean period taken from this spectrum are used to calculate the Stokes penetration
      depth, following the approach set out in  \citet{breivik.janssen.ea_JPO14}.

    \item \protect\np[=2]{nn_osm_wave}{nn\_osm\_wave} In this case the Stokes drift is
      taken from  ECMWF wave model output, though only the component parallel
      to the wind stress is retained. Significant wave height and
      wave-mean period from ECMWF wave model output are used to calculate the Stokes penetration
      depth, again following \citet{breivik.janssen.ea_JPO14}.

    \end{description}

    Others refer to the treatment of diffusion and viscosity beneath
    the surface boundary layer:
\begin{description}
   \item \protect\np{ln_kpprimix}{ln\_kpprimix}  Default is \texttt{.true.}. Switches on KPP-style Ri \#-dependent
     mixing below the surface boundary layer. If this is set
     \texttt{.true.}  the following variable settings are honoured:
    \item \protect\np{rn_riinfty}{rn\_riinfty} Critical value of local Ri \# below which
      shear instability increases vertical mixing from background value.
    \item \protect\np{rn_difri}{rn\_difri} Maximum value of Ri \#-dependent mixing at $\mathrm{Ri}=0$.
    \item \protect\np{ln_convmix}{ln\_convmix} If \texttt{.true.} then, where water column is unstable, specify
       diffusivity equal to \protect\np{rn_dif_conv}{rn\_dif\_conv} (default value is 1 m~s$^{-2}$).
 \end{description}
 Diagnostic output is controlled by:
  \begin{description}
    \item \protect\np{ln_dia_osm}{ln\_dia\_osm} Default is \texttt{.false.}; allows XIOS output of OSMOSIS internal fields.
  \end{description}
Obsolete namelist parameters include:
\begin{description}
\item \protect\np{ln_use_osm_la}{ln\_use\_osm\_la} With \protect\np[=0]{nn_osm_wave}{nn\_osm\_wave},
  \protect\np{rn_osm_dstokes}{rn\_osm\_dstokes} is always used to specify the Stokes
\item \protect\np{nn_ave}{nn\_ave} Choice of averaging method for KPP-style Ri \#
  mixing. Not taken account of.
\item \protect\np{rn_osm_hbl0}{rn\_osm\_hbl0} Depth of initial boundary layer is now set
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
  by a density criterion similar to that used in calculating \emph{hmlp} (output as \texttt{mldr10\_1}) in \mdl{zdfmxl}.
\end{description}

\subsubsection{Summary}
Much of the time the turbulent motions in the ocean surface boundary
layer (OSBL) are not given by
classical shear turbulence. Instead they are in a regime known as
`Langmuir turbulence',  dominated by an
interaction between the currents and the Stokes drift of the surface waves \citep[e.g.][]{mcwilliams.sullivan.ea_JFM97}.
This regime is characterised by strong vertical turbulent motion, and appears when the surface Stokes drift $u_{s0}$ is much greater than the friction velocity $u_{\ast}$. More specifically Langmuir turbulence is thought to be crucial where the turbulent Langmuir number $\mathrm{La}_{t}=(u_{\ast}/u_{s0}) > 0.4$.

The OSMOSIS model is fundamentally based on results of Large Eddy
Simulations (LES) of Langmuir turbulence and aims to fully describe
this Langmuir regime. The description in this section is of necessity incomplete and further details are available in Grant. A (2019); in prep.

The OSMOSIS turbulent closure scheme is a similarity-scale scheme in
the same spirit as the K-profile
parameterization (KPP) scheme of \citet{large.mcwilliams.ea_RG94}.
A specified shape of diffusivity, scaled by the (OSBL) depth
$h_{\mathrm{BL}}$ and a turbulent velocity scale, is imposed throughout the
boundary layer
$-h_{\mathrm{BL}}<z<\eta$. The turbulent closure model
also includes fluxes of tracers and momentum that are``non-local'' (independent of the local property gradient).

Rather than the OSBL
depth being diagnosed in terms of a bulk Richardson number criterion,
as in KPP, it is set by a prognostic equation that is informed by
energy budget considerations reminiscent of the classical mixed layer
models of \citet{kraus.turner_T67}.
The model also includes an explicit parametrization of the structure
of the pycnocline (the stratified region at the bottom of the OSBL).

Presently, mixing below the OSBL is handled by the Richardson
number-dependent mixing scheme used in \citet{large.mcwilliams.ea_RG94}.

Convective parameterizations such as described in \autoref{sec:ZDF_conv}
below should not be used with the OSMOSIS-OBL model: instabilities
within the OSBL are part of the model, while instabilities below the
ML are handled by the Ri \# dependent scheme.

\subsubsection{Depth and velocity scales}

The model supposes a boundary layer of thickness $h_{\mathrm{bl}}$ enclosing a well-mixed
layer of thickness $h_{\mathrm{ml}}$ and a relatively thin pycnocline at the base of
thickness $\Delta h$; \autoref{fig:OSBL_structure} shows typical (a) buoyancy structure
and (b) turbulent buoyancy flux profile for the unstable boundary layer (losing buoyancy
at the surface; e.g.\ cOoling).

\begin{figure}[!t]
  \begin{center}
    \includegraphics[width=0.7\textwidth]{ZDF_OSM_structure_of_OSBL}
    \caption{
      \protect\label{fig:OSBL_structure}
     The structure of the entraining  boundary layer. (a) Mean buoyancy profile. (b) Profile of the buoyancy flux.
    }
  \end{center}
\end{figure}

The pycnocline in the OSMOSIS scheme is assumed to have a finite thickness, and may include a number of model levels. This means that the OSMOSIS scheme must parametrize both the thickness of the pycnocline, and the turbulent fluxes within the pycnocline.

Consideration of the power input by wind acting on the Stokes drift suggests that the Langmuir turbulence has velocity scale:
\begin{equation}
  \label{eq:ZDF_w_La}
  w_{*L}= \left(u_*^2 u_{s\,0}\right)^{1/3};
\end{equation}
but at times the Stokes drift may be weak due to e.g.\ ice cover, short fetch, misalignment with the surface stress, etc.\ so  a composite velocity scale is assumed for the stable (warming) boundary layer:
\begin{equation}
  \label{eq:ZDF_composite-nu}
  \nu_{\ast}= \left\{ u_*^3 \left[1-\exp(-.5 \mathrm{La}_t^2)\right]+w_{*L}^3\right\}^{1/3}.
\end{equation}
For the unstable boundary layer this is merged with the standard convective velocity scale $w_{*C}=\left(\overline{w^\prime b^\prime}_0 \,h_\mathrm{ml}\right)^{1/3}$, where $\overline{w^\prime b^\prime}_0$ is the upwards surface buoyancy flux, to give:
\begin{equation}
  \label{eq:ZDF_vel-scale-unstable}
  \omega_* = \left(\nu_*^3 + 0.5 w_{*C}^3\right)^{1/3}.
\end{equation}

\subsubsection{The flux gradient model}
The flux-gradient relationships used in the OSMOSIS scheme take the form:

\begin{equation}
  \label{eq:ZDF_flux-grad-gen}
  \overline{w^\prime\chi^\prime}=-K\frac{\partial\overline{\chi}}{\partial z} + N_{\chi,s} +N_{\chi,b} +N_{\chi,t},
\end{equation}

where $\chi$ is a general variable and $N_{\chi,s}, N_{\chi,b} \mathrm{and} N_{\chi,t}$  are the non-gradient terms, and represent the effects of the different terms in the turbulent flux-budget on the transport of $\chi$. $N_{\chi,s}$ represents the effects that the Stokes shear has on the transport of $\chi$, $N_{\chi,b}$  the effect of buoyancy, and $N_{\chi,t}$ the effect of the turbulent transport.  The same general form for the flux-gradient relationship is used to parametrize the transports of momentum, heat and salinity.

In terms of the non-dimensionalized depth variables

\begin{equation}
  \label{eq:ZDF_sigma}
  \sigma_{\mathrm{ml}}= -z/h_{\mathrm{ml}}; \;\sigma_{\mathrm{bl}}= -z/h_{\mathrm{bl}},
\end{equation}

in unstable conditions the eddy diffusivity ($K_d$) and eddy viscosity ($K_\nu$) profiles are parametrized as:

\begin{align}
  \label{eq:ZDF_diff-unstable}
  K_d=&0.8\, \omega_*\, h_{\mathrm{ml}} \, \sigma_{\mathrm{ml}} \left(1-\beta_d \sigma_{\mathrm{ml}}\right)^{3/2}
  \\
  \label{eq:ZDF_visc-unstable}
  K_\nu =& 0.3\, \omega_* \,h_{\mathrm{ml}}\, \sigma_{\mathrm{ml}} \left(1-\beta_\nu \sigma_{\mathrm{ml}}\right)\left(1-\tfrac{1}{2}\sigma_{\mathrm{ml}}^2\right)
\end{align}

where $\beta_d$ and $\beta_\nu$ are parameters that are determined by matching \autoref{eq:ZDF_diff-unstable} and \autoref{eq:ZDF_visc-unstable} to the eddy diffusivity and viscosity at the base of the well-mixed layer, given by

\begin{equation}
  \label{eq:ZDF_diff-wml-base}
  K_{d,\mathrm{ml}}=K_{\nu,\mathrm{ml}}=\,0.16\,\omega_* \Delta h.
\end{equation}

For stable conditions the eddy diffusivity/viscosity profiles are given by:

\begin{align}
  \label{eq:ZDF_diff-stable}
  K_d= & 0.75\,\, \nu_*\, h_{\mathrm{ml}}\,\,  \exp\left[-2.8
       \left(h_{\mathrm{bl}}/L_L\right)^2\right]\sigma_{\mathrm{ml}}
       \left(1-\sigma_{\mathrm{ml}}\right)^{3/2} \\
  \label{eq:ZDF_visc-stable}
  K_\nu = & 0.375\,\,  \nu_*\, h_{\mathrm{ml}} \,\, \exp\left[-2.8 \left(h_{\mathrm{bl}}/L_L\right)^2\right] \sigma_{\mathrm{ml}} \left(1-\sigma_{\mathrm{ml}}\right)\left(1-\tfrac{1}{2}\sigma_{\mathrm{ml}}^2\right).
\end{align}

The shape of the eddy viscosity and diffusivity profiles is the same as the shape in the unstable OSBL. The eddy diffusivity/viscosity depends on the stability parameter $h_{\mathrm{bl}}/{L_L}$ where $ L_L$ is analogous to the Obukhov length, but for Langmuir turbulence:
\begin{equation}
  \label{eq:ZDF_L_L}
  L_L=-w_{*L}^3/\left<\overline{w^\prime b^\prime}\right>_L,
\end{equation}
with the mean turbulent buoyancy flux averaged over the boundary layer given in terms of its surface value $\overline{w^\prime b^\prime}_0$ and (downwards) )solar irradiance $I(z)$ by
\begin{equation}
  \label{eq:ZDF_stable-av-buoy-flux}
  \left<\overline{w^\prime b^\prime}\right>_L = \tfrac{1}{2} {\overline{w^\prime b^\prime}}_0-g\alpha_E\left[\tfrac{1}{2}(I(0)+I(-h))-\left<I\right>\right].
\end{equation}

In unstable conditions the eddy diffusivity and viscosity depend on stability through the velocity scale $\omega_*$, which depends on the two velocity scales $\nu_*$ and $w_{*C}$.

Details of the non-gradient terms in \autoref{eq:ZDF_flux-grad-gen} and of the fluxes within the pycnocline $-h_{\mathrm{bl}}<z<h_{\mathrm{ml}}$ can be found in Grant (2019).

\subsubsection{Evolution of the boundary layer depth}

The prognostic equation for the depth of the neutral/unstable boundary layer is given by \iffalse \citep{grant+etal18?}, \fi

\begin{equation}
  \label{eq:ZDF_dhdt-unstable}
%\frac{\partial h_\mathrm{bl}}{\partial t} + \mathbf{U}_b\cdot\nabla h_\mathrm{bl}= W_b - \frac{{\overline{w^\prime b^\prime}}_\mathrm{ent}}{\Delta B_\mathrm{bl}}
   \frac{\partial h_\mathrm{bl}}{\partial t} = W_b - \frac{{\overline{w^\prime b^\prime}}_\mathrm{ent}}{\Delta B_\mathrm{bl}}
\end{equation}
where $h_\mathrm{bl}$ is the horizontally-varying depth of the OSBL,
$\mathbf{U}_b$ and $W_b$ are the mean horizontal and vertical
velocities at the base of the OSBL, ${\overline{w^\prime
    b^\prime}}_\mathrm{ent}$ is the buoyancy flux due to entrainment
and $\Delta B_\mathrm{bl}$ is the difference between the buoyancy
averaged over the depth of the OSBL (i.e.\ including the ML and
pycnocline) and the buoyancy just below the base of the OSBL. This
equation for the case when the pycnocline has a finite thickness,
based on the potential energy budget of the OSBL, is the leading term
\iffalse \citep{grant+etal18?} \fi of a generalization of that used in mixed-layer
models e.g.\ \citet{kraus.turner_T67}, in which the thickness of the pycnocline is take
Loading
Loading full blame...