Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
\documentclass[../main/NEMO_manual]{subfiles}
\begin{document}
\chapter{Vertical Ocean Physics (ZDF)}
\label{chap:ZDF}
\chaptertoc
\paragraph{Changes record} ~\\
{\footnotesize
\begin{tabularx}{\textwidth}{l||X|X}
Release & Author(s) & Modifications \\
\hline
{\em next} & {\em A. Moulin, E. Clementi} & {\em Update of \autoref{subsec:ZDF_tke} in for wave coupling}\\[2mm]
{\em 4.0} & {\em ...} & {\em ...} \\
{\em 3.6} & {\em ...} & {\em ...} \\
{\em 3.4} & {\em ...} & {\em ...} \\
{\em <=3.4} & {\em ...} & {\em ...}
\end{tabularx}
}
\clearpage
\cmtgm{ Add here a small introduction to ZDF and naming of the different physics
(similar to what have been written for TRA and DYN).}
%% =================================================================================================
\section{Vertical mixing}
\label{sec:ZDF}
The discrete form of the ocean subgrid scale physics has been presented in
\autoref{sec:TRA_zdf} and \autoref{sec:DYN_zdf}.
At the surface and bottom boundaries, the turbulent fluxes of momentum, heat and salt have to be defined.
At the surface they are prescribed from the surface forcing (see \autoref{chap:SBC}),
while at the bottom they are set to zero for heat and salt,
unless a geothermal flux forcing is prescribed as a bottom boundary condition (\ie\ \np{ln_trabbc}{ln\_trabbc} defined,
see \autoref{subsec:TRA_bbc}), and specified through a bottom friction parameterisation for momentum
(see \autoref{sec:ZDF_drg}).
In this section we briefly discuss the various choices offered to compute the vertical eddy viscosity and
diffusivity coefficients, $A_u^{vm}$ , $A_v^{vm}$ and $A^{vT}$ ($A^{vS}$), defined at $uw$-, $vw$- and $w$- points,
respectively (see \autoref{sec:TRA_zdf} and \autoref{sec:DYN_zdf}).
These coefficients can be assumed to be either constant, or a function of the local Richardson number,
or computed from a turbulent closure model (either TKE or GLS or OSMOSIS formulation).
The computation of these coefficients is initialized in the \mdl{zdfphy} module and performed in
the \mdl{zdfric}, \mdl{zdftke} or \mdl{zdfgls} or \mdl{zdfosm} modules.
The trends due to the vertical momentum and tracer diffusion, including the surface forcing,
are computed and added to the general trend in the \mdl{dynzdf} and \mdl{trazdf} modules, respectively.
%These trends can be computed using either a forward time stepping scheme
%(namelist parameter \np[=.true.]{ln_zdfexp}{ln\_zdfexp}) or a backward time stepping scheme
%(\np[=.false.]{ln_zdfexp}{ln\_zdfexp}) depending on the magnitude of the mixing coefficients,
%and thus of the formulation used (see \autoref{chap:TD}).
\begin{listing}
\nlst{namzdf}
\caption{\forcode{&namzdf}}
\label{lst:namzdf}
\end{listing}
%% =================================================================================================
\subsection[Constant (\forcode{ln_zdfcst})]{Constant (\protect\np{ln_zdfcst}{ln\_zdfcst})}
\label{subsec:ZDF_cst}
Options are defined through the \nam{zdf}{zdf} namelist variables.
When \np{ln_zdfcst}{ln\_zdfcst} is defined, the momentum and tracer vertical eddy coefficients are set to
constant values over the whole ocean.
This is the crudest way to define the vertical ocean physics.
It is recommended to use this option only in process studies, not in basin scale simulations.
Typical values used in this case are:
\begin{align*}
A_u^{vm} = A_v^{vm} &= 1.2\ 10^{-4}~m^2.s^{-1} \\
A^{vT} = A^{vS} &= 1.2\ 10^{-5}~m^2.s^{-1}
\end{align*}
These values are set through the \np{rn_avm0}{rn\_avm0} and \np{rn_avt0}{rn\_avt0} namelist parameters.
In all cases, do not use values smaller that those associated with the molecular viscosity and diffusivity,
that is $\sim10^{-6}~m^2.s^{-1}$ for momentum, $\sim10^{-7}~m^2.s^{-1}$ for temperature and
$\sim10^{-9}~m^2.s^{-1}$ for salinity.
%% =================================================================================================
\subsection[Richardson number dependent (\forcode{ln_zdfric})]{Richardson number dependent (\protect\np{ln_zdfric}{ln\_zdfric})}
\label{subsec:ZDF_ric}
\begin{listing}
\nlst{namzdf_ric}
\caption{\forcode{&namzdf_ric}}
\label{lst:namzdf_ric}
\end{listing}
When \np[=.true.]{ln_zdfric}{ln\_zdfric}, a local Richardson number dependent formulation for the vertical momentum and
tracer eddy coefficients is set through the \nam{zdf_ric}{zdf\_ric} namelist variables.
The vertical mixing coefficients are diagnosed from the large scale variables computed by the model.
\textit{In situ} measurements have been used to link vertical turbulent activity to large scale ocean structures.
The hypothesis of a mixing mainly maintained by the growth of Kelvin-Helmholtz like instabilities leads to
a dependency between the vertical eddy coefficients and the local Richardson number
(\ie\ the ratio of stratification to vertical shear).
Following \citet{pacanowski.philander_JPO81}, the following formulation has been implemented:
\[
% \label{eq:ZDF_ric}
\left\{
\begin{aligned}
A^{vm} &= \frac {A_{ric}^{vm}}{\left( 1+a \; Ri \right)^n} + A_b^{vm} \\
A^{vT} &= \frac{A^{vm} }{\left( 1+ a \;Ri \right) } + A_b^{vT}
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
\end{aligned}
\right.
\]
where $Ri = N^2 / \left(\partial_z \textbf{U}_h \right)^2$ is the local Richardson number,
$N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \autoref{subsec:TRA_bn2}),
$A_b^{vT} $ and $A_b^{vm}$ are the constant background values set as in the constant case
(see \autoref{subsec:ZDF_cst}), and $A_{ric}^{vT} = 10^{-4}~m^2.s^{-1}$ is the maximum value that
can be reached by the coefficient when $Ri\leq 0$, $a=5$ and $n=2$.
The last three values can be modified by setting the \np{rn_avmri}{rn\_avmri}, \np{rn_alp}{rn\_alp} and
\np{nn_ric}{nn\_ric} namelist parameters, respectively.
A simple mixing-layer model to transfer and dissipate the atmospheric forcings
(wind-stress and buoyancy fluxes) can be activated setting the \np[=.true.]{ln_mldw}{ln\_mldw} in the namelist.
In this case, the local depth of turbulent wind-mixing or "Ekman depth" $h_{e}(x,y,t)$ is evaluated and
the vertical eddy coefficients prescribed within this layer.
This depth is assumed proportional to the "depth of frictional influence" that is limited by rotation:
\[
h_{e} = Ek \frac {u^{*}} {f_{0}}
\]
where, $Ek$ is an empirical parameter, $u^{*}$ is the friction velocity and $f_{0}$ is the Coriolis parameter.
In this similarity height relationship, the turbulent friction velocity:
\[
u^{*} = \sqrt \frac {|\tau|} {\rho_o}
\]
is computed from the wind stress vector $|\tau|$ and the reference density $ \rho_o$.
The final $h_{e}$ is further constrained by the adjustable bounds \np{rn_mldmin}{rn\_mldmin} and \np{rn_mldmax}{rn\_mldmax}.
Once $h_{e}$ is computed, the vertical eddy coefficients within $h_{e}$ are set to
the empirical values \np{rn_wtmix}{rn\_wtmix} and \np{rn_wvmix}{rn\_wvmix} \citep{lermusiaux_JMS01}.
%% =================================================================================================
\subsection[TKE turbulent closure scheme (\forcode{ln_zdftke})]{TKE turbulent closure scheme (\protect\np{ln_zdftke}{ln\_zdftke})}
\label{subsec:ZDF_tke}
\begin{listing}
\nlst{namzdf_tke}
\caption{\forcode{&namzdf_tke}}
\label{lst:namzdf_tke}
\end{listing}
The vertical eddy viscosity and diffusivity coefficients are computed from a TKE turbulent closure model based on
a prognostic equation for $\bar{e}$, the turbulent kinetic energy,
and a closure assumption for the turbulent length scales.
This turbulent closure model has been developed by \citet{bougeault.lacarrere_MWR89} in the atmospheric case,
adapted by \citet{gaspar.gregoris.ea_JGR90} for the oceanic case, and embedded in OPA, the ancestor of \NEMO,
by \citet{blanke.delecluse_JPO93} for equatorial Atlantic simulations.
Since then, significant modifications have been introduced by \citet{madec.delecluse.ea_NPM98} in both the implementation and
the formulation of the mixing length scale.
The time evolution of $\bar{e}$ is the result of the production of $\bar{e}$ through vertical shear,
its destruction through stratification, its vertical diffusion, and its dissipation of \citet{kolmogorov_IANS42} type:
\begin{equation}
\label{eq:ZDF_tke_e}
\frac{\partial \bar{e}}{\partial t} =
\frac{K_m}{{e_3}^2 }\;\left[ {\left( {\frac{\partial u}{\partial k}} \right)^2
+\left( {\frac{\partial v}{\partial k}} \right)^2} \right]
-K_\rho\,N^2
+\frac{1}{e_3} \;\frac{\partial }{\partial k}\left[ {\frac{A^{vm}}{e_3 }
\;\frac{\partial \bar{e}}{\partial k}} \right]
- c_\epsilon \;\frac{\bar {e}^{3/2}}{l_\epsilon }
\end{equation}
\[
% \label{eq:ZDF_tke_kz}
\begin{split}
K_m &= C_k\ l_k\ \sqrt {\bar{e}\; } \\
K_\rho &= A^{vm} / P_{rt}
\end{split}
\]
where $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \autoref{subsec:TRA_bn2}),
$l_{\epsilon }$ and $l_{\kappa }$ are the dissipation and mixing length scales,
$P_{rt}$ is the Prandtl number, $K_m$ and $K_\rho$ are the vertical eddy viscosity and diffusivity coefficients.
The constants $C_k = 0.1$ and $C_\epsilon = \sqrt {2} /2$ $\approx 0.7$ are designed to deal with
vertical mixing at any depth \citep{gaspar.gregoris.ea_JGR90}.
They are set through namelist parameters \np{nn_ediff}{nn\_ediff} and \np{nn_ediss}{nn\_ediss}.
$P_{rt}$ can be set to unity or, following \citet{blanke.delecluse_JPO93}, be a function of the local Richardson number, $R_i$:
\begin{align*}
% \label{eq:ZDF_prt}
P_{rt} =
\begin{cases}
\ \ \ 1 & \text{if $\ R_i \leq 0.2$} \\
5\,R_i & \text{if $\ 0.2 \leq R_i \leq 2$}
\end{cases}
\end{align*}
The choice of $P_{rt}$ is controlled by the \np{nn_pdl}{nn\_pdl} namelist variable.
At the sea surface, the value of $\bar{e}$ is prescribed from the wind stress field as
$\bar{e}_o = e_{bb} |\tau| / \rho_o$, with $e_{bb}$ the \np{rn_ebb}{rn\_ebb} namelist parameter.
The default value of $e_{bb}$ is 3.75. \citep{gaspar.gregoris.ea_JGR90}), however a much larger value can be used when
taking into account the surface wave breaking (see below \autoref{eq:ZDF_Esbc}).
The bottom value of TKE is assumed to be equal to the value of the level just above.
The time integration of the $\bar{e}$ equation may formally lead to negative values because
the numerical scheme does not ensure its positivity.
To overcome this problem, a cut-off in the minimum value of $\bar{e}$ is used (\np{rn_emin}{rn\_emin} namelist parameter).
Following \citet{gaspar.gregoris.ea_JGR90}, the cut-off value is set to $\sqrt{2}/2~10^{-6}~m^2.s^{-2}$.
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
This allows the subsequent formulations to match that of \citet{gargett_JMR84} for the diffusion in
the thermocline and deep ocean : $K_\rho = 10^{-3} / N$.
In addition, a cut-off is applied on $K_m$ and $K_\rho$ to avoid numerical instabilities associated with
too weak vertical diffusion.
They must be specified at least larger than the molecular values, and are set through \np{rn_avm0}{rn\_avm0} and
\np{rn_avt0}{rn\_avt0} (\nam{zdf}{zdf} namelist, see \autoref{subsec:ZDF_cst}).
%% =================================================================================================
\subsubsection{Turbulent length scale}
For computational efficiency, the original formulation of the turbulent length scales proposed by
\citet{gaspar.gregoris.ea_JGR90} has been simplified.
Four formulations are proposed, the choice of which is controlled by the \np{nn_mxl}{nn\_mxl} namelist parameter.
The first two are based on the following first order approximation \citep{blanke.delecluse_JPO93}:
\begin{equation}
\label{eq:ZDF_tke_mxl0_1}
l_k = l_\epsilon = \sqrt {2 \bar{e}\; } / N
\end{equation}
which is valid in a stable stratified region with constant values of the Brunt-Vais\"{a}l\"{a} frequency.
The resulting length scale is bounded by the distance to the surface or to the bottom
(\np[=0]{nn_mxl}{nn\_mxl}) or by the local vertical scale factor (\np[=1]{nn_mxl}{nn\_mxl}).
\citet{blanke.delecluse_JPO93} notice that this simplification has two major drawbacks:
it makes no sense for locally unstable stratification and the computation no longer uses all
the information contained in the vertical density profile.
To overcome these drawbacks, \citet{madec.delecluse.ea_NPM98} introduces the \np[=2, 3]{nn_mxl}{nn\_mxl} cases,
which add an extra assumption concerning the vertical gradient of the computed length scale.
So, the length scales are first evaluated as in \autoref{eq:ZDF_tke_mxl0_1} and then bounded such that:
\begin{equation}
\label{eq:ZDF_tke_mxl_constraint}
\frac{1}{e_3 }\left| {\frac{\partial l}{\partial k}} \right| \leq 1
\qquad \text{with }\ l = l_k = l_\epsilon
\end{equation}
\autoref{eq:ZDF_tke_mxl_constraint} means that the vertical variations of the length scale cannot be larger than
the variations of depth.
It provides a better approximation of the \citet{gaspar.gregoris.ea_JGR90} formulation while being much less
time consuming.
In particular, it allows the length scale to be limited not only by the distance to the surface or
to the ocean bottom but also by the distance to a strongly stratified portion of the water column such as
the thermocline (\autoref{fig:ZDF_mixing_length}).
In order to impose the \autoref{eq:ZDF_tke_mxl_constraint} constraint, we introduce two additional length scales:
$l_{up}$ and $l_{dwn}$, the upward and downward length scales, and
evaluate the dissipation and mixing length scales as
(and note that here we use numerical indexing):
\begin{figure}[!t]
\centering
\includegraphics[width=0.66\textwidth]{ZDF_mixing_length}
\caption[Mixing length computation]{Illustration of the mixing length computation}
\label{fig:ZDF_mixing_length}
\end{figure}
\[
% \label{eq:ZDF_tke_mxl2}
\begin{aligned}
l_{up\ \ }^{(k)} &= \min \left( l^{(k)} \ , \ l_{up}^{(k+1)} + e_{3t}^{(k)}\ \ \ \; \right)
\quad &\text{ from $k=1$ to $jpk$ }\ \\
l_{dwn}^{(k)} &= \min \left( l^{(k)} \ , \ l_{dwn}^{(k-1)} + e_{3t}^{(k-1)} \right)
\quad &\text{ from $k=jpk$ to $1$ }\ \\
\end{aligned}
\]
where $l^{(k)}$ is computed using \autoref{eq:ZDF_tke_mxl0_1}, \ie\ $l^{(k)} = \sqrt {2 {\bar e}^{(k)} / {N^2}^{(k)} }$.
In the \np[=2]{nn_mxl}{nn\_mxl} case, the dissipation and mixing length scales take the same value:
$ l_k= l_\epsilon = \min \left(\ l_{up} \;,\; l_{dwn}\ \right)$, while in the \np[=3]{nn_mxl}{nn\_mxl} case,
the dissipation and mixing turbulent length scales are give as in \citet{gaspar.gregoris.ea_JGR90}:
\[
% \label{eq:ZDF_tke_mxl_gaspar}
\begin{aligned}
& l_\epsilon = \sqrt{\ l_{up} \ \ l_{dwn}\ } \\
& l_k = \min \left(\ l_{up} \;,\; l_{dwn}\ \right)
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
\end{aligned}
\]
At the ocean surface, a non zero length scale is set through the \np{rn_mxl0}{rn\_mxl0} namelist parameter.
Usually the surface scale is given by $l_o = \kappa \,z_o$ where $\kappa = 0.4$ is von Karman's constant and
$z_o$ the roughness parameter of the surface.
Assuming $z_o=0.1$~m \citep{craig.banner_JPO94} leads to a 0.04~m, the default value of \np{rn_mxl0}{rn\_mxl0}.
In the ocean interior a minimum length scale is set to recover the molecular viscosity when
$\bar{e}$ reach its minimum value ($1.10^{-6}= C_k\, l_{min} \,\sqrt{\bar{e}_{min}}$ ).
%% =================================================================================================
\subsubsection{Surface wave breaking parameterization (No information from an external wave model)}
\label{subsubsec:ZDF_tke_wave}
Following \citet{mellor.blumberg_JPO04}, the TKE turbulence closure model has been modified to
include the effect of surface wave breaking energetics.
This results in a reduction of summertime surface temperature when the mixed layer is relatively shallow.
The \citet{mellor.blumberg_JPO04} modifications acts on surface length scale and TKE values and
air-sea drag coefficient.
The latter concerns the bulk formulae and is not discussed here.
Following \citet{craig.banner_JPO94}, the boundary condition on surface TKE value is :
\begin{equation}
\label{eq:ZDF_Esbc}
\bar{e}_o = \frac{1}{2}\,\left( 15.8\,\alpha_{CB} \right)^{2/3} \,\frac{|\tau|}{\rho_o}
\end{equation}
where $\alpha_{CB}$ is the \citet{craig.banner_JPO94} constant of proportionality which depends on the ''wave age'',
ranging from 57 for mature waves to 146 for younger waves \citep{mellor.blumberg_JPO04}.
The boundary condition on the turbulent length scale follows the Charnock's relation:
\begin{equation}
\label{eq:ZDF_Lsbc}
l_o = \kappa \beta \,\frac{|\tau|}{g\,\rho_o}
\end{equation}
where $\kappa=0.40$ is the von Karman constant, and $\beta$ is the Charnock's constant.
\citet{mellor.blumberg_JPO04} suggest $\beta = 2.10^{5}$ the value chosen by
\citet{stacey_JPO99} citing observation evidence, and
$\alpha_{CB} = 100$ the Craig and Banner's value.
As the surface boundary condition on TKE is prescribed through $\bar{e}_o = e_{bb} |\tau| / \rho_o$,
with $e_{bb}$ the \np{rn_ebb}{rn\_ebb} namelist parameter, setting \np[=67.83]{rn_ebb}{rn\_ebb} corresponds
to $\alpha_{CB} = 100$.
Further setting \np[=.true.]{ln_mxl0}{ln\_mxl0}, applies \autoref{eq:ZDF_Lsbc} as the surface boundary condition on the length scale, with $\beta$ hard coded to the Stacey's value. Note that a minimal threshold of \np{rn_emin0}{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist parameters) is applied on the surface $\bar{e}$ value.\\
\subsubsection{Surface wave breaking parameterization (using information from an external wave model)}
\label{subsubsec:ZDF_tke_waveco}
Surface boundary conditions for the turbulent kinetic energy, the mixing length scale and the dissipative length scale can be defined using wave fields provided from an external wave model (see \autoref{chap:SBC}, \autoref{sec:SBC_wave}).
The injection of turbulent kinetic energy at the surface can be given by the dissipation of the wave field usually dominated by wave breaking. In coupled mode, the wave to ocean energy flux term ($\Phi_o$) from an external wave model can be provided and then converted into an ocean turbulence source by setting ln\_phioc=.true.
The surface TKE can be defined by a Dirichlet boundary condition setting $nn\_bc\_surf=0$ in \nam{zdf}{tke} namelist:
\begin{equation}
\bar{e}_o = \frac{1}{2}\,\left( 15.8 \, \frac{\Phi_o}{\rho_o}\right) ^{2/3}
\end{equation}
Nevertheless, due to the definition of the computational grid, the TKE flux is not applied at the free surface but at the centre of the topmost grid cell ($z = z1$). To be more accurate, a Neumann boundary condition amounting to interpreter the half-grid cell at the top as a constant flux layer (consistent with the surface layer Monin–Obukhov theory) can be applied setting $nn\_bc\_surf=1$ in \nam{zdf}{tke} namelist \citep{couvelard_2020}:
\begin{equation}
\left(\frac{Km}{e_3}\,\partial_k e \right)_{z=z1} = \frac{\Phi_o}{\rho_o}
\end{equation}
The mixing length scale surface value $l_0$ can be estimated from the surface roughness length z0:
\begin{equation}
l_o = \kappa \, \frac{ \left( C_k\,C_\epsilon \right) ^{1/4}}{C_k}\, z0
\end{equation}
where $z0$ is directly estimated from the significant wave height ($Hs$) provided by the external wave model as $z0=1.6Hs$. To use this option ln\_mxhsw as well as ln\_wave and ln\_sdw have to be set to .true.
%% =================================================================================================
\subsubsection{Langmuir cells}
\label{subsubsec:ZDF_tke_langmuir}
Langmuir circulations (LC) can be described as ordered large-scale vertical motions in
the surface layer of the oceans.
Although LC have nothing to do with convection, the circulation pattern is rather similar to
so-called convective rolls in the atmospheric boundary layer.
The detailed physics behind LC is described in, for example, \citet{craik.leibovich_JFM76}.
The prevailing explanation is that LC arise from a nonlinear interaction between the Stokes drift and
wind drift currents.
Here we introduced in the TKE turbulent closure the simple parameterization of Langmuir circulations proposed by
\citep{axell_JGR02} for a $k-\epsilon$ turbulent closure.
The parameterization, tuned against large-eddy simulation, includes the whole effect of LC in
an extra source term of TKE, $P_{LC}$.
The presence of $P_{LC}$ in \autoref{eq:ZDF_tke_e}, the TKE equation, is controlled by setting \np{ln_lc}{ln\_lc} to
\forcode{.true.} in the \nam{zdf_tke}{zdf\_tke} namelist.
By making an analogy with the characteristic convective velocity scale (\eg, \citet{dalessio.abdella.ea_JPO98}),
$P_{LC}$ is assumed to be :
\[
P_{LC}(z) = \frac{w_{LC}^3(z)}{H_{LC}}
\]
where $w_{LC}(z)$ is the vertical velocity profile of LC, and $H_{LC}$ is the LC depth.
For the vertical variation, $w_{LC}$ is assumed to be zero at the surface as well as at
a finite depth $H_{LC}$ (which is often close to the mixed layer depth),
and simply varies as a sine function in between (a first-order profile for the Langmuir cell structures).
The resulting expression for $w_{LC}$ is :
\[
w_{LC} =
\begin{cases}
c_{LC} \,\|u_s^{LC}\| \,\sin(- \pi\,z / H_{LC} ) & \text{if $-z \leq H_{LC}$} \\
0 & \text{otherwise}
\end{cases}
\]
In the absence of information about the wave field, $w_{LC}$ is assumed to be proportional to
the surface Stokes drift ($u_s^{LC}=u_{s0} $) empirically estimated by $ u_{s0} = 0.377\,\,|\tau|^{1/2}$, where $|\tau|$ is the surface wind stress module
\footnote{Following \citet{li.garrett_JMR93}, the surface Stoke drift velocity may be expressed as
$u_{s0} = 0.016 \,|U_{10m}|$.
Assuming an air density of $\rho_a=1.22 \,Kg/m^3$ and a drag coefficient of
$1.5~10^{-3}$ give the expression used of $u_{s0}$ as a function of the module of surface stress
}.
In case of online coupling with an external wave model (see \autoref{chap:SBC} \autoref{sec:SBC_wave}), $w_{LC}$ is proportional to the component of the Stokes drift aligned with the wind \citep{couvelard_2020} and $ u_s^{LC} = \max(u_{s0}.e_\tau,0)$ where $e_\tau$ is the unit vector in the wind stress direction and $u_{s0}$ is the surface Stokes drift provided by the external wave model.
$c_{LC} = 0.15$ has been chosen by \citep{axell_JGR02} as a good compromise to fit LES data.
The chosen value yields maximum vertical velocities $w_{LC}$ of the order of a few centimetres per second.
The value of $c_{LC}$ is set through the \np{rn_lc}{rn\_lc} namelist parameter,
having in mind that it should stay between 0.15 and 0.54 \citep{axell_JGR02}.
The $H_{LC}$ is estimated in a similar way as the turbulent length scale of TKE equations:
$H_{LC}$ is the depth to which a water parcel with kinetic energy due to Stoke drift can reach on its own by
converting its kinetic energy to potential energy, according to
\[
- \int_{-H_{LC}}^0 { N^2\;z \;dz} = \frac{1}{2} \|u_s^{LC}\|^2
\]
%% =================================================================================================
\subsubsection{Mixing just below the mixed layer}
Vertical mixing parameterizations commonly used in ocean general circulation models tend to
produce mixed-layer depths that are too shallow during summer months and windy conditions.
This bias is particularly acute over the Southern Ocean.
To overcome this systematic bias, an ad hoc parameterization is introduced into the TKE scheme \cite{rodgers.aumont.ea_B14}.
The parameterization is an empirical one, \ie\ not derived from theoretical considerations,
but rather is meant to account for observed processes that affect the density structure of
the ocean’s planetary boundary layer that are not explicitly captured by default in the TKE scheme
(\ie\ near-inertial oscillations and ocean swells and waves).
When using this parameterization (\ie\ when \np[=1]{nn_etau}{nn\_etau}),
the TKE input to the ocean ($S$) imposed by the winds in the form of near-inertial oscillations,
swell and waves is parameterized by \autoref{eq:ZDF_Esbc} the standard TKE surface boundary condition,
plus a depth depend one given by:
\begin{equation}
\label{eq:ZDF_Ehtau}
S = (1-f_i) \; f_r \; e_s \; e^{-z / h_\tau}
\end{equation}
where $z$ is the depth, $e_s$ is TKE surface boundary condition, $f_r$ is the fraction of the surface TKE that
penetrates in the ocean, $h_\tau$ is a vertical mixing length scale that controls exponential shape of
the penetration, and $f_i$ is the ice concentration
(no penetration if $f_i=1$, \ie\ if the ocean is entirely covered by sea-ice).
The value of $f_r$, usually a few percents, is specified through \np{rn_efr}{rn\_efr} namelist parameter.
The vertical mixing length scale, $h_\tau$, can be set as a 10~m uniform value (\np[=0]{nn_etau}{nn\_etau}) or
a latitude dependent value (varying from 0.5~m at the Equator to a maximum value of 30~m at high latitudes
(\np[=1]{nn_etau}{nn\_etau}).
Note that two other option exist, \np[=2, 3]{nn_etau}{nn\_etau}.
They correspond to applying \autoref{eq:ZDF_Ehtau} only at the base of the mixed layer,
or to using the high frequency part of the stress to evaluate the fraction of TKE that penetrates the ocean.
Those two options are obsolescent features introduced for test purposes.
They will be removed in the next release.
% This should be explain better below what this rn_eice parameter is meant for:
In presence of Sea Ice, the value of this mixing can be modulated by the \np{rn_eice}{rn\_eice} namelist parameter.
This parameter varies from \forcode{0} for no effect to \forcode{4} to suppress the TKE input into the ocean when Sea Ice concentration
is greater than 25\%.
% from Burchard et al OM 2008 :
% the most critical process not reproduced by statistical turbulence models is the activity of
% internal waves and their interaction with turbulence. After the Reynolds decomposition,
% internal waves are in principle included in the RANS equations, but later partially
% excluded by the hydrostatic assumption and the model resolution.
% Thus far, the representation of internal wave mixing in ocean models has been relatively crude
% (\eg\ Mellor, 1989; Large et al., 1994; Meier, 2001; Axell, 2002; St. Laurent and Garrett, 2002).
%% =================================================================================================
\subsection[GLS: Generic Length Scale (\forcode{ln_zdfgls})]{GLS: Generic Length Scale (\protect\np{ln_zdfgls}{ln\_zdfgls})}
\label{subsec:ZDF_gls}
\begin{listing}
\nlst{namzdf_gls}
\caption{\forcode{&namzdf_gls}}
\label{lst:namzdf_gls}
\end{listing}
The Generic Length Scale (GLS) scheme is a turbulent closure scheme based on two prognostic equations:
one for the turbulent kinetic energy $\bar {e}$, and another for the generic length scale,
$\psi$ \citep{umlauf.burchard_JMR03, umlauf.burchard_CSR05}.
This later variable is defined as: $\psi = {C_{0\mu}}^{p} \ {\bar{e}}^{m} \ l^{n}$,
where the triplet $(p, m, n)$ value given in Tab.\autoref{tab:ZDF_GLS} allows to recover a number of
well-known turbulent closures ($k$-$kl$ \citep{mellor.yamada_RG82}, $k$-$\epsilon$ \citep{rodi_JGR87},
$k$-$\omega$ \citep{wilcox_AJ88} among others \citep{umlauf.burchard_JMR03,kantha.carniel_JMR03}).
The GLS scheme is given by the following set of equations:
\begin{equation}
\label{eq:ZDF_gls_e}
\frac{\partial \bar{e}}{\partial t} =
\frac{K_m}{\sigma_e e_3 }\;\left[ {\left( \frac{\partial u}{\partial k} \right)^2
+\left( \frac{\partial v}{\partial k} \right)^2} \right]
-K_\rho \,N^2
+\frac{1}{e_3}\,\frac{\partial}{\partial k} \left[ \frac{K_m}{e_3}\,\frac{\partial \bar{e}}{\partial k} \right]
- \epsilon
\end{equation}
\[
% \label{eq:ZDF_gls_psi}
\begin{split}
\frac{\partial \psi}{\partial t} =& \frac{\psi}{\bar{e}} \left\{
\frac{C_1\,K_m}{\sigma_{\psi} {e_3}}\;\left[ {\left( \frac{\partial u}{\partial k} \right)^2
+\left( \frac{\partial v}{\partial k} \right)^2} \right]
- C_3 \,K_\rho\,N^2 - C_2 \,\epsilon \,Fw \right\} \\
&+\frac{1}{e_3} \;\frac{\partial }{\partial k}\left[ {\frac{K_m}{e_3 }
\;\frac{\partial \psi}{\partial k}} \right]\;
\end{split}
\]
\[
% \label{eq:ZDF_gls_kz}
\begin{split}
K_m &= C_{\mu} \ \sqrt {\bar{e}} \ l \\
K_\rho &= C_{\mu'}\ \sqrt {\bar{e}} \ l
\end{split}
\]
\[
% \label{eq:ZDF_gls_eps}
{\epsilon} = C_{0\mu} \,\frac{\bar {e}^{3/2}}{l} \;
\]
where $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \autoref{subsec:TRA_bn2}) and
$\epsilon$ the dissipation rate.
The constants $C_1$, $C_2$, $C_3$, ${\sigma_e}$, ${\sigma_{\psi}}$ and the wall function ($Fw$) depends of
the choice of the turbulence model.
Four different turbulent models are pre-defined (\autoref{tab:ZDF_GLS}).
They are made available through the \np{nn_clo}{nn\_clo} namelist parameter.
\begin{table}[htbp]
\centering
% \begin{tabular}{cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}c}
\begin{tabular}{ccccc}
& $k-kl$ & $k-\epsilon$ & $k-\omega$ & generic \\
% & \citep{mellor.yamada_RG82} & \citep{rodi_JGR87} & \citep{wilcox_AJ88} & \\
\hline
\hline
\np{nn_clo}{nn\_clo} & \textbf{0} & \textbf{1} & \textbf{2} & \textbf{3} \\
\hline
$( p , n , m )$ & ( 0 , 1 , 1 ) & ( 3 , 1.5 , -1 ) & ( -1 , 0.5 , -1 ) & ( 2 , 1 , -0.67 ) \\
$\sigma_k$ & 2.44 & 1. & 2. & 0.8 \\
$\sigma_\psi$ & 2.44 & 1.3 & 2. & 1.07 \\
$C_1$ & 0.9 & 1.44 & 0.555 & 1. \\
$C_2$ & 0.5 & 1.92 & 0.833 & 1.22 \\
$C_3$ & 1. & 1. & 1. & 1. \\
$F_{wall}$ & Yes & -- & -- & -- \\
\hline
\hline
\end{tabular}
\caption[Set of predefined GLS parameters or equivalently predefined turbulence models available]{
Set of predefined GLS parameters, or equivalently predefined turbulence models available with
\protect\np[=.true.]{ln_zdfgls}{ln\_zdfgls} and controlled by
the \protect\np{nn_clos}{nn\_clos} namelist variable in \protect\nam{zdf_gls}{zdf\_gls}.}
\label{tab:ZDF_GLS}
\end{table}
In the Mellor-Yamada model, the negativity of $n$ allows to use a wall function to force the convergence of
the mixing length towards $\kappa z_b$ ($\kappa$ is the Von Karman constant and $z_b$ the rugosity length scale) value near physical boundaries
(logarithmic boundary layer law).
$C_{\mu}$ and $C_{\mu'}$ are calculated from stability function proposed by \citet{galperin.kantha.ea_JAS88},
or by \citet{kantha.clayson_JGR94} or one of the two functions suggested by \citet{canuto.howard.ea_JPO01}
(\np[=0, 3]{nn_stab_func}{nn\_stab\_func}, resp.).
The value of $C_{0\mu}$ depends on the choice of the stability function.
The surface and bottom boundary condition on both $\bar{e}$ and $\psi$ can be calculated thanks to Dirichlet or
Neumann condition through \np{nn_bc_surf}{nn\_bc\_surf} and \np{nn_bc_bot}{nn\_bc\_bot}, resp.
As for TKE closure, the wave effect on the mixing is considered when
\np[ > 0.]{rn_crban}{rn\_crban} \citep{craig.banner_JPO94, mellor.blumberg_JPO04}.
The \np{rn_crban}{rn\_crban} namelist parameter is $\alpha_{CB}$ in \autoref{eq:ZDF_Esbc} and
\np{rn_charn}{rn\_charn} provides the value of $\beta$ in \autoref{eq:ZDF_Lsbc}.
The $\psi$ equation is known to fail in stably stratified flows, and for this reason
almost all authors apply a clipping of the length scale as an \textit{ad hoc} remedy.
With this clipping, the maximum permissible length scale is determined by $l_{max} = c_{lim} \sqrt{2\bar{e}}/ N$.
A value of $c_{lim} = 0.53$ is often used \citep{galperin.kantha.ea_JAS88}.
\cite{umlauf.burchard_CSR05} show that the value of the clipping factor is of crucial importance for
the entrainment depth predicted in stably stratified situations,
and that its value has to be chosen in accordance with the algebraic model for the turbulent fluxes.
The clipping is only activated if \np[=.true.]{ln_length_lim}{ln\_length\_lim},
and the $c_{lim}$ is set to the \np{rn_clim_galp}{rn\_clim\_galp} value.
The time and space discretization of the GLS equations follows the same energetic consideration as for
the TKE case described in \autoref{subsec:ZDF_tke_ene} \citep{burchard_OM02}.
Evaluation of the 4 GLS turbulent closure schemes can be found in \citet{warner.sherwood.ea_OM05} in ROMS model and
in \citet{reffray.bourdalle-badie.ea_GMD15} for the \NEMO\ model.
% -------------------------------------------------------------------------------------------------------------
% OSM OSMOSIS BL Scheme
% -------------------------------------------------------------------------------------------------------------
\subsection[OSM: OSMOSIS boundary layer scheme (\forcode{ln_zdfosm = .true.})]
{OSM: OSMOSIS boundary layer scheme (\protect\np{ln_zdfosm}{ln\_zdfosm})}
\label{subsec:ZDF_osm}
\begin{listing}
\nlst{namzdf_osm}
\caption{\forcode{&namzdf_osm}}
\label{lst:namzdf_osm}
\end{listing}
%--------------------------------------------------------------------------------------------------------------
\paragraph{Namelist choices}
Most of the namelist options refer to how to specify the Stokes
surface drift and penetration depth. There are three options:
\begin{description}
\item \protect\np[=0]{nn_osm_wave}{nn\_osm\_wave} Default value in \texttt{namelist\_ref}. In this case the Stokes drift is
assumed to be parallel to the surface wind stress, with
magnitude consistent with a constant turbulent Langmuir number
$\mathrm{La}_t=$ \protect\np{rn_m_la}{rn\_m\_la} i.e.\
$u_{s0}=\tau/(\mathrm{La}_t^2\rho_0)$. Default value of
\protect\np{rn_m_la}{rn\_m\_la} is 0.3. The Stokes penetration
depth $\delta = $ \protect\np{rn_osm_dstokes}{rn\_osm\_dstokes}; this has default value
of 5~m.
\item \protect\np[=1]{nn_osm_wave}{nn\_osm\_wave} In this case the Stokes drift is
assumed to be parallel to the surface wind stress, with
magnitude as in the classical Pierson-Moskowitz wind-sea
spectrum. Significant wave height and
wave-mean period taken from this spectrum are used to calculate the Stokes penetration
depth, following the approach set out in \citet{breivik.janssen.ea_JPO14}.
\item \protect\np[=2]{nn_osm_wave}{nn\_osm\_wave} In this case the Stokes drift is
taken from ECMWF wave model output, though only the component parallel
to the wind stress is retained. Significant wave height and
wave-mean period from ECMWF wave model output are used to calculate the Stokes penetration
depth, again following \citet{breivik.janssen.ea_JPO14}.
\end{description}
Others refer to the treatment of diffusion and viscosity beneath
the surface boundary layer:
\begin{description}
\item \protect\np{ln_kpprimix}{ln\_kpprimix} Default is \texttt{.true.}. Switches on KPP-style Ri \#-dependent
mixing below the surface boundary layer. If this is set
\texttt{.true.} the following variable settings are honoured:
\item \protect\np{rn_riinfty}{rn\_riinfty} Critical value of local Ri \# below which
shear instability increases vertical mixing from background value.
\item \protect\np{rn_difri}{rn\_difri} Maximum value of Ri \#-dependent mixing at $\mathrm{Ri}=0$.
\item \protect\np{ln_convmix}{ln\_convmix} If \texttt{.true.} then, where water column is unstable, specify
diffusivity equal to \protect\np{rn_dif_conv}{rn\_dif\_conv} (default value is 1 m~s$^{-2}$).
\end{description}
Diagnostic output is controlled by:
\begin{description}
\item \protect\np{ln_dia_osm}{ln\_dia\_osm} Default is \texttt{.false.}; allows XIOS output of OSMOSIS internal fields.
\end{description}
Obsolete namelist parameters include:
\begin{description}
\item \protect\np{ln_use_osm_la}{ln\_use\_osm\_la} With \protect\np[=0]{nn_osm_wave}{nn\_osm\_wave},
\protect\np{rn_osm_dstokes}{rn\_osm\_dstokes} is always used to specify the Stokes
penetration depth.
\item \protect\np{nn_ave}{nn\_ave} Choice of averaging method for KPP-style Ri \#
mixing. Not taken account of.
\item \protect\np{rn_osm_hbl0}{rn\_osm\_hbl0} Depth of initial boundary layer is now set
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
by a density criterion similar to that used in calculating \emph{hmlp} (output as \texttt{mldr10\_1}) in \mdl{zdfmxl}.
\end{description}
\subsubsection{Summary}
Much of the time the turbulent motions in the ocean surface boundary
layer (OSBL) are not given by
classical shear turbulence. Instead they are in a regime known as
`Langmuir turbulence', dominated by an
interaction between the currents and the Stokes drift of the surface waves \citep[e.g.][]{mcwilliams.sullivan.ea_JFM97}.
This regime is characterised by strong vertical turbulent motion, and appears when the surface Stokes drift $u_{s0}$ is much greater than the friction velocity $u_{\ast}$. More specifically Langmuir turbulence is thought to be crucial where the turbulent Langmuir number $\mathrm{La}_{t}=(u_{\ast}/u_{s0}) > 0.4$.
The OSMOSIS model is fundamentally based on results of Large Eddy
Simulations (LES) of Langmuir turbulence and aims to fully describe
this Langmuir regime. The description in this section is of necessity incomplete and further details are available in Grant. A (2019); in prep.
The OSMOSIS turbulent closure scheme is a similarity-scale scheme in
the same spirit as the K-profile
parameterization (KPP) scheme of \citet{large.mcwilliams.ea_RG94}.
A specified shape of diffusivity, scaled by the (OSBL) depth
$h_{\mathrm{BL}}$ and a turbulent velocity scale, is imposed throughout the
boundary layer
$-h_{\mathrm{BL}}<z<\eta$. The turbulent closure model
also includes fluxes of tracers and momentum that are``non-local'' (independent of the local property gradient).
Rather than the OSBL
depth being diagnosed in terms of a bulk Richardson number criterion,
as in KPP, it is set by a prognostic equation that is informed by
energy budget considerations reminiscent of the classical mixed layer
models of \citet{kraus.turner_T67}.
The model also includes an explicit parametrization of the structure
of the pycnocline (the stratified region at the bottom of the OSBL).
Presently, mixing below the OSBL is handled by the Richardson
number-dependent mixing scheme used in \citet{large.mcwilliams.ea_RG94}.
Convective parameterizations such as described in \autoref{sec:ZDF_conv}
below should not be used with the OSMOSIS-OBL model: instabilities
within the OSBL are part of the model, while instabilities below the
ML are handled by the Ri \# dependent scheme.
\subsubsection{Depth and velocity scales}
The model supposes a boundary layer of thickness $h_{\mathrm{bl}}$ enclosing a well-mixed
layer of thickness $h_{\mathrm{ml}}$ and a relatively thin pycnocline at the base of
thickness $\Delta h$; \autoref{fig:OSBL_structure} shows typical (a) buoyancy structure
and (b) turbulent buoyancy flux profile for the unstable boundary layer (losing buoyancy
at the surface; e.g.\ cOoling).
\begin{figure}[!t]
\begin{center}
\includegraphics[width=0.7\textwidth]{ZDF_OSM_structure_of_OSBL}
\caption{
\protect\label{fig:OSBL_structure}
The structure of the entraining boundary layer. (a) Mean buoyancy profile. (b) Profile of the buoyancy flux.
}
\end{center}
\end{figure}
The pycnocline in the OSMOSIS scheme is assumed to have a finite thickness, and may include a number of model levels. This means that the OSMOSIS scheme must parametrize both the thickness of the pycnocline, and the turbulent fluxes within the pycnocline.
Consideration of the power input by wind acting on the Stokes drift suggests that the Langmuir turbulence has velocity scale:
\begin{equation}
\label{eq:ZDF_w_La}
w_{*L}= \left(u_*^2 u_{s\,0}\right)^{1/3};
\end{equation}
but at times the Stokes drift may be weak due to e.g.\ ice cover, short fetch, misalignment with the surface stress, etc.\ so a composite velocity scale is assumed for the stable (warming) boundary layer:
\begin{equation}
\label{eq:ZDF_composite-nu}
\nu_{\ast}= \left\{ u_*^3 \left[1-\exp(-.5 \mathrm{La}_t^2)\right]+w_{*L}^3\right\}^{1/3}.
\end{equation}
For the unstable boundary layer this is merged with the standard convective velocity scale $w_{*C}=\left(\overline{w^\prime b^\prime}_0 \,h_\mathrm{ml}\right)^{1/3}$, where $\overline{w^\prime b^\prime}_0$ is the upwards surface buoyancy flux, to give:
\begin{equation}
\label{eq:ZDF_vel-scale-unstable}
\omega_* = \left(\nu_*^3 + 0.5 w_{*C}^3\right)^{1/3}.
\end{equation}
\subsubsection{The flux gradient model}
The flux-gradient relationships used in the OSMOSIS scheme take the form:
\begin{equation}
\label{eq:ZDF_flux-grad-gen}
\overline{w^\prime\chi^\prime}=-K\frac{\partial\overline{\chi}}{\partial z} + N_{\chi,s} +N_{\chi,b} +N_{\chi,t},
\end{equation}
where $\chi$ is a general variable and $N_{\chi,s}, N_{\chi,b} \mathrm{and} N_{\chi,t}$ are the non-gradient terms, and represent the effects of the different terms in the turbulent flux-budget on the transport of $\chi$. $N_{\chi,s}$ represents the effects that the Stokes shear has on the transport of $\chi$, $N_{\chi,b}$ the effect of buoyancy, and $N_{\chi,t}$ the effect of the turbulent transport. The same general form for the flux-gradient relationship is used to parametrize the transports of momentum, heat and salinity.
In terms of the non-dimensionalized depth variables
\begin{equation}
\label{eq:ZDF_sigma}
\sigma_{\mathrm{ml}}= -z/h_{\mathrm{ml}}; \;\sigma_{\mathrm{bl}}= -z/h_{\mathrm{bl}},
\end{equation}
in unstable conditions the eddy diffusivity ($K_d$) and eddy viscosity ($K_\nu$) profiles are parametrized as:
\begin{align}
\label{eq:ZDF_diff-unstable}
K_d=&0.8\, \omega_*\, h_{\mathrm{ml}} \, \sigma_{\mathrm{ml}} \left(1-\beta_d \sigma_{\mathrm{ml}}\right)^{3/2}
\\
\label{eq:ZDF_visc-unstable}
K_\nu =& 0.3\, \omega_* \,h_{\mathrm{ml}}\, \sigma_{\mathrm{ml}} \left(1-\beta_\nu \sigma_{\mathrm{ml}}\right)\left(1-\tfrac{1}{2}\sigma_{\mathrm{ml}}^2\right)
\end{align}
where $\beta_d$ and $\beta_\nu$ are parameters that are determined by matching \autoref{eq:ZDF_diff-unstable} and \autoref{eq:ZDF_visc-unstable} to the eddy diffusivity and viscosity at the base of the well-mixed layer, given by
\begin{equation}
\label{eq:ZDF_diff-wml-base}
K_{d,\mathrm{ml}}=K_{\nu,\mathrm{ml}}=\,0.16\,\omega_* \Delta h.
\end{equation}
For stable conditions the eddy diffusivity/viscosity profiles are given by:
\begin{align}
\label{eq:ZDF_diff-stable}
K_d= & 0.75\,\, \nu_*\, h_{\mathrm{ml}}\,\, \exp\left[-2.8
\left(h_{\mathrm{bl}}/L_L\right)^2\right]\sigma_{\mathrm{ml}}
\left(1-\sigma_{\mathrm{ml}}\right)^{3/2} \\
\label{eq:ZDF_visc-stable}
K_\nu = & 0.375\,\, \nu_*\, h_{\mathrm{ml}} \,\, \exp\left[-2.8 \left(h_{\mathrm{bl}}/L_L\right)^2\right] \sigma_{\mathrm{ml}} \left(1-\sigma_{\mathrm{ml}}\right)\left(1-\tfrac{1}{2}\sigma_{\mathrm{ml}}^2\right).
\end{align}
The shape of the eddy viscosity and diffusivity profiles is the same as the shape in the unstable OSBL. The eddy diffusivity/viscosity depends on the stability parameter $h_{\mathrm{bl}}/{L_L}$ where $ L_L$ is analogous to the Obukhov length, but for Langmuir turbulence:
\begin{equation}
\label{eq:ZDF_L_L}
L_L=-w_{*L}^3/\left<\overline{w^\prime b^\prime}\right>_L,
\end{equation}
with the mean turbulent buoyancy flux averaged over the boundary layer given in terms of its surface value $\overline{w^\prime b^\prime}_0$ and (downwards) )solar irradiance $I(z)$ by
\begin{equation}
\label{eq:ZDF_stable-av-buoy-flux}
\left<\overline{w^\prime b^\prime}\right>_L = \tfrac{1}{2} {\overline{w^\prime b^\prime}}_0-g\alpha_E\left[\tfrac{1}{2}(I(0)+I(-h))-\left<I\right>\right].
\end{equation}
In unstable conditions the eddy diffusivity and viscosity depend on stability through the velocity scale $\omega_*$, which depends on the two velocity scales $\nu_*$ and $w_{*C}$.
Details of the non-gradient terms in \autoref{eq:ZDF_flux-grad-gen} and of the fluxes within the pycnocline $-h_{\mathrm{bl}}<z<h_{\mathrm{ml}}$ can be found in Grant (2019).
\subsubsection{Evolution of the boundary layer depth}
The prognostic equation for the depth of the neutral/unstable boundary layer is given by \iffalse \citep{grant+etal18?}, \fi
\begin{equation}
\label{eq:ZDF_dhdt-unstable}
%\frac{\partial h_\mathrm{bl}}{\partial t} + \mathbf{U}_b\cdot\nabla h_\mathrm{bl}= W_b - \frac{{\overline{w^\prime b^\prime}}_\mathrm{ent}}{\Delta B_\mathrm{bl}}
\frac{\partial h_\mathrm{bl}}{\partial t} = W_b - \frac{{\overline{w^\prime b^\prime}}_\mathrm{ent}}{\Delta B_\mathrm{bl}}
\end{equation}
where $h_\mathrm{bl}$ is the horizontally-varying depth of the OSBL,
$\mathbf{U}_b$ and $W_b$ are the mean horizontal and vertical
velocities at the base of the OSBL, ${\overline{w^\prime
b^\prime}}_\mathrm{ent}$ is the buoyancy flux due to entrainment
and $\Delta B_\mathrm{bl}$ is the difference between the buoyancy
averaged over the depth of the OSBL (i.e.\ including the ML and
pycnocline) and the buoyancy just below the base of the OSBL. This
equation for the case when the pycnocline has a finite thickness,
based on the potential energy budget of the OSBL, is the leading term
\iffalse \citep{grant+etal18?} \fi of a generalization of that used in mixed-layer
models e.g.\ \citet{kraus.turner_T67}, in which the thickness of the pycnocline is take
Loading
Loading full blame...