Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[../main/NEMO_manual]{subfiles}
\begin{document}
\chapter{Discrete Invariants of the Equations}
\label{apdx:INVARIANTS}
\chaptertoc
\paragraph{Changes record} ~\\
{\footnotesize
\begin{tabularx}{\textwidth}{l||X|X}
Release & Author(s) & Modifications \\
\hline
{\em 4.0} & {\em ...} & {\em ...} \\
{\em 3.6} & {\em ...} & {\em ...} \\
{\em 3.4} & {\em ...} & {\em ...} \\
{\em <=3.4} & {\em ...} & {\em ...}
\end{tabularx}
}
\clearpage
%%% Appendix put in cmtgm as it has not been updated for \zstar and s coordinate
%I'm writting this appendix. It will be available in a forthcoming release of the documentation
%\cmtgm{
%% =================================================================================================
\section{Introduction / Notations}
\label{sec:INVARIANTS_0}
Notation used in this appendix in the demonstations:
fluxes at the faces of a $T$-box:
\[
U = e_{2u}\,e_{3u}\; u \qquad V = e_{1v}\,e_{3v}\; v \qquad W = e_{1w}\,e_{2w}\; \omega
\]
volume of cells at $u$-, $v$-, and $T$-points:
\[
b_u = e_{1u}\,e_{2u}\,e_{3u} \qquad b_v = e_{1v}\,e_{2v}\,e_{3v} \qquad b_t = e_{1t}\,e_{2t}\,e_{3t}
\]
partial derivative notation: $\partial_\bullet = \frac{\partial}{\partial \bullet}$
$dv=e_1\,e_2\,e_3 \,di\,dj\,dk$ is the volume element, with only $e_3$ that depends on time.
$D$ and $S$ are the ocean domain volume and surface, respectively.
No wetting/drying is allow (\ie\ $\frac{\partial S}{\partial t} = 0$).
Let $k_s$ and $k_b$ be the ocean surface and bottom, resp.
(\ie\ $s(k_s) = \eta$ and $s(k_b)=-H$, where $H$ is the bottom depth).
\begin{flalign*}
z(k) = \eta - \int\limits_{\tilde{k}=k}^{\tilde{k}=k_s} e_3(\tilde{k}) \;d\tilde{k}
= \eta - \int\limits_k^{k_s} e_3 \;d\tilde{k}
\end{flalign*}
Continuity equation with the above notation:
\[
\frac{1}{e_{3t}} \partial_t (e_{3t})+ \frac{1}{b_t} \biggl\{ \delta_i [U] + \delta_j [V] + \delta_k [W] \biggr\} = 0
\]
A quantity, $Q$ is conserved when its domain averaged time change is zero, that is when:
\[
\partial_t \left( \int_D{ Q\;dv } \right) =0
\]
Noting that the coordinate system used .... blah blah
\[
\partial_t \left( \int_D {Q\;dv} \right) = \int_D { \partial_t \left( e_3 \, Q \right) e_1e_2\;di\,dj\,dk }
= \int_D { \frac{1}{e_3} \partial_t \left( e_3 \, Q \right) dv } =0
\]
equation of evolution of $Q$ written as
the time evolution of the vertical content of $Q$ like for tracers, or momentum in flux form,
the quadratic quantity $\frac{1}{2}Q^2$ is conserved when:
\begin{flalign*}
\partial_t \left( \int_D{ \frac{1}{2} \,Q^2\;dv } \right)
=& \int_D{ \frac{1}{2} \partial_t \left( \frac{1}{e_3}\left( e_3 \, Q \right)^2 \right) e_1e_2\;di\,dj\,dk } \\
=& \int_D { Q \;\partial_t\left( e_3 \, Q \right) e_1e_2\;di\,dj\,dk }
- \int_D { \frac{1}{2} Q^2 \,\partial_t (e_3) \;e_1e_2\;di\,dj\,dk } \\
\end{flalign*}
that is in a more compact form :
\begin{flalign}
\label{eq:INVARIANTS_Q2_flux}
\partial_t \left( \int_D {\frac{1}{2} Q^2\;dv} \right)
=& \int_D { \frac{Q}{e_3} \partial_t \left( e_3 \, Q \right) dv }
- \frac{1}{2} \int_D { \frac{Q^2}{e_3} \partial_t (e_3) \;dv }
\end{flalign}
equation of evolution of $Q$ written as the time evolution of $Q$ like for momentum in vector invariant form,
the quadratic quantity $\frac{1}{2}Q^2$ is conserved when:
\begin{flalign*}
\partial_t \left( \int_D {\frac{1}{2} Q^2\;dv} \right)
=& \int_D { \frac{1}{2} \partial_t \left( e_3 \, Q^2 \right) \;e_1e_2\;di\,dj\,dk } \\
=& \int_D { Q \partial_t Q \;e_1e_2e_3\;di\,dj\,dk }
+ \int_D { \frac{1}{2} Q^2 \, \partial_t e_3 \;e_1e_2\;di\,dj\,dk } \\
\end{flalign*}
that is in a more compact form:
\begin{flalign}
\label{eq:INVARIANTS_Q2_vect}
\partial_t \left( \int_D {\frac{1}{2} Q^2\;dv} \right)
=& \int_D { Q \,\partial_t Q \;dv }
+ \frac{1}{2} \int_D { \frac{1}{e_3} Q^2 \partial_t e_3 \;dv }
\end{flalign}
%% =================================================================================================
\section{Continuous conservation}
\label{sec:INVARIANTS_1}
The discretization of pimitive equation in $s$-coordinate (\ie\ time and space varying vertical coordinate)
must be chosen so that the discrete equation of the model satisfy integral constrains on energy and enstrophy.
Let us first establish those constraint in the continuous world.
The total energy (\ie\ kinetic plus potential energies) is conserved:
\begin{flalign}
\label{eq:INVARIANTS_Tot_Energy}
\partial_t \left( \int_D \left( \frac{1}{2} {\textbf{U}_h}^2 + \rho \, g \, z \right) \;dv \right) = & 0
\end{flalign}
under the following assumptions: no dissipation, no forcing (wind, buoyancy flux, atmospheric pressure variations),
mass conservation, and closed domain.
This equation can be transformed to obtain several sub-equalities.
The transformation for the advection term depends on whether the vector invariant form or
the flux form is used for the momentum equation.
Using \autoref{eq:INVARIANTS_Q2_vect} and introducing \autoref{eq:SCOORD_dyn_vect} in
\autoref{eq:INVARIANTS_Tot_Energy} for the former form and
using \autoref{eq:INVARIANTS_Q2_flux} and introducing \autoref{eq:SCOORD_dyn_flux} in
\autoref{eq:INVARIANTS_Tot_Energy} for the latter form leads to:
% \label{eq:INVARIANTS_E_tot}
advection term (vector invariant form):
\[
% \label{eq:INVARIANTS_E_tot_vect_vor_1}
\int\limits_D \zeta \; \left( \textbf{k} \times \textbf{U}_h \right) \cdot \textbf{U}_h \; dv = 0 \\
\]
\[
% \label{eq:INVARIANTS_E_tot_vect_adv_1}
\int\limits_D \textbf{U}_h \cdot \nabla_h \left( \frac{{\textbf{U}_h}^2}{2} \right) dv
+ \int\limits_D \textbf{U}_h \cdot \nabla_z \textbf{U}_h \;dv
- \int\limits_D { \frac{{\textbf{U}_h}^2}{2} \frac{1}{e_3} \partial_t e_3 \;dv } = 0
\]
advection term (flux form):
\[
% \label{eq:INVARIANTS_E_tot_flux_metric}
\int\limits_D \frac{1} {e_1 e_2 } \left( v \,\partial_i e_2 - u \,\partial_j e_1 \right)\;
\left( \textbf{k} \times \textbf{U}_h \right) \cdot \textbf{U}_h \; dv = 0
\]
\[
% \label{eq:INVARIANTS_E_tot_flux_adv}
\int\limits_D \textbf{U}_h \cdot \left( {{
\begin{array} {*{20}c}
\nabla \cdot \left( \textbf{U}\,u \right) \hfill \\
\nabla \cdot \left( \textbf{U}\,v \right) \hfill
\end{array}}
} \right) \;dv
+ \frac{1}{2} \int\limits_D { {\textbf{U}_h}^2 \frac{1}{e_3} \partial_t e_3 \;dv } =\;0
\]
coriolis term
\[
% \label{eq:INVARIANTS_E_tot_cor}
\int\limits_D f \; \left( \textbf{k} \times \textbf{U}_h \right) \cdot \textbf{U}_h \; dv = 0
\]
pressure gradient:
\[
% \label{eq:INVARIANTS_E_tot_pg_1}
- \int\limits_D \left. \nabla p \right|_z \cdot \textbf{U}_h \;dv
= - \int\limits_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv
+ \int\limits_D g\, \rho \; \partial_t z \;dv
\]
where $\nabla_h = \left. \nabla \right|_k$ is the gradient along the $s$-surfaces.
blah blah....
The prognostic ocean dynamics equation can be summarized as follows:
\[
\text{NXT} = \dbinom {\text{VOR} + \text{KEG} + \text {ZAD} }
{\text{COR} + \text{ADV} }
+ \text{HPG} + \text{SPG} + \text{LDF} + \text{ZDF}
\]
Vector invariant form:
% \label{eq:INVARIANTS_E_tot_vect}
\[
% \label{eq:INVARIANTS_E_tot_vect_vor_2}
\int\limits_D \textbf{U}_h \cdot \text{VOR} \;dv = 0
\]
\[
% \label{eq:INVARIANTS_E_tot_vect_adv_2}
\int\limits_D \textbf{U}_h \cdot \text{KEG} \;dv
+ \int\limits_D \textbf{U}_h \cdot \text{ZAD} \;dv
- \int\limits_D { \frac{{\textbf{U}_h}^2}{2} \frac{1}{e_3} \partial_t e_3 \;dv } = 0
\]
\[
% \label{eq:INVARIANTS_E_tot_pg_2}
- \int\limits_D \textbf{U}_h \cdot (\text{HPG}+ \text{SPG}) \;dv
= - \int\limits_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv
+ \int\limits_D g\, \rho \; \partial_t z \;dv
\]
Flux form:
\begin{subequations}
\label{eq:INVARIANTS_E_tot_flux}
\[
% \label{eq:INVARIANTS_E_tot_flux_metric_2}
\int\limits_D \textbf{U}_h \cdot \text {COR} \; dv = 0
\]
\[
% \label{eq:INVARIANTS_E_tot_flux_adv_2}
\int\limits_D \textbf{U}_h \cdot \text{ADV} \;dv
+ \frac{1}{2} \int\limits_D { {\textbf{U}_h}^2 \frac{1}{e_3} \partial_t e_3 \;dv } =\;0
\]
\begin{equation}
\label{eq:INVARIANTS_E_tot_pg_3}
- \int\limits_D \textbf{U}_h \cdot (\text{HPG}+ \text{SPG}) \;dv
= - \int\limits_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv
+ \int\limits_D g\, \rho \; \partial_t z \;dv
\end{equation}
\end{subequations}
\autoref{eq:INVARIANTS_E_tot_pg_3} is the balance between the conversion KE to PE and PE to KE.
Indeed the left hand side of \autoref{eq:INVARIANTS_E_tot_pg_3} can be transformed as follows:
\begin{flalign*}
\partial_t \left( \int\limits_D { \rho \, g \, z \;dv} \right)
&= + \int\limits_D \frac{1}{e_3} \partial_t (e_3\,\rho) \;g\;z\;\;dv
+ \int\limits_D g\, \rho \; \partial_t z \;dv &&&\\
&= - \int\limits_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv
+ \int\limits_D g\, \rho \; \partial_t z \;dv &&&\\
&= + \int\limits_D \rho \,g \left( \textbf {U}_h \cdot \nabla_h z + \omega \frac{1}{e_3} \partial_k z \right) \;dv
+ \int\limits_D g\, \rho \; \partial_t z \;dv &&&\\
&= + \int\limits_D \rho \,g \left( \omega + \partial_t z + \textbf {U}_h \cdot \nabla_h z \right) \;dv &&&\\
&=+ \int\limits_D g\, \rho \; w \; dv &&&\\
\end{flalign*}
where the last equality is obtained by noting that the brackets is exactly the expression of $w$,
the vertical velocity referenced to the fixe $z$-coordinate system (see \autoref{eq:SCOORD_w_s}).
The left hand side of \autoref{eq:INVARIANTS_E_tot_pg_3} can be transformed as follows:
\begin{flalign*}
- \int\limits_D \left. \nabla p \right|_z & \cdot \textbf{U}_h \;dv
= - \int\limits_D \left( \nabla_h p + \rho \, g \nabla_h z \right) \cdot \textbf{U}_h \;dv &&&\\
\allowdisplaybreaks
&= - \int\limits_D \nabla_h p \cdot \textbf{U}_h \;dv - \int\limits_D \rho \, g \, \nabla_h z \cdot \textbf{U}_h \;dv &&&\\
\allowdisplaybreaks
&= +\int\limits_D p \,\nabla_h \cdot \textbf{U}_h \;dv + \int\limits_D \rho \, g \left( \omega - w + \partial_t z \right) \;dv &&&\\
\allowdisplaybreaks
&= -\int\limits_D p \left( \frac{1}{e_3} \partial_t e_3 + \frac{1}{e_3} \partial_k \omega \right) \;dv
+\int\limits_D \rho \, g \left( \omega - w + \partial_t z \right) \;dv &&&\\
\allowdisplaybreaks
&= -\int\limits_D \frac{p}{e_3} \partial_t e_3 \;dv
+\int\limits_D \frac{1}{e_3} \partial_k p\; \omega \;dv
+\int\limits_D \rho \, g \left( \omega - w + \partial_t z \right) \;dv &&&\\
&= -\int\limits_D \frac{p}{e_3} \partial_t e_3 \;dv
-\int\limits_D \rho \, g \, \omega \;dv
+\int\limits_D \rho \, g \left( \omega - w + \partial_t z \right) \;dv &&&\\
&= - \int\limits_D \frac{p}{e_3} \partial_t e_3 \; \;dv
- \int\limits_D \rho \, g \, w \;dv
+ \int\limits_D \rho \, g \, \partial_t z \;dv &&&\\
\allowdisplaybreaks
\intertext{introducing the hydrostatic balance $\partial_k p=-\rho \,g\,e_3$ in the last term,
it becomes:}
&= - \int\limits_D \frac{p}{e_3} \partial_t e_3 \;dv
- \int\limits_D \rho \, g \, w \;dv
- \int\limits_D \frac{1}{e_3} \partial_k p\, \partial_t z \;dv &&&\\
&= - \int\limits_D \frac{p}{e_3} \partial_t e_3 \;dv
- \int\limits_D \rho \, g \, w \;dv
+ \int\limits_D \,\frac{p}{e_3}\partial_t ( \partial_k z ) dv &&&\\
%
&= - \int\limits_D \rho \, g \, w \;dv &&&\\
\end{flalign*}
%gm comment
\cmtgm{
The last equality comes from the following equation,
\begin{flalign*}
\int\limits_D p \frac{1}{e_3} \frac{\partial e_3}{\partial t}\; \;dv
= \int\limits_D \rho \, g \, \frac{\partial z }{\partial t} \;dv \quad,
\end{flalign*}
that can be demonstrated as follows:
\begin{flalign*}
\int\limits_D \rho \, g \, \frac{\partial z }{\partial t} \;dv
&= \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} \;dv
- \int\limits_D \rho \, g \, \frac{\partial}{\partial t} \left( \int\limits_k^{k_s} e_3 \;d\tilde{k} \right) \;dv &&&\\
&= \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} \;dv
- \int\limits_D \rho \, g \left( \int\limits_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k} \right) \;dv &&&\\
%
\allowdisplaybreaks
\intertext{The second term of the right hand side can be transformed by applying the integration by part rule:
$\left[ a\,b \right]_{k_b}^{k_s} = \int_{k_b}^{k_s} a\,\frac{\partial b}{\partial k} \;dk
+ \int_{k_b}^{k_s} \frac{\partial a}{\partial k} \,b \;dk $
to the following function: $a= \int_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k}$
and $b= \int_k^{k_s} \rho \, e_3 \;d\tilde{k}$
(note that $\frac{\partial}{\partial k} \left( \int_k^{k_s} a \;d\tilde{k} \right) = - a$ as $k$ is the lower bound of the integral).
This leads to: }
\end{flalign*}
\begin{flalign*}
&\left[ \int\limits_{k}^{k_s} \frac{\partial e_3}{\partial t} \,dk \cdot \int\limits_{k}^{k_s} \rho \, e_3 \,dk \right]_{k_b}^{k_s}
=-\int\limits_{k_b}^{k_s} \left( \int\limits_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k} \right) \rho \,e_3 \;dk
-\int\limits_{k_b}^{k_s} \frac{\partial e_3}{\partial t} \left( \int\limits_k^{k_s} \rho \, e_3 \;d\tilde{k} \right) dk &&&\\
\allowdisplaybreaks
\intertext{Noting that $\frac{\partial \eta}{\partial t}
= \frac{\partial}{\partial t} \left( \int_{k_b}^{k_s} e_3 \;d\tilde{k} \right)
= \int_{k_b}^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k}$
and
$p(k) = \int_k^{k_s} \rho \,g \, e_3 \;d\tilde{k} $,
but also that $\frac{\partial \eta}{\partial t}$ does not depends on $k$, it comes:
}
& - \int\limits_{k_b}^{k_s} \rho \, \frac{\partial \eta}{\partial t} \, e_3 \;dk
= - \int\limits_{k_b}^{k_s} \left( \int\limits_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k} \right) \, \rho \, g e_3\;dk
- \int\limits_{k_b}^{k_s} \frac{\partial e_3}{\partial t} \frac{p}{g} \;dk &&&\\
\end{flalign*}
Mutliplying by $g$ and integrating over the $(i,j)$ domain it becomes:
\begin{flalign*}
\int\limits_D \rho \, g \, \left( \int\limits_k^{k_s} \frac{\partial e_3}{\partial t} \;d\tilde{k} \right) \;dv
= \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} dv
- \int\limits_D \frac{p}{e_3}\frac{\partial e_3}{\partial t} \;dv
\end{flalign*}
Using this property, we therefore have:
\begin{flalign*}
\int\limits_D \rho \, g \, \frac{\partial z }{\partial t} \;dv
&= \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} \;dv
- \left( \int\limits_D \rho \, g \, \frac{\partial \eta}{\partial t} dv
- \int\limits_D \frac{p}{e_3}\frac{\partial e_3}{\partial t} \;dv \right) &&&\\
%
&=\int\limits_D \frac{p}{e_3} \frac{\partial (e_3\,\rho)}{\partial t}\; \;dv
\end{flalign*}
% end gm comment
}
%% =================================================================================================
\section{Discrete total energy conservation: vector invariant form}
\label{sec:INVARIANTS_2}
%% =================================================================================================
\subsection{Total energy conservation}
\label{subsec:INVARIANTS_KE+PE_vect}
The discrete form of the total energy conservation, \autoref{eq:INVARIANTS_Tot_Energy}, is given by:
\begin{flalign*}
\partial_t \left( \sum\limits_{i,j,k} \biggl\{ \frac{u^2}{2} \,b_u + \frac{v^2}{2}\, b_v + \rho \, g \, z_t \,b_t \biggr\} \right) &=0
\end{flalign*}
which in vector invariant forms, it leads to:
\begin{equation}
\label{eq:INVARIANTS_KE+PE_vect_discrete}
\begin{split}
\sum\limits_{i,j,k} \biggl\{ u\, \partial_t u \;b_u
+ v\, \partial_t v \;b_v \biggr\}
+ \frac{1}{2} \sum\limits_{i,j,k} \biggl\{ \frac{u^2}{e_{3u}}\partial_t e_{3u} \;b_u
+ \frac{v^2}{e_{3v}}\partial_t e_{3v} \;b_v \biggr\} \\
= - \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_{3t}}\partial_t (e_{3t} \rho) \, g \, z_t \;b_t \biggr\}
- \sum\limits_{i,j,k} \biggl\{ \rho \,g\,\partial_t (z_t) \,b_t \biggr\}
\end{split}
\end{equation}
Substituting the discrete expression of the time derivative of the velocity either in vector invariant,
leads to the discrete equivalent of the four equations \autoref{eq:INVARIANTS_E_tot_flux}.
%% =================================================================================================
\subsection{Vorticity term (coriolis + vorticity part of the advection)}
\label{subsec:INVARIANTS_vor}
Let $q$, located at $f$-points, be either the relative ($q=\zeta / e_{3f}$),
or the planetary ($q=f/e_{3f}$), or the total potential vorticity ($q=(\zeta +f) /e_{3f}$).
Two discretisation of the vorticity term (ENE and EEN) allows the conservation of the kinetic energy.
%% =================================================================================================
\subsubsection{Vorticity term with ENE scheme (\protect\np[=.true.]{ln_dynvor_ene}{ln\_dynvor\_ene})}
\label{subsec:INVARIANTS_vorENE}
For the ENE scheme, the two components of the vorticity term are given by:
\[
- e_3 \, q \;{\textbf{k}}\times {\textbf {U}}_h \equiv
\left( {{
\begin{array} {*{20}c}
+ \frac{1} {e_{1u}} \;
\overline {\, q \ \overline {\left( e_{1v}\,e_{3v}\,v \right)}^{\,i+1/2}} ^{\,j} \hfill \\
- \frac{1} {e_{2v}} \;
\overline {\, q \ \overline {\left( e_{2u}\,e_{3u}\,u \right)}^{\,j+1/2}} ^{\,i} \hfill
\end{array}
} } \right)
\]
This formulation does not conserve the enstrophy but it does conserve the total kinetic energy.
Indeed, the kinetic energy tendency associated to the vorticity term and
averaged over the ocean domain can be transformed as follows:
\begin{flalign*}
&\int\limits_D - \left( e_3 \, q \;\textbf{k} \times \textbf{U}_h \right) \cdot \textbf{U}_h \; dv && \\
& \qquad \qquad
{
\begin{array}{*{20}l}
&\equiv \sum\limits_{i,j,k} \biggl\{
\frac{1} {e_{1u}} \overline { \,q\ \overline{ V }^{\,i+1/2}} ^{\,j} \, u \; b_u
- \frac{1} {e_{2v}}\overline { \, q\ \overline{ U }^{\,j+1/2}} ^{\,i} \, v \; b_v \; \biggr\} \\
&\equiv \sum\limits_{i,j,k} \biggl\{
\overline { \,q\ \overline{ V }^{\,i+1/2}}^{\,j} \; U
- \overline { \,q\ \overline{ U }^{\,j+1/2}}^{\,i} \; V \; \biggr\} \\
&\equiv \sum\limits_{i,j,k} q \ \biggl\{ \overline{ V }^{\,i+1/2}\; \overline{ U }^{\,j+1/2}
- \overline{ U }^{\,j+1/2}\; \overline{ V }^{\,i+1/2} \biggr\} \quad \equiv 0
\end{array}
}
\end{flalign*}
In other words, the domain averaged kinetic energy does not change due to the vorticity term.
%% =================================================================================================
\subsubsection{Vorticity term with EEN scheme (\protect\np[=.true.]{ln_dynvor_een}{ln\_dynvor\_een})}
\label{subsec:INVARIANTS_vorEEN_vect}
With the EEN scheme, the vorticity terms are represented as:
\begin{equation}
\label{eq:INVARIANTS_dynvor_een1}
\left\{ {
\begin{aligned}
+q\,e_3 \, v &\equiv +\frac{1}{e_{1u} } \sum_{\substack{i_p,\,k_p}}
{^{i+1/2-i_p}_j} \mathbb{Q}^{i_p}_{j_p} \left( e_{1v} e_{3v} \ v \right)^{i+i_p-1/2}_{j+j_p} \\
- q\,e_3 \, u &\equiv -\frac{1}{e_{2v} } \sum_{\substack{i_p,\,k_p}}
{^i_{j+1/2-j_p}} \mathbb{Q}^{i_p}_{j_p} \left( e_{2u} e_{3u} \ u \right)^{i+i_p}_{j+j_p-1/2}
\end{aligned}
} \right.
\end{equation}
where the indices $i_p$ and $j_p$ take the following value: $i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$,
and the vorticity triads, ${^i_j}\mathbb{Q}^{i_p}_{j_p}$, defined at $T$-point, are given by:
\begin{equation}
\label{eq:INVARIANTS_Q_triads}
_i^j \mathbb{Q}^{i_p}_{j_p}
= \frac{1}{12} \ \left( q^{i-i_p}_{j+j_p} + q^{i+j_p}_{j+i_p} + q^{i+i_p}_{j-j_p} \right)
\end{equation}
This formulation does conserve the total kinetic energy.
Indeed,
\begin{flalign*}
&\int\limits_D - \textbf{U}_h \cdot \left( \zeta \;\textbf{k} \times \textbf{U}_h \right) \; dv && \\
\equiv \sum\limits_{i,j,k} & \biggl\{
\left[ \sum_{\substack{i_p,\,k_p}}
{^{i+1/2-i_p}_j}\mathbb{Q}^{i_p}_{j_p} \; V^{i+1/2-i_p}_{j+j_p} \right] U^{i+1/2}_{j} % &&\\
- \left[ \sum_{\substack{i_p,\,k_p}}
{^i_{j+1/2-j_p}}\mathbb{Q}^{i_p}_{j_p} \; U^{i+i_p}_{j+1/2-j_p} \right] V^{i}_{j+1/2} \biggr\} && \\ \\
\equiv \sum\limits_{i,j,k} & \sum_{\substack{i_p,\,k_p}} \biggl\{ \ \
{^{i+1/2-i_p}_j}\mathbb{Q}^{i_p}_{j_p} \; V^{i+1/2-i_p}_{j+j_p} \, U^{i+1/2}_{j} % &&\\
- {^i_{j+1/2-j_p}}\mathbb{Q}^{i_p}_{j_p} \; U^{i+i_p}_{j+1/2-j_p} \, V^{i}_{j+1/2} \ \; \biggr\} && \\
%
\allowdisplaybreaks
\intertext{ Expending the summation on $i_p$ and $k_p$, it becomes:}
%
\equiv \sum\limits_{i,j,k} & \biggl\{ \ \
{^{i+1}_j }\mathbb{Q}^{-1/2}_{+1/2} \;V^{i+1}_{j+1/2} \; U^{\,i+1/2}_{j}
- {^i_{j}\quad}\mathbb{Q}^{-1/2}_{+1/2} \; U^{i-1/2}_{j} \; V^{\,i}_{j+1/2} && \\
& + {^{i+1}_j }\mathbb{Q}^{-1/2}_{-1/2} \; V^{i+1}_{j-1/2} \; U^{\,i+1/2}_{j}
- {^i_{j+1} }\mathbb{Q}^{-1/2}_{-1/2} \; U^{i-1/2}_{j+1} \; V^{\,i}_{j+1/2} \biggr. && \\
& + {^{i}_j\quad}\mathbb{Q}^{+1/2}_{+1/2} \; V^{i}_{j+1/2} \; U^{\,i+1/2}_{j}
- {^i_{j}\quad}\mathbb{Q}^{+1/2}_{+1/2} \; U^{i+1/2}_{j} \; V^{\,i}_{j+1/2} \biggr. && \\
& + {^{i}_j\quad}\mathbb{Q}^{+1/2}_{-1/2} \; V^{i}_{j-1/2} \; U^{\,i+1/2}_{j}
- {^i_{j+1} }\mathbb{Q}^{+1/2}_{-1/2} \; U^{i+1/2}_{j+1}\; V^{\,i}_{j+1/2} \ \; \biggr\} && \\
%
\allowdisplaybreaks
\intertext{The summation is done over all $i$ and $j$ indices, it is therefore possible to introduce
a shift of $-1$ either in $i$ or $j$ direction in some of the term of the summation (first term of the
first and second lines, second term of the second and fourth lines). By doning so, we can regroup
all the terms of the summation by triad at a ($i$,$j$) point. In other words, we regroup all the terms
in the neighbourhood that contain a triad at the same ($i$,$j$) indices. It becomes: }
\allowdisplaybreaks
%
\equiv \sum\limits_{i,j,k} & \biggl\{ \ \
{^{i}_j}\mathbb{Q}^{-1/2}_{+1/2} \left[ V^{i}_{j+1/2}\, U^{\,i-1/2}_{j}
- U^{i-1/2}_{j} \, V^{\,i}_{j+1/2} \right] && \\
& + {^{i}_j}\mathbb{Q}^{-1/2}_{-1/2} \left[ V^{i}_{j-1/2} \, U^{\,i-1/2}_{j}
- U^{i-1/2}_{j} \, V^{\,i}_{j-1/2} \right] \biggr. && \\
& + {^{i}_j}\mathbb{Q}^{+1/2}_{+1/2} \left[ V^{i}_{j+1/2} \, U^{\,i+1/2}_{j}
- U^{i+1/2}_{j} \, V^{\,i}_{j+1/2} \right] \biggr. && \\
& + {^{i}_j}\mathbb{Q}^{+1/2}_{-1/2} \left[ V^{i}_{j-1/2} \, U^{\,i+1/2}_{j}
- U^{i+1/2}_{j-1} \, V^{\,i}_{j-1/2} \right] \ \; \biggr\} \qquad
\equiv \ 0 &&
\end{flalign*}
%% =================================================================================================
\subsubsection{Gradient of kinetic energy / Vertical advection}
\label{subsec:INVARIANTS_zad}
The change of Kinetic Energy (KE) due to the vertical advection is exactly balanced by the change of KE due to the horizontal gradient of KE~:
\[
\int_D \textbf{U}_h \cdot \frac{1}{e_3 } \omega \partial_k \textbf{U}_h \;dv
= - \int_D \textbf{U}_h \cdot \nabla_h \left( \frac{1}{2}\;{\textbf{U}_h}^2 \right)\;dv
+ \frac{1}{2} \int_D { \frac{{\textbf{U}_h}^2}{e_3} \partial_t ( e_3) \;dv }
\]
Indeed, using successively \autoref{eq:DOM_di_adj} (\ie\ the skew symmetry property of the $\delta$ operator)
and the continuity equation, then \autoref{eq:DOM_di_adj} again,
then the commutativity of operators $\overline {\,\cdot \,}$ and $\delta$, and finally \autoref{eq:DOM_mi_adj}
(\ie\ the symmetry property of the $\overline {\,\cdot \,}$ operator)
applied in the horizontal and vertical directions, it becomes:
\begin{flalign*}
& - \int_D \textbf{U}_h \cdot \text{KEG}\;dv
= - \int_D \textbf{U}_h \cdot \nabla_h \left( \frac{1}{2}\;{\textbf{U}_h}^2 \right)\;dv &&&\\
%
\equiv & - \sum\limits_{i,j,k} \frac{1}{2} \biggl\{
\frac{1} {e_{1u}} \delta_{i+1/2} \left[ \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right] u \ b_u
+ \frac{1} {e_{2v}} \delta_{j+1/2} \left[ \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right] v \ b_v \biggr\} &&& \\
%
\equiv & + \sum\limits_{i,j,k} \frac{1}{2} \left( \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right)\;
\biggl\{ \delta_{i} \left[ U \right] + \delta_{j} \left[ V \right] \biggr\} &&& \\
\allowdisplaybreaks
%
\equiv & - \sum\limits_{i,j,k} \frac{1}{2}
\left( \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right) \;
\biggl\{ \frac{b_t}{e_{3t}} \partial_t (e_{3t}) + \delta_k \left[ W \right] \biggr\} &&&\\
\allowdisplaybreaks
%
\equiv & + \sum\limits_{i,j,k} \frac{1}{2} \delta_{k+1/2} \left[ \overline{ u^2}^{\,i} + \overline{ v^2}^{\,j} \right] \; W
- \sum\limits_{i,j,k} \frac{1}{2} \left( \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right) \;\partial_t b_t &&& \\
\allowdisplaybreaks
%
\equiv & + \sum\limits_{i,j,k} \frac{1} {2} \left( \overline{\delta_{k+1/2} \left[ u^2 \right]}^{\,i}
+ \overline{\delta_{k+1/2} \left[ v^2 \right]}^{\,j} \right) \; W
- \sum\limits_{i,j,k} \left( \frac{u^2}{2}\,\partial_t \overline{b_t}^{\,{i+1/2}}
+ \frac{v^2}{2}\,\partial_t \overline{b_t}^{\,{j+1/2}} \right) &&& \\
\allowdisplaybreaks
\intertext{Assuming that $b_u= \overline{b_t}^{\,i+1/2}$ and $b_v= \overline{b_t}^{\,j+1/2}$, or at least that the time
derivative of these two equations is satisfied, it becomes:}
%
\equiv & \sum\limits_{i,j,k} \frac{1} {2}
\biggl\{ \; \overline{W}^{\,i+1/2}\;\delta_{k+1/2} \left[ u^2 \right]
+ \overline{W}^{\,j+1/2}\;\delta_{k+1/2} \left[ v^2 \right] \; \biggr\}
- \sum\limits_{i,j,k} \left( \frac{u^2}{2}\,\partial_t b_u
+ \frac{v^2}{2}\,\partial_t b_v \right) &&& \\
\allowdisplaybreaks
%
\equiv & \sum\limits_{i,j,k}
\biggl\{ \; \overline{W}^{\,i+1/2}\; \overline {u}^{\,k+1/2}\; \delta_{k+1/2}[ u ]
+ \overline{W}^{\,j+1/2}\; \overline {v}^{\,k+1/2}\; \delta_{k+1/2}[ v ] \; \biggr\}
- \sum\limits_{i,j,k} \left( \frac{u^2}{2}\,\partial_t b_u
+ \frac{v^2}{2}\,\partial_t b_v \right) &&& \\
%
\allowdisplaybreaks
\equiv & \sum\limits_{i,j,k}
\biggl\{ \; \frac{1} {b_u } \; \overline { \overline{W}^{\,i+1/2}\,\delta_{k+1/2} \left[ u \right] }^{\,k} \;u\;b_u
+ \frac{1} {b_v } \; \overline { \overline{W}^{\,j+1/2} \delta_{k+1/2} \left[ v \right] }^{\,k} \;v\;b_v \; \biggr\}
- \sum\limits_{i,j,k} \left( \frac{u^2}{2}\,\partial_t b_u
+ \frac{v^2}{2}\,\partial_t b_v \right) &&& \\
%
\intertext{The first term provides the discrete expression for the vertical advection of momentum (ZAD),
while the second term corresponds exactly to \autoref{eq:INVARIANTS_KE+PE_vect_discrete}, therefore:}
\equiv& \int\limits_D \textbf{U}_h \cdot \text{ZAD} \;dv
+ \frac{1}{2} \int_D { {\textbf{U}_h}^2 \frac{1}{e_3} \partial_t (e_3) \;dv } &&&\\
\equiv& \int\limits_D \textbf{U}_h \cdot w \partial_k \textbf{U}_h \;dv
+ \frac{1}{2} \int_D { {\textbf{U}_h}^2 \frac{1}{e_3} \partial_t (e_3) \;dv } &&&\\
\end{flalign*}
There is two main points here.
First, the satisfaction of this property links the choice of the discrete formulation of the vertical advection and
of the horizontal gradient of KE.
Choosing one imposes the other.
For example KE can also be discretized as $1/2\,({\overline u^{\,i}}^2 + {\overline v^{\,j}}^2)$.
This leads to the following expression for the vertical advection:
\[
\frac{1} {e_3 }\; \omega\; \partial_k \textbf{U}_h
\equiv \left( {{
\begin{array} {*{20}c}
\frac{1} {e_{1u}\,e_{2u}\,e_{3u}} \; \overline{\overline {e_{1t}\,e_{2t} \,\omega\;\delta_{k+1/2}
\left[ \overline u^{\,i+1/2} \right]}}^{\,i+1/2,k} \hfill \\
\frac{1} {e_{1v}\,e_{2v}\,e_{3v}} \; \overline{\overline {e_{1t}\,e_{2t} \,\omega \;\delta_{k+1/2}
\left[ \overline v^{\,j+1/2} \right]}}^{\,j+1/2,k} \hfill
\end{array}
} } \right)
\]
a formulation that requires an additional horizontal mean in contrast with the one used in \NEMO.
Nine velocity points have to be used instead of 3.
This is the reason why it has not been chosen.
Second, as soon as the chosen $s$-coordinate depends on time,
an extra constraint arises on the time derivative of the volume at $u$- and $v$-points:
\begin{flalign*}
e_{1u}\,e_{2u}\,\partial_t (e_{3u}) =\overline{ e_{1t}\,e_{2t}\;\partial_t (e_{3t}) }^{\,i+1/2} \\
e_{1v}\,e_{2v}\,\partial_t (e_{3v}) =\overline{ e_{1t}\,e_{2t}\;\partial_t (e_{3t}) }^{\,j+1/2}
\end{flalign*}
which is (over-)satified by defining the vertical scale factor as follows:
\begin{flalign*}
% \label{eq:INVARIANTS_e3u-e3v}
e_{3u} = \frac{1}{e_{1u}\,e_{2u}}\;\overline{ e_{1t}^{ }\,e_{2t}^{ }\,e_{3t}^{ } }^{\,i+1/2} \\
e_{3v} = \frac{1}{e_{1v}\,e_{2v}}\;\overline{ e_{1t}^{ }\,e_{2t}^{ }\,e_{3t}^{ } }^{\,j+1/2}
\end{flalign*}
Blah blah required on the the step representation of bottom topography.....
%% =================================================================================================
\subsection{Pressure gradient term}
\label{subsec:INVARIANTS_2.6}
\cmtgm{
A pressure gradient has no contribution to the evolution of the vorticity as the curl of a gradient is zero.
In the $z$-coordinate, this property is satisfied locally on a C-grid with 2nd order finite differences
(property \autoref{eq:DOM_curl_grad}).
}
When the equation of state is linear
(\ie\ when an advection-diffusion equation for density can be derived from those of temperature and salinity)
the change of KE due to the work of pressure forces is balanced by
the change of potential energy due to buoyancy forces:
\[
- \int_D \left. \nabla p \right|_z \cdot \textbf{U}_h \;dv
= - \int_D \nabla \cdot \left( \rho \,\textbf {U} \right) \,g\,z \;dv
+ \int_D g\, \rho \; \partial_t (z) \;dv
\]
This property can be satisfied in a discrete sense for both $z$- and $s$-coordinates.
Indeed, defining the depth of a $T$-point, $z_t$,
as the sum of the vertical scale factors at $w$-points starting from the surface,
the work of pressure forces can be written as:
\begin{flalign*}
&- \int_D \left. \nabla p \right|_z \cdot \textbf{U}_h \;dv
\equiv \sum\limits_{i,j,k} \biggl\{ \; - \frac{1} {e_{1u}} \Bigl(
\delta_{i+1/2} [p_t] - g\;\overline \rho^{\,i+1/2}\;\delta_{i+1/2} [z_t] \Bigr) \; u\;b_u && \\
& \qquad \qquad \qquad \qquad \qquad \quad \ \,
- \frac{1} {e_{2v}} \Bigl(
\delta_{j+1/2} [p_t] - g\;\overline \rho^{\,j+1/2}\delta_{j+1/2} [z_t] \Bigr) \; v\;b_v \; \biggr\} && \\
%
\allowdisplaybreaks
\intertext{Using successively \autoref{eq:DOM_di_adj}, \ie\ the skew symmetry property of
the $\delta$ operator, \autoref{eq:DYN_wzv}, the continuity equation, \autoref{eq:DYN_hpg_sco},
the hydrostatic equation in the $s$-coordinate, and $\delta_{k+1/2} \left[ z_t \right] \equiv e_{3w} $,
which comes from the definition of $z_t$, it becomes: }
\allowdisplaybreaks
%
\equiv& + \sum\limits_{i,j,k} g \biggl\{
\overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t]
+ \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t]
+\Bigl( \delta_i[U] + \delta_j [V] \Bigr)\;\frac{p_t}{g} \biggr\} &&\\
%
\equiv& + \sum\limits_{i,j,k} g \biggl\{
\overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t]
+ \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t]
- \left( \frac{b_t}{e_{3t}} \partial_t (e_{3t}) + \delta_k \left[ W \right] \right) \frac{p_t}{g} \biggr\} &&&\\
%
\equiv& + \sum\limits_{i,j,k} g \biggl\{
\overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t]
+ \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t]
+ \frac{W}{g}\;\delta_{k+1/2} [p_t]
- \frac{p_t}{g}\,\partial_t b_t \biggr\} &&&\\
%
\equiv& + \sum\limits_{i,j,k} g \biggl\{
\overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t]
+ \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t]
- W\;e_{3w} \overline \rho^{\,k+1/2}
- \frac{p_t}{g}\,\partial_t b_t \biggr\} &&&\\
%
\equiv& + \sum\limits_{i,j,k} g \biggl\{
\overline\rho^{\,i+1/2}\,U\,\delta_{i+1/2}[z_t]
+ \overline\rho^{\,j+1/2}\,V\,\delta_{j+1/2}[z_t]
+ W\; \overline \rho^{\,k+1/2}\;\delta_{k+1/2} [z_t]
- \frac{p_t}{g}\,\partial_t b_t \biggr\} &&&\\
%
\allowdisplaybreaks
%
\equiv& - \sum\limits_{i,j,k} g \; z_t \biggl\{
\delta_i \left[ U\; \overline \rho^{\,i+1/2} \right]
+ \delta_j \left[ V\; \overline \rho^{\,j+1/2} \right]
+ \delta_k \left[ W\; \overline \rho^{\,k+1/2} \right] \biggr\}
- \sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t b_t \biggr\} &&&\\
%
\equiv& + \sum\limits_{i,j,k} g \; z_t \biggl\{ \partial_t ( e_{3t} \,\rho) \biggr\} \; b_t
- \sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t b_t \biggr\} &&&\\
%
\end{flalign*}
The first term is exactly the first term of the right-hand-side of \autoref{eq:INVARIANTS_KE+PE_vect_discrete}.
It remains to demonstrate that the last term,
which is obviously a discrete analogue of $\int_D \frac{p}{e_3} \partial_t (e_3)\;dv$ is equal to
the last term of \autoref{eq:INVARIANTS_KE+PE_vect_discrete}.
In other words, the following property must be satisfied:
\begin{flalign*}
\sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t b_t \biggr\}
\equiv \sum\limits_{i,j,k} \biggl\{ \rho \,g\,\partial_t (z_t) \,b_t \biggr\}
\end{flalign*}
Let introduce $p_w$ the pressure at $w$-point such that $\delta_k [p_w] = - \rho \,g\,e_{3t}$.
The right-hand-side of the above equation can be transformed as follows:
\begin{flalign*}
\sum\limits_{i,j,k} \biggl\{ \rho \,g\,\partial_t (z_t) \,b_t \biggr\}
&\equiv - \sum\limits_{i,j,k} \biggl\{ \delta_k [p_w]\,\partial_t (z_t) \,e_{1t}\,e_{2t} \biggr\} &&&\\
%
&\equiv + \sum\limits_{i,j,k} \biggl\{ p_w\, \delta_{k+1/2} [\partial_t (z_t)] \,e_{1t}\,e_{2t} \biggr\}
\equiv + \sum\limits_{i,j,k} \biggl\{ p_w\, \partial_t (e_{3w}) \,e_{1t}\,e_{2t} \biggr\} &&&\\
&\equiv + \sum\limits_{i,j,k} \biggl\{ p_w\, \partial_t (b_w) \biggr\}
%
% & \equiv \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_{3t}} \delta_k [p_w]\;\partial_t (z_t) \,b_w \right) \biggr\} &&&\\
% & \equiv \sum\limits_{i,j,k} \biggl\{ p_w\;\partial_t \left( \delta_k [z_t] \right) e_{1w}\,e_{2w} \biggr\} &&&\\
% & \equiv \sum\limits_{i,j,k} \biggl\{ p_w\;\partial_t b_w \biggr\}
\end{flalign*}
therefore, the balance to be satisfied is:
\begin{flalign*}
\sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t (b_t) \biggr\} \equiv \sum\limits_{i,j,k} \biggl\{ p_w\, \partial_t (b_w) \biggr\}
\end{flalign*}
which is a purely vertical balance:
\begin{flalign*}
\sum\limits_{k} \biggl\{ p_t\;\partial_t (e_{3t}) \biggr\} \equiv \sum\limits_{k} \biggl\{ p_w\, \partial_t (e_{3w}) \biggr\}
\end{flalign*}
Defining $p_w = \overline{p_t}^{\,k+1/2}$
%gm comment
\cmtgm{
\begin{flalign*}
\sum\limits_{i,j,k} \biggl\{ p_t\;\partial_t b_t \biggr\} &&&\\
%
& \equiv \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_{3t}} \delta_k [p_w]\;\partial_t (z_t) \,b_w \biggr\} &&&\\
& \equiv \sum\limits_{i,j,k} \biggl\{ p_w\;\partial_t \left( \delta_{k+1/2} [z_t] \right) e_{1w}\,e_{2w} \biggr\} &&&\\
& \equiv \sum\limits_{i,j,k} \biggl\{ p_w\;\partial_t b_w \biggr\}
\end{flalign*}
\begin{flalign*}
\int\limits_D \rho \, g \, \frac{\partial z }{\partial t} \;dv
\equiv& \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_{3t}} \frac{\partial e_{3t}}{\partial t} p \biggr\} \; b_t &&&\\
\equiv& \sum\limits_{i,j,k} \biggl\{ \biggr\} \; b_t &&&\\
\end{flalign*}
%
\begin{flalign*}
\equiv& - \int_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv
+ \int\limits_D g\, \rho \; \frac{\partial z}{\partial t} \;dv &&& \\
\end{flalign*}
%
}
%end gm comment
Note that this property strongly constrains the discrete expression of both the depth of $T-$points and
of the term added to the pressure gradient in the $s$-coordinate.
Nevertheless, it is almost never satisfied since a linear equation of state is rarely used.
%% =================================================================================================
\section{Discrete total energy conservation: flux form}
\label{sec:INVARIANTS_3}
%% =================================================================================================
\subsection{Total energy conservation}
\label{subsec:INVARIANTS_KE+PE_flux}
The discrete form of the total energy conservation, \autoref{eq:INVARIANTS_Tot_Energy}, is given by:
\begin{flalign*}
\partial_t \left( \sum\limits_{i,j,k} \biggl\{ \frac{u^2}{2} \,b_u + \frac{v^2}{2}\, b_v + \rho \, g \, z_t \,b_t \biggr\} \right) &=0 \\
\end{flalign*}
which in flux form, it leads to:
\begin{flalign*}
\sum\limits_{i,j,k} \biggl\{ \frac{u }{e_{3u}}\,\frac{\partial (e_{3u}u)}{\partial t} \,b_u
+ \frac{v }{e_{3v}}\,\frac{\partial (e_{3v}v)}{\partial t} \,b_v \biggr\}
& - \frac{1}{2} \sum\limits_{i,j,k} \biggl\{ \frac{u^2}{e_{3u}}\frac{\partial e_{3u} }{\partial t} \,b_u
+ \frac{v^2}{e_{3v}}\frac{\partial e_{3v} }{\partial t} \,b_v \biggr\} \\
&= - \sum\limits_{i,j,k} \biggl\{ \frac{1}{e_3t}\frac{\partial e_{3t} \rho}{\partial t} \, g \, z_t \,b_t \biggr\}
- \sum\limits_{i,j,k} \biggl\{ \rho \,g\,\frac{\partial z_t}{\partial t} \,b_t \biggr\} \\
\end{flalign*}
Substituting the discrete expression of the time derivative of the velocity either in
vector invariant or in flux form, leads to the discrete equivalent of the ????
%% =================================================================================================
\subsection{Coriolis and advection terms: flux form}
\label{subsec:INVARIANTS_3.2}
%% =================================================================================================
\subsubsection{Coriolis plus ``metric'' term}
\label{subsec:INVARIANTS_3.3}
In flux from the vorticity term reduces to a Coriolis term in which
the Coriolis parameter has been modified to account for the ``metric'' term.
This altered Coriolis parameter is discretised at an f-point.
It is given by:
\[
f+\frac{1} {e_1 e_2 } \left( v \frac{\partial e_2 } {\partial i} - u \frac{\partial e_1 } {\partial j}\right)\;
\equiv \;
f+\frac{1} {e_{1f}\,e_{2f}} \left( \overline v^{\,i+1/2} \delta_{i+1/2} \left[ e_{2u} \right]
-\overline u^{\,j+1/2} \delta_{j+1/2} \left[ e_{1u} \right] \right)
\]
Either the ENE or EEN scheme is then applied to obtain the vorticity term in flux form.
It therefore conserves the total KE.
The derivation is the same as for the vorticity term in the vector invariant form (\autoref{subsec:INVARIANTS_vor}).
%% =================================================================================================
\subsubsection{Flux form advection}
\label{subsec:INVARIANTS_3.4}
The flux form operator of the momentum advection is evaluated using
a centered second order finite difference scheme.
Because of the flux form, the discrete operator does not contribute to the global budget of linear momentum.
Because of the centered second order scheme, it conserves the horizontal kinetic energy, that is:
\begin{equation}
\label{eq:INVARIANTS_ADV_KE_flux}
- \int_D \textbf{U}_h \cdot \left( {{
\begin{array} {*{20}c}
\nabla \cdot \left( \textbf{U}\,u \right) \hfill \\
\nabla \cdot \left( \textbf{U}\,v \right) \hfill \\
\end{array}
} } \right) \;dv
- \frac{1}{2} \int_D { {\textbf{U}_h}^2 \frac{1}{e_3} \frac{\partial e_3 }{\partial t} \;dv } =\;0
\end{equation}
Let us first consider the first term of the scalar product
(\ie\ just the the terms associated with the i-component of the advection):
\begin{flalign*}
& - \int_D u \cdot \nabla \cdot \left( \textbf{U}\,u \right) \; dv \\
%
\equiv& - \sum\limits_{i,j,k} \biggl\{ \frac{1} {b_u} \biggl(
\delta_{i+1/2} \left[ \overline {U}^{\,i} \;\overline u^{\,i} \right]
+ \delta_j \left[ \overline {V}^{\,i+1/2}\;\overline u^{\,j+1/2} \right]
+ \delta_k \left[ \overline {W}^{\,i+1/2}\;\overline u^{\,k+1/2} \right] \biggr) \; \biggr\} \, b_u \;u &&& \\
%
\equiv& - \sum\limits_{i,j,k}
\biggl\{
\delta_{i+1/2} \left[ \overline {U}^{\,i}\; \overline u^{\,i} \right]
+ \delta_j \left[ \overline {V}^{\,i+1/2}\;\overline u^{\,j+1/2} \right]
+ \delta_k \left[ \overline {W}^{\,i+12}\;\overline u^{\,k+1/2} \right]
\; \biggr\} \; u \\
%
\equiv& + \sum\limits_{i,j,k}
\biggl\{
\overline {U}^{\,i}\; \overline u^{\,i} \delta_i \left[ u \right]
+ \overline {V}^{\,i+1/2}\; \overline u^{\,j+1/2} \delta_{j+1/2} \left[ u \right]
+ \overline {W}^{\,i+1/2}\; \overline u^{\,k+1/2} \delta_{k+1/2} \left[ u \right] \biggr\} && \\
%
\equiv& + \frac{1}{2} \sum\limits_{i,j,k} \biggl\{
\overline{U}^{\,i} \delta_i \left[ u^2 \right]
+ \overline{V}^{\,i+1/2} \delta_{j+/2} \left[ u^2 \right]
+ \overline{W}^{\,i+1/2} \delta_{k+1/2} \left[ u^2 \right] \biggr\} && \\
%
\equiv& - \sum\limits_{i,j,k} \frac{1}{2} \bigg\{
U \; \delta_{i+1/2} \left[ \overline {u^2}^{\,i} \right]
+ V \; \delta_{j+1/2} \left[ \overline {u^2}^{\,i} \right]
+ W \; \delta_{k+1/2} \left[ \overline {u^2}^{\,i} \right] \biggr\} &&& \\
%
\equiv& - \sum\limits_{i,j,k} \frac{1}{2} \overline {u^2}^{\,i} \biggl\{
\delta_{i+1/2} \left[ U \right]
+ \delta_{j+1/2} \left[ V \right]
+ \delta_{k+1/2} \left[ W \right] \biggr\} &&& \\
%
\equiv& + \sum\limits_{i,j,k} \frac{1}{2} \overline {u^2}^{\,i}
\biggl\{ \left( \frac{1}{e_{3t}} \frac{\partial e_{3t}}{\partial t} \right) \; b_t \biggr\} &&& \\
\end{flalign*}
Applying similar manipulation applied to the second term of the scalar product leads to:
\[
- \int_D \textbf{U}_h \cdot \left( {{
\begin{array} {*{20}c}
\nabla \cdot \left( \textbf{U}\,u \right) \hfill \\
\nabla \cdot \left( \textbf{U}\,v \right) \hfill \\
\end{array}
} } \right) \;dv
\equiv + \sum\limits_{i,j,k} \frac{1}{2} \left( \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right)
\biggl\{ \left( \frac{1}{e_{3t}} \frac{\partial e_{3t}}{\partial t} \right) \; b_t \biggr\}
\]
which is the discrete form of $ \frac{1}{2} \int_D u \cdot \nabla \cdot \left( \textbf{U}\,u \right) \; dv $.
\autoref{eq:INVARIANTS_ADV_KE_flux} is thus satisfied.
When the UBS scheme is used to evaluate the flux form momentum advection,
the discrete operator does not contribute to the global budget of linear momentum (flux form).
The horizontal kinetic energy is not conserved, but forced to decay (\ie\ the scheme is diffusive).
%% =================================================================================================
\section{Discrete enstrophy conservation}
\label{sec:INVARIANTS_4}
%% =================================================================================================
\subsubsection{Vorticity term with ENS scheme (\protect\np[=.true.]{ln_dynvor_ens}{ln\_dynvor\_ens})}
\label{subsec:INVARIANTS_vorENS}
In the ENS scheme, the vorticity term is descretized as follows:
\begin{equation}
\label{eq:INVARIANTS_dynvor_ens}
\left\{
\begin{aligned}
+\frac{1}{e_{1u}} & \overline{q}^{\,i} & {\overline{ \overline{\left( e_{1v}\,e_{3v}\; v \right) } } }^{\,i, j+1/2} \\
- \frac{1}{e_{2v}} & \overline{q}^{\,j} & {\overline{ \overline{\left( e_{2u}\,e_{3u}\; u \right) } } }^{\,i+1/2, j}
\end{aligned}
\right.
\end{equation}
The scheme does not allow but the conservation of the total kinetic energy but the conservation of $q^2$,
the potential enstrophy for a horizontally non-divergent flow (\ie\ when $\chi$=$0$).
Indeed, using the symmetry or skew symmetry properties of the operators
( \autoref{eq:DOM_mi_adj} and \autoref{eq:DOM_di_adj}),
it can be shown that:
\begin{equation}
\label{eq:INVARIANTS_1.1}
\int_D {q\,\;{\textbf{k}}\cdot \frac{1} {e_3} \nabla \times \left( {e_3 \, q \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} \equiv 0
\end{equation}
where $dv=e_1\,e_2\,e_3 \; di\,dj\,dk$ is the volume element.
Indeed, using \autoref{eq:DYN_vor_ens},
the discrete form of the right hand side of \autoref{eq:INVARIANTS_1.1} can be transformed as follow:
\begin{flalign*}
&\int_D q \,\; \textbf{k} \cdot \frac{1} {e_3 } \nabla \times
\left( e_3 \, q \; \textbf{k} \times \textbf{U}_h \right)\; dv \\
%
& \qquad
{
\begin{array}{*{20}l}
&\equiv \sum\limits_{i,j,k}
q \ \left\{ \delta_{i+1/2} \left[ - \,\overline {q}^{\,i}\; \overline{\overline U }^{\,i,j+1/ 2} \right]
- \delta_{j+1/2} \left[ \overline {q}^{\,j}\; \overline{\overline V }^{\,i+1/2, j} \right] \right\} \\
%
&\equiv \sum\limits_{i,j,k}
\left\{ \delta_i [q] \; \overline{q}^{\,i} \; \overline{ \overline U }^{\,i,j+1/2}
+ \delta_j [q] \; \overline{q}^{\,j} \; \overline{\overline V }^{\,i+1/2,j} \right\} && \\
%
&\equiv \,\frac{1} {2} \sum\limits_{i,j,k}
\left\{ \delta_i \left[ q^2 \right] \; \overline{\overline U }^{\,i,j+1/2}
+ \delta_j \left[ q^2 \right] \; \overline{\overline V }^{\,i+1/2,j} \right\} && \\
%
&\equiv - \frac{1} {2} \sum\limits_{i,j,k} q^2 \;
\left\{ \delta_{i+1/2} \left[ \overline{\overline{ U }}^{\,i,j+1/2} \right]
+ \delta_{j+1/2} \left[ \overline{\overline{ V }}^{\,i+1/2,j} \right] \right\} && \\
\end{array}
}
%
\allowdisplaybreaks
\intertext{ Since $\overline {\;\cdot \;} $ and $\delta $ operators commute: $\delta_{i+1/2}
\left[ {\overline a^{\,i}} \right] = \overline {\delta_i \left[ a \right]}^{\,i+1/2}$,
and introducing the horizontal divergence $\chi $, it becomes: }
\allowdisplaybreaks
%
& \qquad {
\begin{array}{*{20}l}
&\equiv \sum\limits_{i,j,k} - \frac{1} {2} q^2 \; \overline{\overline{ e_{1t}\,e_{2t}\,e_{3t}^{}\, \chi}}^{\,i+1/2,j+1/2}
\quad \equiv 0 &&
\end{array}
}
\end{flalign*}
The later equality is obtain only when the flow is horizontally non-divergent, \ie\ $\chi$=$0$.
%% =================================================================================================
\subsubsection{Vorticity Term with EEN scheme (\protect\np[=.true.]{ln_dynvor_een}{ln\_dynvor\_een})}
\label{subsec:INVARIANTS_vorEEN}
With the EEN scheme, the vorticity terms are represented as:
\begin{equation}
\label{eq:INVARIANTS_dynvor_een2}
\left\{ {
\begin{aligned}
+q\,e_3 \, v &\equiv +\frac{1}{e_{1u} } \sum_{\substack{i_p,\,k_p}}
{^{i+1/2-i_p}_j} \mathbb{Q}^{i_p}_{j_p} \left( e_{1v} e_{3v} \ v \right)^{i+i_p-1/2}_{j+j_p} \\
- q\,e_3 \, u &\equiv -\frac{1}{e_{2v} } \sum_{\substack{i_p,\,k_p}}
{^i_{j+1/2-j_p}} \mathbb{Q}^{i_p}_{j_p} \left( e_{2u} e_{3u} \ u \right)^{i+i_p}_{j+j_p-1/2} \\
\end{aligned}
} \right.
\end{equation}
where the indices $i_p$ and $k_p$ take the following values:
$i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$,
and the vorticity triads, ${^i_j}\mathbb{Q}^{i_p}_{j_p}$, defined at $T$-point, are given by:
\begin{equation}
\tag{\ref{eq:INVARIANTS_Q_triads}}
_i^j \mathbb{Q}^{i_p}_{j_p}
= \frac{1}{12} \ \left( q^{i-i_p}_{j+j_p} + q^{i+j_p}_{j+i_p} + q^{i+i_p}_{j-j_p} \right)
\end{equation}
This formulation does conserve the potential enstrophy for a horizontally non-divergent flow (\ie\ $\chi=0$).
Let consider one of the vorticity triad, for example ${^{i}_j}\mathbb{Q}^{+1/2}_{+1/2} $,
similar manipulation can be done for the 3 others.
The discrete form of the right hand side of \autoref{eq:INVARIANTS_1.1} applied to
this triad only can be transformed as follow:
\begin{flalign*}
&\int_D {q\,\;{\textbf{k}}\cdot \frac{1} {e_3} \nabla \times \left( {e_3 \, q \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} \\
%
\equiv& \sum\limits_{i,j,k}
{q} \ \biggl\{ \;\;
\delta_{i+1/2} \left[ -\, {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; U^{i+1/2}_{j}} \right]
- \delta_{j+1/2} \left[ {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; V^{i}_{j+1/2}} \right]
\;\;\biggr\} && \\
%
\equiv& \sum\limits_{i,j,k}
\biggl\{ \delta_i [q] \ {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; U^{i+1/2}_{j}}
+ \delta_j [q] \ {{^i_j}\mathbb{Q}^{+1/2}_{+1/2} \; V^{i}_{j+1/2}} \biggr\}
&& \\
%
... & &&\\
&Demonstation \ to \ be \ done... &&\\
... & &&\\
%
\equiv& \frac{1} {2} \sum\limits_{i,j,k}
\biggl\{ \delta_i \Bigl[ \left( {{^i_j}\mathbb{Q}^{+1/2}_{+1/2}} \right)^2 \Bigr]\;
\overline{\overline {U}}^{\,i,j+1/2}
+ \delta_j \Bigl[ \left( {{^i_j}\mathbb{Q}^{+1/2}_{+1/2}} \right)^2 \Bigr]\;
\overline{\overline {V}}^{\,i+1/2,j}
\biggr\}
&& \\
%
\equiv& - \frac{1} {2} \sum\limits_{i,j,k} \left( {{^i_j}\mathbb{Q}^{+1/2}_{+1/2}} \right)^2\;
\biggl\{ \delta_{i+1/2}
\left[ \overline{\overline {U}}^{\,i,j+1/2} \right]
+ \delta_{j+1/2}
\left[ \overline{\overline {V}}^{\,i+1/2,j} \right]
\biggr\} && \\
%
\equiv& \sum\limits_{i,j,k} - \frac{1} {2} \left( {{^i_j}\mathbb{Q}^{+1/2}_{+1/2}} \right)^2
\; \overline{\overline{ b_t^{}\, \chi}}^{\,i+1/2,\,j+1/2} &&\\
%
\ \ \equiv& \ 0 &&\\
\end{flalign*}
%% =================================================================================================
\section{Conservation properties on tracers}
\label{sec:INVARIANTS_5}
All the numerical schemes used in \NEMO\ are written such that the tracer content is conserved by
the internal dynamics and physics (equations in flux form).
For advection,
only the CEN2 scheme (\ie\ $2^{nd}$ order finite different scheme) conserves the global variance of tracer.
Nevertheless the other schemes ensure that the global variance decreases
(\ie\ they are at least slightly diffusive).