Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
_i^k {\mathbb{S}_u}_{i_p}^{k_p} (T) &= + \fractext{1}{4} {A_e}_i^k{
\:}\frac{{b_u}_{i+i_p}^k}{{e_{1u}}_{\,i + i_p}^{\,k}}
\ {_i^k\tilde{\mathbb{R}}_{i_p}^{k_p}} \
\frac{ \delta_{k+k_p} [T^i] }{{e_{3w}}_{\,i}^{\,k+k_p} }, \\
\intertext{
and \autoref{eq:TRIADS_triadfluxw} in the $k$-direction, changing the sign
to be consistent with \autoref{eq:TRIADS_eiv_skew_ijk}:
}
_i^k {\mathbb{S}_w}_{i_p}^{k_p} (T)
&= -\fractext{1}{4} {A_e}_i^k{\: }\frac{{b_u}_{i+i_p}^k}{{e_{3w}}_{\,i}^{\,k+k_p}}
{_i^k\tilde{\mathbb{R}}_{i_p}^{k_p}}\frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} }.\label{eq:TRIADS_skewfluxw}
\end{align}
\end{subequations}
Such a discretisation is consistent with the iso-neutral operator as it uses the same definition for the slopes.
It also ensures the following two key properties.
%% =================================================================================================
\subsubsection{No change in tracer variance}
The discretization conserves tracer variance, \ie\ it does not include a diffusive component but is a `pure' advection term.
This can be seen %either from Appendix \autoref{apdx:eiv_skew} or
by considering the fluxes associated with a given triad slope $_i^k{\mathbb{R}}_{i_p}^{k_p} (T)$.
For, following \autoref{subsec:TRIADS_variance} and \autoref{eq:TRIADS_dvar_iso_i},
the associated horizontal skew-flux $_i^k{\mathbb{S}_u}_{i_p}^{k_p} (T)$ drives a net rate of change of variance,
summed over the two $T$-points $i+i_p-\fractext{1}{2},k$ and $i+i_p+\fractext{1}{2},k$, of
\begin{equation}
\label{eq:TRIADS_dvar_eiv_i}
_i^k{\mathbb{S}_u}_{i_p}^{k_p} (T)\,\delta_{i+ i_p}[T^k],
\end{equation}
while the associated vertical skew-flux gives a variance change summed over
the $T$-points $i,k+k_p-\fractext{1}{2}$ (above) and $i,k+k_p+\fractext{1}{2}$ (below) of
\begin{equation}
\label{eq:TRIADS_dvar_eiv_k}
_i^k{\mathbb{S}_w}_{i_p}^{k_p} (T) \,\delta_{k+ k_p}[T^i].
\end{equation}
Inspection of the definitions (\autoref{eq:TRIADS_skewfluxu}, \autoref{eq:TRIADS_skewfluxw}) shows that
these two variance changes (\autoref{eq:TRIADS_dvar_eiv_i}, \autoref{eq:TRIADS_dvar_eiv_k}) sum to zero.
Hence the two fluxes associated with each triad make no net contribution to the variance budget.
%% =================================================================================================
\subsubsection{Reduction in gravitational PE}
The vertical density flux associated with the vertical skew-flux always has the same sign as
the vertical density gradient;
thus, so long as the fluid is stable (the vertical density gradient is negative)
the vertical density flux is negative (downward) and hence reduces the gravitational PE.
For the change in gravitational PE driven by the $k$-flux is
\begin{align}
\label{eq:TRIADS_vert_densityPE}
g {e_{3w}}_{\,i}^{\,k+k_p}{\mathbb{S}_w}_{i_p}^{k_p} (\rho)
&=g {e_{3w}}_{\,i}^{\,k+k_p}\left[-\alpha _i^k {\:}_i^k
{\mathbb{S}_w}_{i_p}^{k_p} (T) + \beta_i^k {\:}_i^k
{\mathbb{S}_w}_{i_p}^{k_p} (S) \right]. \notag \\
\intertext{Substituting ${\:}_i^k {\mathbb{S}_w}_{i_p}^{k_p}$ from \autoref{eq:TRIADS_skewfluxw}, gives}
% and separating out
% $\rtriadt{R}=\rtriad{R} + \delta_{i+i_p}[z_T^k]$,
% gives two terms. The
% first $\rtriad{R}$ term (the only term for $z$-coordinates) is:
&=-\fractext{1}{4} g{A_e}_i^k{\: }{b_u}_{i+i_p}^k {_i^k\tilde{\mathbb{R}}_{i_p}^{k_p}}
\frac{ -\alpha _i^k\delta_{i+ i_p}[T^k]+ \beta_i^k\delta_{i+ i_p}[S^k]} { {e_{1u}}_{\,i + i_p}^{\,k} } \notag \\
&=+\fractext{1}{4} g{A_e}_i^k{\: }{b_u}_{i+i_p}^k
\left({_i^k\mathbb{R}_{i_p}^{k_p}}+\frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}}\right) {_i^k\mathbb{R}_{i_p}^{k_p}}
\frac{-\alpha_i^k \delta_{k+ k_p}[T^i]+ \beta_i^k\delta_{k+ k_p}[S^i]} {{e_{3w}}_{\,i}^{\,k+k_p}},
\end{align}
using the definition of the triad slope $\rtriad{R}$, \autoref{eq:TRIADS_R} to
express $-\alpha _i^k\delta_{i+ i_p}[T^k]+\beta_i^k\delta_{i+ i_p}[S^k]$ in terms of
$-\alpha_i^k \delta_{k+ k_p}[T^i]+ \beta_i^k\delta_{k+ k_p}[S^i]$.
Where the coordinates slope, the $i$-flux gives a PE change
\begin{multline}
\label{eq:TRIADS_lat_densityPE}
g \delta_{i+i_p}[z_T^k]
\left[
-\alpha _i^k {\:}_i^k {\mathbb{S}_u}_{i_p}^{k_p} (T) + \beta_i^k {\:}_i^k {\mathbb{S}_u}_{i_p}^{k_p} (S)
\right] \\
= +\fractext{1}{4} g{A_e}_i^k{\: }{b_u}_{i+i_p}^k
\frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}}
\left({_i^k\mathbb{R}_{i_p}^{k_p}}+\frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}}\right)
\frac{-\alpha_i^k \delta_{k+ k_p}[T^i]+ \beta_i^k\delta_{k+ k_p}[S^i]} {{e_{3w}}_{\,i}^{\,k+k_p}},
\end{multline}
(using \autoref{eq:TRIADS_skewfluxu}) and so the total PE change \autoref{eq:TRIADS_vert_densityPE} +
\autoref{eq:TRIADS_lat_densityPE} associated with the triad fluxes is
\begin{multline*}
% \label{eq:TRIADS_tot_densityPE}
g{e_{3w}}_{\,i}^{\,k+k_p}{\mathbb{S}_w}_{i_p}^{k_p} (\rho) +
g\delta_{i+i_p}[z_T^k] {\:}_i^k {\mathbb{S}_u}_{i_p}^{k_p} (\rho) \\
= +\fractext{1}{4} g{A_e}_i^k{\: }{b_u}_{i+i_p}^k
\left({_i^k\mathbb{R}_{i_p}^{k_p}}+\frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}}\right)^2
\frac{-\alpha_i^k \delta_{k+ k_p}[T^i]+ \beta_i^k\delta_{k+ k_p}[S^i]} {{e_{3w}}_{\,i}^{\,k+k_p}}.
\end{multline*}
Where the fluid is stable, with $-\alpha_i^k \delta_{k+ k_p}[T^i]+
\beta_i^k\delta_{k+ k_p}[S^i]<0$, this PE change is negative.
%% =================================================================================================
\subsection{Treatment of the triads at the boundaries}
\label{sec:TRIADS_skew_bdry}
Triad slopes \rtriadt{R} used for the calculation of the eddy-induced skew-fluxes are masked at the boundaries
in exactly the same way as are the triad slopes \rtriad{R} used for the iso-neutral diffusive fluxes,
as described in \autoref{sec:TRIADS_iso_bdry} and \autoref{fig:TRIADS_bdry_triads}.
Thus surface layer triads $\triadt{i}{1}{R}{1/2}{-1/2}$ and $\triadt{i+1}{1}{R}{-1/2}{-1/2}$ are masked,
and both near bottom triad slopes $\triadt{i}{k}{R}{1/2}{1/2}$ and $\triadt{i+1}{k}{R}{-1/2}{1/2}$ are masked when
either of the $i,k+1$ or $i+1,k+1$ tracer points is masked, \ie\ the $i,k+1$ $u$-point is masked.
The namelist parameter \np{ln_botmix_triad}{ln\_botmix\_triad} has no effect on the eddy-induced skew-fluxes.
%% =================================================================================================
\subsection{Limiting of the slopes within the interior}
\label{sec:TRIADS_limitskew}
Presently, the iso-neutral slopes $\tilde{r}_i$ relative to geopotentials are limited to be less than $1/100$,
exactly as in calculating the iso-neutral diffusion, \S \autoref{sec:TRIADS_limit}.
Each individual triad \rtriadt{R} is so limited.
%% =================================================================================================
\subsection{Tapering within the surface mixed layer}
\label{sec:TRIADS_taperskew}
The slopes $\tilde{r}_i$ relative to geopotentials (and thus the individual triads \rtriadt{R})
are always tapered linearly from their value immediately below the mixed layer to zero at the surface
\autoref{eq:TRIADS_rmtilde}, as described in \autoref{sec:TRIADS_lintaper}.
This is option (c) of \autoref{fig:LDF_eiv_slp}.
This linear tapering for the slopes used to calculate the eddy-induced fluxes is unaffected by
the value of \np{ln_triad_iso}{ln\_triad\_iso}.
The justification for this linear slope tapering is that, for $A_e$ that is constant or varies only in
the horizontal (the most commonly used options in \NEMO: see \autoref{sec:LDF_coef}),
it is equivalent to a horizontal eiv (eddy-induced velocity) that is uniform within the mixed layer
\autoref{eq:TRIADS_eiv_v}.
This ensures that the eiv velocities do not restratify the mixed layer \citep{treguier.held.ea_JPO97,danabasoglu.ferrari.ea_JC08}.
Equivantly, in terms of the skew-flux formulation we use here,
the linear slope tapering within the mixed-layer gives a linearly varying vertical flux,
and so a tracer convergence uniform in depth
(the horizontal flux convergence is relatively insignificant within the mixed-layer).
%% =================================================================================================
\subsection{Streamfunction diagnostics}
\label{sec:TRIADS_sfdiag}
Where the namelist parameter \np[=.true.]{ln_traldf_gdia}{ln\_traldf\_gdia},
diagnosed mean eddy-induced velocities are output.
Each time step, streamfunctions are calculated in the $i$-$k$ and $j$-$k$ planes at
$uw$ (integer +1/2 $i$, integer $j$, integer +1/2 $k$) and $vw$ (integer $i$, integer +1/2 $j$, integer +1/2 $k$)
points (see Table \autoref{tab:DOM_cell}) respectively.
We follow \citep{griffies_bk04} and calculate the streamfunction at a given $uw$-point from
the surrounding four triads according to:
\[
% \label{eq:TRIADS_sfdiagi}
{\psi_1}_{i+1/2}^{k+1/2}={\fractext{1}{4}}\sum_{\substack{i_p,\,k_p}}
{A_e}_{i+1/2-i_p}^{k+1/2-k_p}\:\triadd{i+1/2-i_p}{k+1/2-k_p}{R}{i_p}{k_p}.
\]
The streamfunction $\psi_1$ is calculated similarly at $vw$ points.
The eddy-induced velocities are then calculated from the straightforward discretisation of \autoref{eq:TRIADS_eiv_v}:
\[
% \label{eq:TRIADS_eiv_v_discrete}
\begin{split}
{u^*}_{i+1/2}^{k} & = - \frac{1}{{e_{3u}}_{i}^{k}}\left({\psi_1}_{i+1/2}^{k+1/2}-{\psi_1}_{i+1/2}^{k+1/2}\right), \\
{v^*}_{j+1/2}^{k} & = - \frac{1}{{e_{3v}}_{j}^{k}}\left({\psi_2}_{j+1/2}^{k+1/2}-{\psi_2}_{j+1/2}^{k+1/2}\right), \\
{w^*}_{i,j}^{k+1/2} & = \frac{1}{e_{1t}e_{2t}}\; \left\{
{e_{2u}}_{i+1/2}^{k+1/2} \,{\psi_1}_{i+1/2}^{k+1/2} -
{e_{2u}}_{i-1/2}^{k+1/2} \,{\psi_1}_{i-1/2}^{k+1/2} \right. + \\
\phantom{=} & \qquad\qquad\left. {e_{2v}}_{j+1/2}^{k+1/2} \,{\psi_2}_{j+1/2}^{k+1/2} - {e_{2v}}_{j-1/2}^{k+1/2} \,{\psi_2}_{j-1/2}^{k+1/2} \right\},
\end{split}
\]
\subinc{\input{../../global/epilogue}}
\end{document}