Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
all the sub-grid scale physics is included in the formulation of the advection scheme.
All these parameterisations of subgrid scale physics have advantages and drawbacks.
They are not all available in \NEMO.
For active tracers (temperature and salinity) the main ones are:
Laplacian and bilaplacian operators acting along geopotential or iso-neutral surfaces,
\citet{gent.mcwilliams_JPO90} parameterisation, and various slightly diffusive advection schemes.
For momentum, the main ones are:
Laplacian and bilaplacian operators acting along geopotential surfaces,
and UBS advection schemes when flux form is chosen for the momentum advection.
%% =================================================================================================
\subsubsection{Lateral laplacian tracer diffusive operator}
The lateral Laplacian tracer diffusive operator is defined by (see \autoref{apdx:DIFFOPERS}):
\begin{equation}
\label{eq:MB_iso_tensor}
D^{lT} = \nabla \vect . \lt( A^{lT} \; \Re \; \nabla T \rt) \quad \text{with} \quad \Re =
\begin{pmatrix}
1 & 0 & -r_1 \\
0 & 1 & -r_2 \\
-r_1 & -r_2 & r_1^2 + r_2^2 \\
\end{pmatrix}
\end{equation}
where $r_1$ and $r_2$ are the slopes between the surface along which the diffusive operator acts and
the model level (\eg\ $z$- or $s$-surfaces).
Note that the formulation \autoref{eq:MB_iso_tensor} is exact for
the rotation between geopotential and $s$-surfaces,
while it is only an approximation for the rotation between isoneutral and $z$- or $s$-surfaces.
Indeed, in the latter case, two assumptions are made to simplify \autoref{eq:MB_iso_tensor}
\citep{cox_OM87}.
First, the horizontal contribution of the dianeutral mixing is neglected since
the ratio between iso and dia-neutral diffusive coefficients is known to be
several orders of magnitude smaller than unity.
Second, the two isoneutral directions of diffusion are assumed to be independent since
the slopes are generally less than $10^{-2}$ in the ocean (see \autoref{apdx:DIFFOPERS}).
For \textit{iso-level} diffusion, $r_1$ and $r_2 $ are zero.
$\Re$ reduces to the identity in the horizontal direction, no rotation is applied.
For \textit{geopotential} diffusion,
$r_1$ and $r_2 $ are the slopes between the geopotential and computational surfaces:
they are equal to $\sigma_1$ and $\sigma_2$, respectively (see \autoref{eq:MB_sco_slope}).
For \textit{isoneutral} diffusion $r_1$ and $r_2$ are the slopes between
the isoneutral and computational surfaces.
Therefore, they are different quantities, but have similar expressions in $z$- and $s$-coordinates.
In $z$-coordinates:
\begin{equation}
\label{eq:MB_iso_slopes}
r_1 = \frac{e_3}{e_1} \lt( \pd[\rho]{i} \rt) \lt( \pd[\rho]{k} \rt)^{-1} \quad
r_2 = \frac{e_3}{e_2} \lt( \pd[\rho]{j} \rt) \lt( \pd[\rho]{k} \rt)^{-1}
\end{equation}
while in $s$-coordinates $\pd[]{k}$ is replaced by $\pd[]{s}$.
%% =================================================================================================
\subsubsection{Eddy induced velocity}
When the \textit{eddy induced velocity} parametrisation (eiv) \citep{gent.mcwilliams_JPO90} is used,
an additional tracer advection is introduced in combination with the isoneutral diffusion of tracers:
\[
% \label{eq:MB_iso+eiv}
D^{lT} = \nabla \cdot \lt( A^{lT} \; \Re \; \nabla T \rt) + \nabla \cdot \lt( \vect U^\ast \, T \rt)
\]
where $ \vect U^\ast = \lt( u^\ast,v^\ast,w^\ast \rt)$ is a non-divergent,
eddy-induced transport velocity. This velocity field is defined by:
\[
% \label{eq:MB_eiv}
u^\ast = \frac{1}{e_3} \pd[]{k} \lt( A^{eiv} \; \tilde{r}_1 \rt) \quad
v^\ast = \frac{1}{e_3} \pd[]{k} \lt( A^{eiv} \; \tilde{r}_2 \rt) \quad
w^\ast = - \frac{1}{e_1 e_2} \lt[ \pd[]{i} \lt( A^{eiv} \; e_2 \, \tilde{r}_1 \rt)
+ \pd[]{j} \lt( A^{eiv} \; e_1 \, \tilde{r}_2 \rt) \rt]
\]
where $A^{eiv}$ is the eddy induced velocity coefficient
(or equivalently the isoneutral thickness diffusivity coefficient),
and $\tilde r_1$ and $\tilde r_2$ are the slopes between
isoneutral and \textit{geopotential} surfaces.
Their values are thus independent of the vertical coordinate,
but their expression depends on the coordinate:
\begin{equation}
\label{eq:MB_slopes_eiv}
\tilde{r}_n =
\begin{cases}
r_n & \text{in $z$-coordinate} \\
r_n + \sigma_n & \text{in \zstar- and $s$-coordinates}
\end{cases}
\quad \text{where~} n = 1, 2
\end{equation}
The normal component of the eddy induced velocity is zero at all the boundaries.
This can be achieved in a model by tapering either the eddy coefficient or the slopes to zero in
the vicinity of the boundaries.
The latter strategy is used in \NEMO\ (cf. \autoref{chap:LDF}).
%% =================================================================================================
\subsubsection{Lateral bilaplacian tracer diffusive operator}
The lateral bilaplacian tracer diffusive operator is defined by:
\[
% \label{eq:MB_bilapT}
D^{lT}= - \Delta \; (\Delta T) \quad \text{where} \quad
\Delta \bullet = \nabla \lt( \sqrt{B^{lT}} \; \Re \; \nabla \bullet \rt)
\]
It is the Laplacian operator given by \autoref{eq:MB_iso_tensor} applied twice with
the harmonic eddy diffusion coefficient set to the square root of the biharmonic one.
%% =================================================================================================
\subsubsection{Lateral Laplacian momentum diffusive operator}
The Laplacian momentum diffusive operator along $z$- or $s$-surfaces is found by
applying \autoref{eq:MB_lap_vector} to the horizontal velocity vector (see \autoref{apdx:DIFFOPERS}):
\begin{align*}
% \label{eq:MB_lapU}
\vect D^{l \vect U} &= \nabla_h \big( A^{lm} \chi \big)
- \nabla_h \times \big( A^{lm} \, \zeta \; \vect k \big) \\
&= \lt( \frac{1}{e_1} \pd[ \lt( A^{lm} \chi \rt) ]{i} \rt.
- \frac{1}{e_2 e_3} \pd[ \lt( A^{lm} \; e_3 \zeta \rt) ]{j} ,
\frac{1}{e_2} \pd[ \lt( A^{lm} \chi \rt) ]{j}
\lt. + \frac{1}{e_1 e_3} \pd[ \lt( A^{lm} \; e_3 \zeta \rt) ]{i} \rt)
\end{align*}
Such a formulation ensures a complete separation between
the vorticity and horizontal divergence fields (see \autoref{apdx:INVARIANTS}).
Unfortunately, it is only available in \textit{iso-level} direction.
When a rotation is required
(\ie\ geopotential diffusion in $s$-coordinates or
isoneutral diffusion in both $z$- and $s$-coordinates),
the $u$ and $v$-fields are considered as independent scalar fields,
so that the diffusive operator is given by:
\[
% \label{eq:MB_lapU_iso}
D_u^{l \vect U} = \nabla . \lt( A^{lm} \; \Re \; \nabla u \rt) \quad
D_v^{l \vect U} = \nabla . \lt( A^{lm} \; \Re \; \nabla v \rt)
\]
where $\Re$ is given by \autoref{eq:MB_iso_tensor}.
It is the same expression as those used for diffusive operator on tracers.
It must be emphasised that such a formulation is only exact in a Cartesian coordinate system,
\ie\ on a $f$- or $\beta$-plane, not on the sphere.
It is also a very good approximation in vicinity of the Equator in
a geographical coordinate system \citep{lengaigne.madec.ea_JGR03}.
%% =================================================================================================
\subsubsection{Lateral bilaplacian momentum diffusive operator}
As for tracers,
the bilaplacian order momentum diffusive operator is a re-entering Laplacian operator with
the harmonic eddy diffusion coefficient set to the square root of the biharmonic one.
Nevertheless it is currently not available in the iso-neutral case.
\subinc{\input{../../global/epilogue}}
\end{document}