Skip to content
Snippets Groups Projects
apdx_diff_opers.tex 24.2 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
\documentclass[../main/NEMO_manual]{subfiles}

\begin{document}

\chapter{Diffusive Operators}
\label{apdx:DIFFOPERS}

\chaptertoc

\paragraph{Changes record} ~\\

{\footnotesize
  \begin{tabularx}{\textwidth}{l||X|X}
    Release & Author(s) & Modifications \\
    \hline
    {\em   4.0} & {\em ...} & {\em ...} \\
    {\em   3.6} & {\em ...} & {\em ...} \\
    {\em   3.4} & {\em ...} & {\em ...} \\
    {\em <=3.4} & {\em ...} & {\em ...}
  \end{tabularx}
}

\clearpage

%% =================================================================================================
\section{Horizontal/Vertical $2^{nd}$ order tracer diffusive operators}
\label{sec:DIFFOPERS_1}

%% =================================================================================================
\subsubsection*{In z-coordinates}

In $z$-coordinates, the horizontal/vertical second order tracer diffusion operator is given by:
\begin{align}
  \label{eq:DIFFOPERS_1}
  &D^T = \frac{1}{e_1 \, e_2}      \left[
    \left. \frac{\partial}{\partial i} \left( 	\frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z   \right)   \right|_z      \right.
    \left.
    + \left. \frac{\partial}{\partial j} \left(  \frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z   \right)   \right|_z      \right]
    + \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right)
\end{align}

%% =================================================================================================
\subsubsection*{In generalized vertical coordinates}

In $s$-coordinates, we defined the slopes of $s$-surfaces, $\sigma_1$ and $\sigma_2$ by \autoref{eq:SCOORD_s_slope} and
the vertical/horizontal ratio of diffusion coefficient by $\epsilon = A^{vT} / A^{lT}$.
The diffusion operator is given by:

\begin{equation}
  \label{eq:DIFFOPERS_2}
  D^T = \left. \nabla \right|_s \cdot
  \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
  \;\;\text{where} \;\Re =\left( {{
        \begin{array}{*{20}c}
          1 \hfill & 0 \hfill & {-\sigma_1 } \hfill \\
          0 \hfill & 1 \hfill & {-\sigma_2 } \hfill \\
          {-\sigma_1 } \hfill & {-\sigma_2 } \hfill & {\varepsilon +\sigma_1
                                                      ^2+\sigma_2 ^2} \hfill \\
        \end{array}
      }} \right)
\end{equation}
or in expanded form:
\begin{align*}
  {
  \begin{array}{*{20}l}
    D^T= \frac{1}{e_1\,e_2\,e_3 } & \left\{ \quad \quad \frac{\partial }{\partial i}  \left. \left[  e_2\,e_3 \, A^{lT}
                               \left( \  \frac{1}{e_1}\; \left. \frac{\partial T}{\partial i} \right|_s
                                       -\frac{\sigma_1 }{e_3 } \; \frac{\partial T}{\partial s} \right) \right]  \right|_s  \right. \\
        &  \quad \  +   \            \left.   \frac{\partial }{\partial j}  \left. \left[  e_1\,e_3 \, A^{lT}
                               \left( \ \frac{1}{e_2 }\; \left. \frac{\partial T}{\partial j} \right|_s
                                       -\frac{\sigma_2 }{e_3 } \; \frac{\partial T}{\partial s} \right) \right]  \right|_s  \right. \\
        &  \quad \  +   \           \left.  e_1\,e_2\, \frac{\partial }{\partial s}  \left[ A^{lT} \; \left(
	                  -\frac{\sigma_1 }{e_1 } \; \left. \frac{\partial T}{\partial i} \right|_s
	                  -\frac{\sigma_2 }{e_2 } \; \left. \frac{\partial T}{\partial j} \right|_s
                          +\left( \varepsilon +\sigma_1^2+\sigma_2 ^2 \right) \; \frac{1}{e_3 } \; \frac{\partial T}{\partial s} \right) \; \right] \;  \right\} .
  \end{array}
          }
\end{align*}

\autoref{eq:DIFFOPERS_2} is obtained from \autoref{eq:DIFFOPERS_1} without any additional assumption.
Indeed, for the special case $k=z$ and thus $e_3 =1$,
we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in \autoref{apdx:SCOORD} and
use \autoref{eq:SCOORD_s_slope} and \autoref{eq:SCOORD_s_chain_rule1}.
Since no cross horizontal derivative $\partial _i \partial _j $ appears in \autoref{eq:DIFFOPERS_1},
the ($i$,$z$) and ($j$,$z$) planes are independent.
The derivation can then be demonstrated for the ($i$,$z$)~$\to$~($j$,$s$) transformation without
any loss of generality:

\begin{align*}
  {
  \begin{array}{*{20}l}
    D^T&=\frac{1}{e_1\,e_2} \left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z
         +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right) \\ \\
         %
       &=\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s
         -\frac{e_1\,\sigma_1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\
       & \qquad \qquad \left. { -\frac{e_1\,\sigma_1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma_1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right]
         \shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]}  \qquad \qquad \qquad \\ \\
         %
       &=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\
       &  \qquad \qquad \quad \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
       &  \qquad \qquad \quad \shoveright{ -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\quad} \right] }\\
  \end{array}
  } 		\\
  %
  {
  \begin{array}{*{20}l}
    \intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma_1 }{\partial s}$, this becomes:}
    %
    D^T & =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
    & \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
    & \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }\\
    \\
    &=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
    & \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\
    & \qquad \qquad \quad-e_2 \,\sigma_1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\
    & \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s} \left( {\frac{\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} .
  \end{array}
      } \\
  {
  \begin{array}{*{20}l}
    %
    \intertext{Using the same remark as just above, $D^T$ becomes:}
    %
   D^T &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\
    & \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma_1 }{\partial s} - \frac {\sigma_1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\
    & \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma_1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma_1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
    & \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] . }
  \end{array}
      } \\
  {
  \begin{array}{*{20}l}
    %
    \intertext{Since the horizontal scale factors do not depend on the vertical coordinate,
    the two terms on the second line cancel, while
    the third line reduces to a single vertical derivative, so it becomes:}
  %
    D^T & =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
    & \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma_1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma_1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\
    %
    \intertext{In other words, the horizontal/vertical Laplacian operator in the ($i$,$s$) plane takes the following form:}
  \end{array}
  } \\
  %
  {\frac{1}{e_1\,e_2\,e_3}}
  \left( {{
  \begin{array}{*{30}c}
    {\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\
    {\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\
  \end{array}}}
  \right)
  \cdot \left[ {A^{lT}
  \left( {{
  \begin{array}{*{30}c}
    {1} \hfill & {-\sigma_1 } \hfill \\
    {-\sigma_1} \hfill & {\varepsilon + \sigma_1^2} \hfill \\
  \end{array}
  }} \right)
  \cdot
  \left( {{
  \begin{array}{*{30}c}
    {\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\
    {\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\
  \end{array}
  }}       \right) \left( T \right)} \right]
\end{align*}
%\addtocounter{equation}{-2}

%% =================================================================================================
\section{Iso/Diapycnal $2^{nd}$ order tracer diffusive operators}
\label{sec:DIFFOPERS_2}

%% =================================================================================================
\subsubsection*{In z-coordinates}

The iso/diapycnal diffusive tensor $\textbf {A}_{\textbf I}$ expressed in
the ($i$,$j$,$k$) curvilinear coordinate system in which
the equations of the ocean circulation model are formulated,
takes the following form \citep{redi_JPO82}:

\begin{equation}
  \label{eq:DIFFOPERS_3}
  \textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)}
  \left[ {{
        \begin{array}{*{20}c}
          {1+a_2 ^2 +\varepsilon a_1 ^2} \hfill & {-a_1 a_2 (1-\varepsilon)} \hfill & {-a_1 (1-\varepsilon) } \hfill \\
          {-a_1 a_2 (1-\varepsilon) } \hfill & {1+a_1 ^2 +\varepsilon a_2 ^2} \hfill & {-a_2 (1-\varepsilon)} \hfill \\
          {-a_1 (1-\varepsilon)} \hfill & {-a_2 (1-\varepsilon)} \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
        \end{array}
      }} \right]
\end{equation}
where ($a_1$, $a_2$) are $(-1) \times$ the isopycnal slopes in
($\textbf{i}$, $\textbf{j}$) directions, relative to geopotentials (or
equivalently the slopes of the geopotential surfaces in the isopycnal
coordinate framework):
\[
  a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
  \qquad , \qquad
  a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
  \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
\]
and, as before, $\epsilon = A^{vT} / A^{lT}$.

In practice, $\epsilon$ is small and isopycnal slopes are generally less than $10^{-2}$ in the ocean,
so $\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{cox_OM87}. Keeping leading order terms\footnote{Apart from the (1,0)
and (0,1) elements which are set to zero. See \citet{griffies_bk04}, section 14.1.4.1 for a discussion of this point.}:
\begin{subequations}
  \label{eq:DIFFOPERS_4}
  \begin{equation}
    \label{eq:DIFFOPERS_4a}
    {\textbf{A}_{\textbf{I}}} \approx A^{lT}\;\Re\;\text{where} \;\Re =
    \left[ {{
          \begin{array}{*{20}c}
            1 \hfill & 0 \hfill & {-a_1 } \hfill \\
            0 \hfill & 1 \hfill & {-a_2 } \hfill \\
            {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
          \end{array}
        }} \right],
  \end{equation}
  and the iso/dianeutral diffusive operator in $z$-coordinates is then
  \begin{equation}
    \label{eq:DIFFOPERS_4b}
    D^T = \left. \nabla \right|_z \cdot
    \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_z T  \right]. \\
  \end{equation}
\end{subequations}

Physically, the full tensor \autoref{eq:DIFFOPERS_3} represents strong isoneutral diffusion on a plane parallel to
the isoneutral surface and weak dianeutral diffusion perpendicular to this plane.
However,
the approximate `weak-slope' tensor \autoref{eq:DIFFOPERS_4a} represents strong diffusion along the isoneutral surface,
with weak \emph{vertical} diffusion -- the principal axes of the tensor are no longer orthogonal.
This simplification also decouples the ($i$,$z$) and ($j$,$z$) planes of the tensor.
The weak-slope operator therefore takes the same form, \autoref{eq:DIFFOPERS_4}, as \autoref{eq:DIFFOPERS_2},
the diffusion operator for geopotential diffusion written in non-orthogonal $i,j,s$-coordinates.
Written out explicitly,

\begin{multline}
  \label{eq:DIFFOPERS_ldfiso}
  D^T=\frac{1}{e_1 e_2 }\left\{
    {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2}{e_1}\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]}
    {+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1}{e_2}\frac{\partial T}{\partial j}-a_2 \frac{e_1}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\
  \shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]}. \\
\end{multline}

The isopycnal diffusion operator \autoref{eq:DIFFOPERS_4},
\autoref{eq:DIFFOPERS_ldfiso} conserves tracer quantity and dissipates its square.
As \autoref{eq:DIFFOPERS_4} is the divergence of a flux, the demonstration of the first property is trivial, providing that the flux normal to the boundary is zero
(as it is when $A_h$ is zero at the boundary). Let us demonstrate the second one:
\[
  \iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
  = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv,
\]
and since
\begin{align*}
  {
  \begin{array}{*{20}l}
    \nabla T\;.\left( {{\mathrm {\mathbf A}}_{\mathrm {\mathbf I}} \nabla T}
    \right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1
             \frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left(
             {\frac{\partial T}{\partial j}} \right)^2} \right. \\
           &\qquad \qquad \qquad
             { \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial k}+\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)\left( {\frac{\partial T}{\partial k}} \right)^2} \right]} \\
           &=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial
             T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial
             j}-a_2 \frac{\partial T}{\partial k}} \right)^2}
             +\varepsilon \left(\frac{\partial T}{\partial k}\right) ^2\right]      \\
           & \geq 0 .
  \end{array}
             }
\end{align*}
%\addtocounter{equation}{-1}
the property becomes obvious.

%% =================================================================================================
\subsubsection*{In generalized vertical coordinates}

Because the weak-slope operator \autoref{eq:DIFFOPERS_4},
\autoref{eq:DIFFOPERS_ldfiso} is decoupled in the ($i$,$z$) and ($j$,$z$) planes,
it may be transformed into generalized $s$-coordinates in the same way as
\autoref{sec:DIFFOPERS_1} was transformed into \autoref{sec:DIFFOPERS_2}.
The resulting operator then takes the simple form

\begin{equation}
  \label{eq:DIFFOPERS_ldfiso_s}
  D^T = \left. \nabla \right|_s \cdot
  \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
  \;\;\text{where} \;\Re =\left( {{
        \begin{array}{*{20}c}
          1 \hfill & 0 \hfill & {-r _1 } \hfill \\
          0 \hfill & 1 \hfill & {-r _2 } \hfill \\
          {-r _1 } \hfill & {-r _2 } \hfill & {\varepsilon +r _1
                                              ^2+r _2 ^2} \hfill \\
        \end{array}
      }} \right),
\end{equation}

where ($r_1$, $r_2$) are $(-1)\times$ the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions,
relative to $s$-coordinate surfaces (or equivalently the slopes of the
$s$-coordinate surfaces in the isopycnal coordinate framework):
\[
  r_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}
  \qquad , \qquad
  r_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
  \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}.
\]

To prove \autoref{eq:DIFFOPERS_ldfiso_s} by direct re-expression of \autoref{eq:DIFFOPERS_ldfiso} is straightforward, but laborious.
An easier way is first to note (by reversing the derivation of \autoref{sec:DIFFOPERS_2} from \autoref{sec:DIFFOPERS_1} ) that
the weak-slope operator may be \emph{exactly} reexpressed in non-orthogonal $i,j,\rho$-coordinates as

\begin{equation}
  \label{eq:DIFFOPERS_5}
  D^T = \left. \nabla \right|_\rho \cdot
  \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_\rho T  \right] \\
  \;\;\text{where} \;\Re =\left( {{
        \begin{array}{*{20}c}
          1 \hfill & 0 \hfill &0 \hfill \\
          0 \hfill & 1 \hfill & 0 \hfill \\
          0 \hfill & 0 \hfill & \varepsilon \hfill \\
        \end{array}
      }} \right).
\end{equation}
Then direct transformation from $i,j,\rho$-coordinates to $i,j,s$-coordinates gives
\autoref{eq:DIFFOPERS_ldfiso_s} immediately.

Note that the weak-slope approximation is only made in transforming from
the (rotated,orthogonal) isoneutral axes to the non-orthogonal $i,j,\rho$-coordinates.
The further transformation into $i,j,s$-coordinates is exact, whatever the steepness of the $s$-surfaces,
in the same way as the transformation of horizontal/vertical Laplacian diffusion in $z$-coordinates in
\autoref{sec:DIFFOPERS_1} onto $s$-coordinates is exact, however steep the $s$-surfaces.

%% =================================================================================================
\section{Lateral/Vertical momentum diffusive operators}
\label{sec:DIFFOPERS_3}

The second order momentum diffusion operator (Laplacian) in $z$-coordinates is found by
applying \autoref{eq:MB_lap_vector}, the expression for the Laplacian of a vector,
to the horizontal velocity vector:
\begin{align*}
  \Delta {\textbf{U}}_h
  &=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)-
    \nabla \times \left( {\nabla \times {\textbf{U}}_h } \right) \\ \\
  &=\left( {{
    \begin{array}{*{20}c}
      {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\
      {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\
      {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\
    \end{array}
  }} \right)
  -\left( {{
  \begin{array}{*{20}c}
    {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3
    }\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial
    u}{\partial k}} \right)} \hfill \\
    {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3
    }\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta
    }{\partial i}} \hfill \\
    {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2
    }{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial
    j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]}
    \hfill \\
  \end{array}
  }} \right) \\ \\
  &=\left( {{
    \begin{array}{*{20}c}
      {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\
      {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\
      0 \\
    \end{array}
  }} \right)
  +\frac{1}{e_3 }
  \left( {{
  \begin{array}{*{20}c}
    {\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\
    {\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\
    {\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\
  \end{array}
  }} \right)
\end{align*}
Using \autoref{eq:MB_div}, the definition of the horizontal divergence,
the third component of the second vector is obviously zero and thus :
\[
  \Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \textbf{k} \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right) .
\]

Note that this operator ensures a full separation between
the vorticity and horizontal divergence fields (see \autoref{apdx:INVARIANTS}).
It is only equal to a Laplacian applied to each component in Cartesian coordinates, not on the sphere.

The horizontal/vertical second order (Laplacian type) operator used to diffuse horizontal momentum in
the $z$-coordinate therefore takes the following form:
\begin{equation}
  \label{eq:DIFFOPERS_Lap_U}
  {
    \textbf{D}}^{\textbf{U}} =
  \nabla _h \left( {A^{lm}\;\chi } \right)
  - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right)
  + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 }
      \frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} \right) , \\
\end{equation}
that is, in expanded form:
\begin{align*}
  D^{\textbf{U}}_u
  & = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi   } \right)}{\partial i}
    -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j}
    +\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial u}{\partial k} \right)   ,   \\
  D^{\textbf{U}}_v
  & = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi   } \right)}{\partial j}
    +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i}
    +\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial v}{\partial k} \right) .
\end{align*}

Note Bene: introducing a rotation in \autoref{eq:DIFFOPERS_Lap_U} does not lead to
a useful expression for the iso/diapycnal Laplacian operator in the $z$-coordinate.
Similarly, we did not found an expression of practical use for
the geopotential horizontal/vertical Laplacian operator in the $s$-coordinate.
Generally, \autoref{eq:DIFFOPERS_Lap_U} is used in both $z$- and $s$-coordinate systems,
that is a Laplacian diffusion is applied on momentum along the coordinate directions.

\subinc{\input{../../global/epilogue}}

\end{document}