Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
\documentclass[../main/NEMO_manual]{subfiles}
\begin{document}
\chapter{Diffusive Operators}
\label{apdx:DIFFOPERS}
\chaptertoc
\paragraph{Changes record} ~\\
{\footnotesize
\begin{tabularx}{\textwidth}{l||X|X}
Release & Author(s) & Modifications \\
\hline
{\em 4.0} & {\em ...} & {\em ...} \\
{\em 3.6} & {\em ...} & {\em ...} \\
{\em 3.4} & {\em ...} & {\em ...} \\
{\em <=3.4} & {\em ...} & {\em ...}
\end{tabularx}
}
\clearpage
%% =================================================================================================
\section{Horizontal/Vertical $2^{nd}$ order tracer diffusive operators}
\label{sec:DIFFOPERS_1}
%% =================================================================================================
\subsubsection*{In z-coordinates}
In $z$-coordinates, the horizontal/vertical second order tracer diffusion operator is given by:
\begin{align}
\label{eq:DIFFOPERS_1}
&D^T = \frac{1}{e_1 \, e_2} \left[
\left. \frac{\partial}{\partial i} \left( \frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z \right) \right|_z \right.
\left.
+ \left. \frac{\partial}{\partial j} \left( \frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z \right) \right|_z \right]
+ \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right)
\end{align}
%% =================================================================================================
\subsubsection*{In generalized vertical coordinates}
In $s$-coordinates, we defined the slopes of $s$-surfaces, $\sigma_1$ and $\sigma_2$ by \autoref{eq:SCOORD_s_slope} and
the vertical/horizontal ratio of diffusion coefficient by $\epsilon = A^{vT} / A^{lT}$.
The diffusion operator is given by:
\begin{equation}
\label{eq:DIFFOPERS_2}
D^T = \left. \nabla \right|_s \cdot
\left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T \right] \\
\;\;\text{where} \;\Re =\left( {{
\begin{array}{*{20}c}
1 \hfill & 0 \hfill & {-\sigma_1 } \hfill \\
0 \hfill & 1 \hfill & {-\sigma_2 } \hfill \\
{-\sigma_1 } \hfill & {-\sigma_2 } \hfill & {\varepsilon +\sigma_1
^2+\sigma_2 ^2} \hfill \\
\end{array}
}} \right)
\end{equation}
or in expanded form:
\begin{align*}
{
\begin{array}{*{20}l}
D^T= \frac{1}{e_1\,e_2\,e_3 } & \left\{ \quad \quad \frac{\partial }{\partial i} \left. \left[ e_2\,e_3 \, A^{lT}
\left( \ \frac{1}{e_1}\; \left. \frac{\partial T}{\partial i} \right|_s
-\frac{\sigma_1 }{e_3 } \; \frac{\partial T}{\partial s} \right) \right] \right|_s \right. \\
& \quad \ + \ \left. \frac{\partial }{\partial j} \left. \left[ e_1\,e_3 \, A^{lT}
\left( \ \frac{1}{e_2 }\; \left. \frac{\partial T}{\partial j} \right|_s
-\frac{\sigma_2 }{e_3 } \; \frac{\partial T}{\partial s} \right) \right] \right|_s \right. \\
& \quad \ + \ \left. e_1\,e_2\, \frac{\partial }{\partial s} \left[ A^{lT} \; \left(
-\frac{\sigma_1 }{e_1 } \; \left. \frac{\partial T}{\partial i} \right|_s
-\frac{\sigma_2 }{e_2 } \; \left. \frac{\partial T}{\partial j} \right|_s
+\left( \varepsilon +\sigma_1^2+\sigma_2 ^2 \right) \; \frac{1}{e_3 } \; \frac{\partial T}{\partial s} \right) \; \right] \; \right\} .
\end{array}
}
\end{align*}
\autoref{eq:DIFFOPERS_2} is obtained from \autoref{eq:DIFFOPERS_1} without any additional assumption.
Indeed, for the special case $k=z$ and thus $e_3 =1$,
we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in \autoref{apdx:SCOORD} and
use \autoref{eq:SCOORD_s_slope} and \autoref{eq:SCOORD_s_chain_rule1}.
Since no cross horizontal derivative $\partial _i \partial _j $ appears in \autoref{eq:DIFFOPERS_1},
the ($i$,$z$) and ($j$,$z$) planes are independent.
The derivation can then be demonstrated for the ($i$,$z$)~$\to$~($j$,$s$) transformation without
any loss of generality:
\begin{align*}
{
\begin{array}{*{20}l}
D^T&=\frac{1}{e_1\,e_2} \left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z
+\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right) \\ \\
%
&=\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s
-\frac{e_1\,\sigma_1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\
& \qquad \qquad \left. { -\frac{e_1\,\sigma_1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma_1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right]
\shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]} \qquad \qquad \qquad \\ \\
%
&=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\
& \qquad \qquad \quad \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
& \qquad \qquad \quad \shoveright{ -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\quad} \right] }\\
\end{array}
} \\
%
{
\begin{array}{*{20}l}
\intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma_1 }{\partial s}$, this becomes:}
%
D^T & =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
& \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
& \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }\\
\\
&=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
& \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}} \right|_s -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\
& \qquad \qquad \quad-e_2 \,\sigma_1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\
& \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s} \left( {\frac{\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} .
\end{array}
} \\
{
\begin{array}{*{20}l}
%
\intertext{Using the same remark as just above, $D^T$ becomes:}
%
D^T &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\
& \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma_1 }{\partial s} - \frac {\sigma_1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\
& \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma_1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma_1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
& \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] . }
\end{array}
} \\
{
\begin{array}{*{20}l}
%
\intertext{Since the horizontal scale factors do not depend on the vertical coordinate,
the two terms on the second line cancel, while
the third line reduces to a single vertical derivative, so it becomes:}
%
D^T & =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\
& \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma_1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma_1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\
%
\intertext{In other words, the horizontal/vertical Laplacian operator in the ($i$,$s$) plane takes the following form:}
\end{array}
} \\
%
{\frac{1}{e_1\,e_2\,e_3}}
\left( {{
\begin{array}{*{30}c}
{\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\
{\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\
\end{array}}}
\right)
\cdot \left[ {A^{lT}
\left( {{
\begin{array}{*{30}c}
{1} \hfill & {-\sigma_1 } \hfill \\
{-\sigma_1} \hfill & {\varepsilon + \sigma_1^2} \hfill \\
\end{array}
}} \right)
\cdot
\left( {{
\begin{array}{*{30}c}
{\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\
{\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\
\end{array}
}} \right) \left( T \right)} \right]
\end{align*}
%\addtocounter{equation}{-2}
%% =================================================================================================
\section{Iso/Diapycnal $2^{nd}$ order tracer diffusive operators}
\label{sec:DIFFOPERS_2}
%% =================================================================================================
\subsubsection*{In z-coordinates}
The iso/diapycnal diffusive tensor $\textbf {A}_{\textbf I}$ expressed in
the ($i$,$j$,$k$) curvilinear coordinate system in which
the equations of the ocean circulation model are formulated,
takes the following form \citep{redi_JPO82}:
\begin{equation}
\label{eq:DIFFOPERS_3}
\textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)}
\left[ {{
\begin{array}{*{20}c}
{1+a_2 ^2 +\varepsilon a_1 ^2} \hfill & {-a_1 a_2 (1-\varepsilon)} \hfill & {-a_1 (1-\varepsilon) } \hfill \\
{-a_1 a_2 (1-\varepsilon) } \hfill & {1+a_1 ^2 +\varepsilon a_2 ^2} \hfill & {-a_2 (1-\varepsilon)} \hfill \\
{-a_1 (1-\varepsilon)} \hfill & {-a_2 (1-\varepsilon)} \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
\end{array}
}} \right]
\end{equation}
where ($a_1$, $a_2$) are $(-1) \times$ the isopycnal slopes in
($\textbf{i}$, $\textbf{j}$) directions, relative to geopotentials (or
equivalently the slopes of the geopotential surfaces in the isopycnal
coordinate framework):
\[
a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
\qquad , \qquad
a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
\right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
\]
and, as before, $\epsilon = A^{vT} / A^{lT}$.
In practice, $\epsilon$ is small and isopycnal slopes are generally less than $10^{-2}$ in the ocean,
so $\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{cox_OM87}. Keeping leading order terms\footnote{Apart from the (1,0)
and (0,1) elements which are set to zero. See \citet{griffies_bk04}, section 14.1.4.1 for a discussion of this point.}:
\begin{subequations}
\label{eq:DIFFOPERS_4}
\begin{equation}
\label{eq:DIFFOPERS_4a}
{\textbf{A}_{\textbf{I}}} \approx A^{lT}\;\Re\;\text{where} \;\Re =
\left[ {{
\begin{array}{*{20}c}
1 \hfill & 0 \hfill & {-a_1 } \hfill \\
0 \hfill & 1 \hfill & {-a_2 } \hfill \\
{-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
\end{array}
}} \right],
\end{equation}
and the iso/dianeutral diffusive operator in $z$-coordinates is then
\begin{equation}
\label{eq:DIFFOPERS_4b}
D^T = \left. \nabla \right|_z \cdot
\left[ A^{lT} \;\Re \cdot \left. \nabla \right|_z T \right]. \\
\end{equation}
\end{subequations}
Physically, the full tensor \autoref{eq:DIFFOPERS_3} represents strong isoneutral diffusion on a plane parallel to
the isoneutral surface and weak dianeutral diffusion perpendicular to this plane.
However,
the approximate `weak-slope' tensor \autoref{eq:DIFFOPERS_4a} represents strong diffusion along the isoneutral surface,
with weak \emph{vertical} diffusion -- the principal axes of the tensor are no longer orthogonal.
This simplification also decouples the ($i$,$z$) and ($j$,$z$) planes of the tensor.
The weak-slope operator therefore takes the same form, \autoref{eq:DIFFOPERS_4}, as \autoref{eq:DIFFOPERS_2},
the diffusion operator for geopotential diffusion written in non-orthogonal $i,j,s$-coordinates.
Written out explicitly,
\begin{multline}
\label{eq:DIFFOPERS_ldfiso}
D^T=\frac{1}{e_1 e_2 }\left\{
{\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2}{e_1}\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]}
{+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1}{e_2}\frac{\partial T}{\partial j}-a_2 \frac{e_1}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\
\shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]}. \\
\end{multline}
The isopycnal diffusion operator \autoref{eq:DIFFOPERS_4},
\autoref{eq:DIFFOPERS_ldfiso} conserves tracer quantity and dissipates its square.
As \autoref{eq:DIFFOPERS_4} is the divergence of a flux, the demonstration of the first property is trivial, providing that the flux normal to the boundary is zero
(as it is when $A_h$ is zero at the boundary). Let us demonstrate the second one:
\[
\iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
= -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv,
\]
and since
\begin{align*}
{
\begin{array}{*{20}l}
\nabla T\;.\left( {{\mathrm {\mathbf A}}_{\mathrm {\mathbf I}} \nabla T}
\right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1
\frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left(
{\frac{\partial T}{\partial j}} \right)^2} \right. \\
&\qquad \qquad \qquad
{ \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial k}+\left( {a_1 ^2+a_2 ^2+\varepsilon} \right)\left( {\frac{\partial T}{\partial k}} \right)^2} \right]} \\
&=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial
T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial
j}-a_2 \frac{\partial T}{\partial k}} \right)^2}
+\varepsilon \left(\frac{\partial T}{\partial k}\right) ^2\right] \\
& \geq 0 .
\end{array}
}
\end{align*}
%\addtocounter{equation}{-1}
the property becomes obvious.
%% =================================================================================================
\subsubsection*{In generalized vertical coordinates}
Because the weak-slope operator \autoref{eq:DIFFOPERS_4},
\autoref{eq:DIFFOPERS_ldfiso} is decoupled in the ($i$,$z$) and ($j$,$z$) planes,
it may be transformed into generalized $s$-coordinates in the same way as
\autoref{sec:DIFFOPERS_1} was transformed into \autoref{sec:DIFFOPERS_2}.
The resulting operator then takes the simple form
\begin{equation}
\label{eq:DIFFOPERS_ldfiso_s}
D^T = \left. \nabla \right|_s \cdot
\left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T \right] \\
\;\;\text{where} \;\Re =\left( {{
\begin{array}{*{20}c}
1 \hfill & 0 \hfill & {-r _1 } \hfill \\
0 \hfill & 1 \hfill & {-r _2 } \hfill \\
{-r _1 } \hfill & {-r _2 } \hfill & {\varepsilon +r _1
^2+r _2 ^2} \hfill \\
\end{array}
}} \right),
\end{equation}
where ($r_1$, $r_2$) are $(-1)\times$ the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions,
relative to $s$-coordinate surfaces (or equivalently the slopes of the
$s$-coordinate surfaces in the isopycnal coordinate framework):
\[
r_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}
\qquad , \qquad
r_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}}
\right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1}.
\]
To prove \autoref{eq:DIFFOPERS_ldfiso_s} by direct re-expression of \autoref{eq:DIFFOPERS_ldfiso} is straightforward, but laborious.
An easier way is first to note (by reversing the derivation of \autoref{sec:DIFFOPERS_2} from \autoref{sec:DIFFOPERS_1} ) that
the weak-slope operator may be \emph{exactly} reexpressed in non-orthogonal $i,j,\rho$-coordinates as
\begin{equation}
\label{eq:DIFFOPERS_5}
D^T = \left. \nabla \right|_\rho \cdot
\left[ A^{lT} \;\Re \cdot \left. \nabla \right|_\rho T \right] \\
\;\;\text{where} \;\Re =\left( {{
\begin{array}{*{20}c}
1 \hfill & 0 \hfill &0 \hfill \\
0 \hfill & 1 \hfill & 0 \hfill \\
0 \hfill & 0 \hfill & \varepsilon \hfill \\
\end{array}
}} \right).
\end{equation}
Then direct transformation from $i,j,\rho$-coordinates to $i,j,s$-coordinates gives
\autoref{eq:DIFFOPERS_ldfiso_s} immediately.
Note that the weak-slope approximation is only made in transforming from
the (rotated,orthogonal) isoneutral axes to the non-orthogonal $i,j,\rho$-coordinates.
The further transformation into $i,j,s$-coordinates is exact, whatever the steepness of the $s$-surfaces,
in the same way as the transformation of horizontal/vertical Laplacian diffusion in $z$-coordinates in
\autoref{sec:DIFFOPERS_1} onto $s$-coordinates is exact, however steep the $s$-surfaces.
%% =================================================================================================
\section{Lateral/Vertical momentum diffusive operators}
\label{sec:DIFFOPERS_3}
The second order momentum diffusion operator (Laplacian) in $z$-coordinates is found by
applying \autoref{eq:MB_lap_vector}, the expression for the Laplacian of a vector,
to the horizontal velocity vector:
\begin{align*}
\Delta {\textbf{U}}_h
&=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)-
\nabla \times \left( {\nabla \times {\textbf{U}}_h } \right) \\ \\
&=\left( {{
\begin{array}{*{20}c}
{\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\
{\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\
{\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\
\end{array}
}} \right)
-\left( {{
\begin{array}{*{20}c}
{\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3
}\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial
u}{\partial k}} \right)} \hfill \\
{\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3
}\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta
}{\partial i}} \hfill \\
{\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2
}{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial
j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]}
\hfill \\
\end{array}
}} \right) \\ \\
&=\left( {{
\begin{array}{*{20}c}
{\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\
{\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\
0 \\
\end{array}
}} \right)
+\frac{1}{e_3 }
\left( {{
\begin{array}{*{20}c}
{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\
{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\
{\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\
\end{array}
}} \right)
\end{align*}
Using \autoref{eq:MB_div}, the definition of the horizontal divergence,
the third component of the second vector is obviously zero and thus :
\[
\Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \textbf{k} \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right) .
\]
Note that this operator ensures a full separation between
the vorticity and horizontal divergence fields (see \autoref{apdx:INVARIANTS}).
It is only equal to a Laplacian applied to each component in Cartesian coordinates, not on the sphere.
The horizontal/vertical second order (Laplacian type) operator used to diffuse horizontal momentum in
the $z$-coordinate therefore takes the following form:
\begin{equation}
\label{eq:DIFFOPERS_Lap_U}
{
\textbf{D}}^{\textbf{U}} =
\nabla _h \left( {A^{lm}\;\chi } \right)
- \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right)
+ \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 }
\frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} \right) , \\
\end{equation}
that is, in expanded form:
\begin{align*}
D^{\textbf{U}}_u
& = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi } \right)}{\partial i}
-\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j}
+\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial u}{\partial k} \right) , \\
D^{\textbf{U}}_v
& = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi } \right)}{\partial j}
+\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i}
+\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial v}{\partial k} \right) .
\end{align*}
Note Bene: introducing a rotation in \autoref{eq:DIFFOPERS_Lap_U} does not lead to
a useful expression for the iso/diapycnal Laplacian operator in the $z$-coordinate.
Similarly, we did not found an expression of practical use for
the geopotential horizontal/vertical Laplacian operator in the $s$-coordinate.
Generally, \autoref{eq:DIFFOPERS_Lap_U} is used in both $z$- and $s$-coordinate systems,
that is a Laplacian diffusion is applied on momentum along the coordinate directions.
\subinc{\input{../../global/epilogue}}
\end{document}