Skip to content
Snippets Groups Projects
apdx_invariants.tex 71.4 KiB
Newer Older
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
For diffusion, all the schemes ensure the decrease of the total tracer variance, except the iso-neutral operator.
There is generally no strict conservation of mass,
as the equation of state is non linear with respect to $T$ and $S$.
In practice, the mass is conserved to a very high accuracy.
%% =================================================================================================
\subsection{Advection term}
\label{subsec:INVARIANTS_5.1}

conservation of a tracer, $T$:
\[
  \frac{\partial }{\partial t} \left(   \int_D {T\;dv}   \right)
  =  \int_D { \frac{1}{e_3}\frac{\partial \left( e_3 \, T \right)}{\partial t} \;dv }=0
\]

conservation of its variance:
\begin{flalign*}
  \frac{\partial }{\partial t} \left( \int_D {\frac{1}{2} T^2\;dv} \right)
  =&  \int_D { \frac{1}{e_3} Q      \frac{\partial \left( e_3 \, T \right) }{\partial t} \;dv }
  -   \frac{1}{2} \int_D {  T^2 \frac{1}{e_3} \frac{\partial  e_3 }{\partial t} \;dv }
\end{flalign*}

Whatever the advection scheme considered it conserves of the tracer content as
all the scheme are written in flux form.
Indeed, let $T$ be the tracer and its $\tau_u$, $\tau_v$, and $\tau_w$ interpolated values at velocity point
(whatever the interpolation is),
the conservation of the tracer content due to the advection tendency is obtained as follows:
\begin{flalign*}
  &\int_D { \frac{1}{e_3}\frac{\partial \left( e_3 \, T \right)}{\partial t} \;dv } = - \int_D \nabla \cdot \left( T \textbf{U} \right)\;dv    &&&\\
  &\equiv - \sum\limits_{i,j,k}    \biggl\{
  \frac{1} {b_t}  \left(  \delta_i    \left[   U \;\tau_u   \right]
    + \delta_j    \left[   V  \;\tau_v   \right] \right)
  + \frac{1} {e_{3t}} \delta_k \left[ w\;\tau_w \right]    \biggl\}  b_t   &&&\\
  %
  &\equiv - \sum\limits_{i,j,k}     \left\{
    \delta_i  \left[   U \;\tau_u   \right]
    + \delta_j  \left[   V  \;\tau_v   \right]
 	 + \delta_k \left[ W \;\tau_w \right] \right\}   && \\
  &\equiv 0 &&&
\end{flalign*}

The conservation of the variance of tracer due to the advection tendency can be achieved only with the CEN2 scheme,
\ie\ when $\tau_u= \overline T^{\,i+1/2}$, $\tau_v= \overline T^{\,j+1/2}$, and $\tau_w= \overline T^{\,k+1/2}$.
It can be demonstarted as follows:
\begin{flalign*}
  &\int_D { \frac{1}{e_3} Q      \frac{\partial \left( e_3 \, T \right) }{\partial t} \;dv }
  = - \int\limits_D \tau\;\nabla \cdot \left( T\; \textbf{U} \right)\;dv &&&\\
  \equiv& - \sum\limits_{i,j,k} T\;
  \left\{
    \delta_i  \left[ U  \overline T^{\,i+1/2}  \right]
    + \delta_j  \left[ V  \overline T^{\,j+1/2}  \right]
    + \delta_k \left[ W \overline T^{\,k+1/2} \right]          \right\} && \\
  \equiv& + \sum\limits_{i,j,k}
  \left\{     U  \overline T^{\,i+1/2} \,\delta_{i+1/2}  \left[ T \right]
    +  V  \overline T^{\,j+1/2} \;\delta_{j+1/2}  \left[ T \right]
    +  W \overline T^{\,k+1/2}\;\delta_{k+1/2} \left[ T \right]     \right\}      &&\\
  \equiv&  + \frac{1} {2}  \sum\limits_{i,j,k}
  \Bigl\{   U  \;\delta_{i+1/2} \left[ T^2 \right]
  + V  \;\delta_{j+1/2}  \left[ T^2 \right]
  + W \;\delta_{k+1/2} \left[ T^2 \right]   \Bigr\}     && \\
  \equiv& - \frac{1} {2}  \sum\limits_{i,j,k} T^2
  \Bigl\{    \delta_i  \left[ U  \right]
  + \delta_j  \left[ V  \right]
  + \delta_k \left[ W \right]     \Bigr\}      &&&  \\
  \equiv& + \frac{1} {2}  \sum\limits_{i,j,k} T^2
  \Bigl\{   \frac{1}{e_{3t}} \frac{\partial e_{3t}\,T }{\partial t}     \Bigr\}      &&& \\
\end{flalign*}
which is the discrete form of $ \frac{1}{2} \int_D {  T^2 \frac{1}{e_3} \frac{\partial  e_3 }{\partial t} \;dv }$.

%% =================================================================================================
\section{Conservation properties on lateral momentum physics}
\label{sec:INVARIANTS_dynldf_properties}

The discrete formulation of the horizontal diffusion of momentum ensures
the conservation of potential vorticity and the horizontal divergence,
and the dissipation of the square of these quantities
(\ie\ enstrophy and the variance of the horizontal divergence) as well as
the dissipation of the horizontal kinetic energy.
In particular, when the eddy coefficients are horizontally uniform,
it ensures a complete separation of vorticity and horizontal divergence fields,
so that diffusion (dissipation) of vorticity (enstrophy) does not generate horizontal divergence
(variance of the horizontal divergence) and \textit{vice versa}.

These properties of the horizontal diffusion operator are a direct consequence of
properties \autoref{eq:DOM_curl_grad} and \autoref{eq:DOM_div_curl}.
When the vertical curl of the horizontal diffusion of momentum (discrete sense) is taken,
the term associated with the horizontal gradient of the divergence is locally zero.

%% =================================================================================================
\subsection{Conservation of potential vorticity}
\label{subsec:INVARIANTS_6.1}

The lateral momentum diffusion term conserves the potential vorticity:
\begin{flalign*}
  &\int \limits_D \frac{1} {e_3 } \textbf{k} \cdot \nabla \times
  \Bigl[    \nabla_h  \left( A^{\,lm}\;\chi  \right)
  - \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right)    \Bigr]\;dv   \\
  % \end{flalign*}
  %%%%%%%%%% recheck here....  (gm)
  % \begin{flalign*}
  =& \int \limits_D  -\frac{1} {e_3 } \textbf{k} \cdot \nabla \times
  \Bigl[ \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right)  \Bigr]\;dv  \\
  % \end{flalign*}
  % \begin{flalign*}
  \equiv& \sum\limits_{i,j}
  \left\{
    \delta_{i+1/2} \left[  \frac {e_{2v}} {e_{1v}\,e_{3v}}  \delta_i \left[ A_f^{\,lm} e_{3f} \zeta  \right]  \right]
    + \delta_{j+1/2} \left[  \frac {e_{1u}} {e_{2u}\,e_{3u}}  \delta_j \left[ A_f^{\,lm} e_{3f} \zeta  \right]  \right]
  \right\} 	 \\
  %
  \intertext{Using \autoref{eq:DOM_di_adj}, it follows:}
  %
  \equiv& \sum\limits_{i,j,k}
  -\,\left\{
    \frac{e_{2v}} {e_{1v}\,e_{3v}}  \delta_i	\left[ A_f^{\,lm} e_{3f} \zeta  \right]\;\delta_i \left[ 1\right]
	 + \frac{e_{1u}} {e_{2u}\,e_{3u}}  \delta_j 	\left[ A_f^{\,lm} e_{3f} \zeta  \right]\;\delta_j \left[ 1\right]
  \right\} \quad \equiv 0
  \\
\end{flalign*}

%% =================================================================================================
\subsection{Dissipation of horizontal kinetic energy}
\label{subsec:INVARIANTS_6.2}

The lateral momentum diffusion term dissipates the horizontal kinetic energy:
%\begin{flalign*}
\[
  \begin{split}
    \int_D \textbf{U}_h \cdot
    \left[ \nabla_h 		\right.   &     \left.       \left( A^{\,lm}\;\chi \right)
      - \nabla_h \times  \left( A^{\,lm}\;\zeta \;\textbf{k} \right)     \right] \; dv    \\
    \\  %%%
    \equiv& \sum\limits_{i,j,k}
    \left\{
      \frac{1} {e_{1u}}               \delta_{i+1/2} \left[  A_T^{\,lm}          \chi     \right]
      - \frac{1} {e_{2u}\,e_{3u}}  \delta_j           \left[ A_f^{\,lm} e_{3f} \zeta   \right]
    \right\} \; e_{1u}\,e_{2u}\,e_{3u} \;u     \\
    &\;\; + 	\left\{
	   \frac{1} {e_{2u}}             \delta_{j+1/2}	\left[ A_T^{\,lm}          \chi    \right]
      + \frac{1} {e_{1v}\,e_{3v}} \delta_i            \left[ A_f^{\,lm} e_{3f} \zeta  \right]
    \right\} \; e_{1v}\,e_{2u}\,e_{3v} \;v     \qquad \\
    \\  %%%
    \equiv& \sum\limits_{i,j,k}
    \Bigl\{
    e_{2u}\,e_{3u} \;u\;  \delta_{i+1/2} \left[ A_T^{\,lm}           \chi    \right]
    - e_{1u}             \;u\;  \delta_j           \left[ A_f^{\,lm} e_{3f} \zeta  \right]
	 \Bigl\}
	 \\
    &\;\; + \Bigl\{
    e_{1v}\,e_{3v} \;v\;  \delta_{j+1/2}  \left[ A_T^{\,lm}           \chi    \right]
    + e_{2v}             \;v\;  \delta_i            \left[ A_f^{\,lm} e_{3f} \zeta  \right]
    \Bigl\}      \\
    \\  %%%
    \equiv& \sum\limits_{i,j,k}
    - \Bigl(
    \delta_i   \left[  e_{2u}\,e_{3u} \;u  \right]
    + \delta_j  \left[  e_{1v}\,e_{3v}  \;v  \right]
    \Bigr) \;  A_T^{\,lm} \chi   \\
    &\;\; - \Bigl(
    \delta_{i+1/2}  \left[  e_{2v}  \;v  \right]
    - \delta_{j+1/2}  \left[  e_{1u} \;u  \right]
    \Bigr)\;  A_f^{\,lm} e_{3f} \zeta      \\
    \\  %%%
    \equiv& \sum\limits_{i,j,k}
    - A_T^{\,lm}  \,\chi^2   \;e_{1t}\,e_{2t}\,e_{3t}
    - A_f ^{\,lm}  \,\zeta^2 \;e_{1f }\,e_{2f }\,e_{3f}
    \quad \leq 0       \\
  \end{split}
\]

%% =================================================================================================
\subsection{Dissipation of enstrophy}
\label{subsec:INVARIANTS_6.3}

The lateral momentum diffusion term dissipates the enstrophy when the eddy coefficients are horizontally uniform:
\begin{flalign*}
  &\int\limits_D  \zeta \; \textbf{k} \cdot \nabla \times
  \left[   \nabla_h \left( A^{\,lm}\;\chi  \right)
    - \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right)   \right]\;dv &&&\\
  &\quad = A^{\,lm} \int \limits_D \zeta \textbf{k} \cdot \nabla \times
  \left[    \nabla_h \times \left( \zeta \; \textbf{k} \right)   \right]\;dv &&&\\
  &\quad \equiv A^{\,lm} \sum\limits_{i,j,k}  \zeta \;e_{3f}
  \left\{     \delta_{i+1/2} \left[  \frac{e_{2v}} {e_{1v}\,e_{3v}} \delta_i \left[ e_{3f} \zeta  \right]   \right]
    + \delta_{j+1/2} \left[  \frac{e_{1u}} {e_{2u}\,e_{3u}} \delta_j \left[ e_{3f} \zeta  \right]   \right]      \right\}   &&&\\
  %
  \intertext{Using \autoref{eq:DOM_di_adj}, it follows:}
  %
  &\quad \equiv  - A^{\,lm} \sum\limits_{i,j,k}
  \left\{    \left(  \frac{1} {e_{1v}\,e_{3v}}  \delta_i \left[ e_{3f} \zeta  \right]  \right)^2   b_v
    + \left(  \frac{1} {e_{2u}\,e_{3u}}  \delta_j \left[ e_{3f} \zeta  \right] \right)^2   b_u  \right\}  \quad \leq \;0    &&&\\
\end{flalign*}

%% =================================================================================================
\subsection{Conservation of horizontal divergence}
\label{subsec:INVARIANTS_6.4}

When the horizontal divergence of the horizontal diffusion of momentum (discrete sense) is taken,
the term associated with the vertical curl of the vorticity is zero locally, due to \autoref{eq:DOM_div_curl}.
The resulting term conserves the $\chi$ and dissipates $\chi^2$ when the eddy coefficients are horizontally uniform.
\begin{flalign*}
  & \int\limits_D  \nabla_h \cdot
  \Bigl[     \nabla_h \left( A^{\,lm}\;\chi \right)
  - \nabla_h \times \left( A^{\,lm}\;\zeta \;\textbf{k} \right)    \Bigr]  dv
  = \int\limits_D  \nabla_h \cdot \nabla_h \left( A^{\,lm}\;\chi  \right)   dv   \\
  %
  &\equiv \sum\limits_{i,j,k}
  \left\{   \delta_i \left[ A_u^{\,lm} \frac{e_{2u}\,e_{3u}} {e_{1u}}  \delta_{i+1/2} \left[ \chi \right]  \right]
    + \delta_j \left[ A_v^{\,lm} \frac{e_{1v}\,e_{3v}} {e_{2v}}  \delta_{j+1/2} \left[ \chi \right]  \right]    \right\}    \\
  %
  \intertext{Using \autoref{eq:DOM_di_adj}, it follows:}
  %
  &\equiv \sum\limits_{i,j,k}
  - \left\{   \frac{e_{2u}\,e_{3u}} {e_{1u}}  A_u^{\,lm} \delta_{i+1/2} \left[ \chi \right] \delta_{i+1/2} \left[ 1 \right]
    + \frac{e_{1v}\,e_{3v}} {e_{2v}}  A_v^{\,lm} \delta_{j+1/2} \left[ \chi \right] \delta_{j+1/2} \left[ 1 \right]    \right\}
  \quad \equiv 0
\end{flalign*}

%% =================================================================================================
\subsection{Dissipation of horizontal divergence variance}
\label{subsec:INVARIANTS_6.5}

\begin{flalign*}
  &\int\limits_D \chi \;\nabla_h \cdot
  \left[    \nabla_h              \left( A^{\,lm}\;\chi                    \right)
    - \nabla_h   \times  \left( A^{\,lm}\;\zeta \;\textbf{k} \right)    \right]\;  dv
  = A^{\,lm}   \int\limits_D \chi \;\nabla_h \cdot \nabla_h \left( \chi \right)\;  dv    \\
  %
  &\equiv A^{\,lm}  \sum\limits_{i,j,k}  \frac{1} {e_{1t}\,e_{2t}\,e_{3t}}  \chi
  \left\{
    \delta_i  \left[   \frac{e_{2u}\,e_{3u}} {e_{1u}}  \delta_{i+1/2} \left[ \chi \right]   \right]
    + \delta_j  \left[   \frac{e_{1v}\,e_{3v}} {e_{2v}}   \delta_{j+1/2} \left[ \chi \right]   \right]
  \right\} \;   e_{1t}\,e_{2t}\,e_{3t}    \\
  %
  \intertext{Using \autoref{eq:DOM_di_adj}, it turns out to be:}
  %
  &\equiv - A^{\,lm} \sum\limits_{i,j,k}
  \left\{    \left(  \frac{1} {e_{1u}}  \delta_{i+1/2}  \left[ \chi \right]  \right)^2  b_u
    + \left(  \frac{1} {e_{2v}}  \delta_{j+1/2}  \left[ \chi \right]  \right)^2  b_v    \right\}
  \quad \leq 0
\end{flalign*}

%% =================================================================================================
\section{Conservation properties on vertical momentum physics}
\label{sec:INVARIANTS_7}

As for the lateral momentum physics,
the continuous form of the vertical diffusion of momentum satisfies several integral constraints.
The first two are associated with the conservation of momentum and the dissipation of horizontal kinetic energy:
\begin{align*}
  \int\limits_D   \frac{1} {e_3 }\; \frac{\partial } {\partial k}
  \left(   \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k}   \right)\;  dv
  \qquad \quad &= \vec{\textbf{0}}
  %
  \intertext{and}
  %
                 \int\limits_D
                 \textbf{U}_h \cdot   \frac{1} {e_3 }\; \frac{\partial } {\partial k}
                 \left(   \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k}   \right)\; dv    \quad &\leq 0
\end{align*}

The first property is obvious.
The second results from:
\begin{flalign*}
  \int\limits_D
  \textbf{U}_h \cdot   \frac{1} {e_3 }\; \frac{\partial } {\partial k}
  \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k}   \right)\;dv    &&&\\
\end{flalign*}
\begin{flalign*}
  &\equiv \sum\limits_{i,j,k}
  \left(
    u\; \delta_k \left[ \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2}  \left[ u \right]  \right]\;  e_{1u}\,e_{2u}
    + v\; \delta_k \left[ \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2}   \left[ v \right]  \right]\;  e_{1v}\,e_{2v} \right)   &&&
  %
  \intertext{since the horizontal scale factor does not depend on $k$, it follows:}
  %
  &\equiv - \sum\limits_{i,j,k}
  \left(  \frac{A_u^{\,vm}} {e_{3uw}} \left( \delta_{k+1/2} \left[ u \right] \right)^2\; e_{1u}\,e_{2u}
    + \frac{A_v^{\,vm}} {e_{3vw}}  \left( \delta_{k+1/2} \left[ v \right] \right)^2\; e_{1v}\,e_{2v}  \right)
  \quad \leq 0   &&&
\end{flalign*}

The vorticity is also conserved.
Indeed:
\begin{flalign*}
  \int \limits_D
  \frac{1} {e_3 } \textbf{k} \cdot \nabla \times
  \left( \frac{1} {e_3 }\; \frac{\partial } {\partial k}  \left(
      \frac{A^{\,vm}} {e_3}\; \frac{\partial \textbf{U}_h } {\partial k}
    \right)  \right)\; dv   &&&
\end{flalign*}
\begin{flalign*}
  \equiv \sum\limits_{i,j,k}  \frac{1} {e_{3f}}\; \frac{1} {e_{1f}\,e_{2f}}
  \bigg\{    \biggr.   \quad
  \delta_{i+1/2}
  &\left(   \frac{e_{2v}} {e_{3v}} \delta_k  \left[  \frac{1} {e_{3vw}} \delta_{k+1/2} \left[ v \right]  \right]  \right)   &&\\
  \biggl.
  - \delta_{j+1/2}
  &\left(   \frac{e_{1u}} {e_{3u}} \delta_k \left[  \frac{1} {e_{3uw}}\delta_{k+1/2} \left[ u \right]  \right]   \right)
  \biggr\} \;
  e_{1f}\,e_{2f}\,e_{3f} \; \equiv 0   &&
\end{flalign*}

If the vertical diffusion coefficient is uniform over the whole domain, the enstrophy is dissipated, \ie
\begin{flalign*}
  \int\limits_D \zeta \, \textbf{k} \cdot \nabla \times
  \left(   \frac{1} {e_3}\; \frac{\partial } {\partial k}
    \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k}   \right)   \right)\; dv = 0   &&&
\end{flalign*}

This property is only satisfied in $z$-coordinates:
\begin{flalign*}
  \int\limits_D \zeta \, \textbf{k} \cdot \nabla \times
  \left(  \frac{1} {e_3}\; \frac{\partial } {\partial k}
    \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k}  \right)   \right)\; dv   &&&
\end{flalign*}
\begin{flalign*}
  \equiv \sum\limits_{i,j,k} \zeta \;e_{3f} \;
  \biggl\{ 	\biggr.	\quad
  \delta_{i+1/2}
  &\left(   \frac{e_{2v}} {e_{3v}} \delta_k \left[ \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2}[v]  \right]   \right)   &&\\
  - \delta_{j+1/2}
  &\biggl.
  \left(   \frac{e_{1u}} {e_{3u}} \delta_k \left[ \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} [u]  \right]    \right) \biggr\}   &&
\end{flalign*}
\begin{flalign*}
  \equiv \sum\limits_{i,j,k} \zeta \;e_{3f}
  \biggl\{		\biggr.	\quad
  \frac{1} {e_{3v}} \delta_k
  &\left[ \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2} \left[ \delta_{i+1/2} \left[ e_{2v}\,v \right] \right]   \right]    &&\\
  \biggl.
  - \frac{1} {e_{3u}} \delta_k
  &\left[  \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} \left[ \delta_{j+1/2} \left[ e_{1u}\,u \right] \right]  \right]  \biggr\}  &&
\end{flalign*}
Using the fact that the vertical diffusion coefficients are uniform,
and that in $z$-coordinate, the vertical scale factors do not depend on $i$ and $j$ so that:
$e_{3f} =e_{3u} =e_{3v} =e_{3t} $ and $e_{3w} =e_{3uw} =e_{3vw} $, it follows:
\begin{flalign*}
  \equiv A^{\,vm} \sum\limits_{i,j,k} \zeta \;\delta_k
  \left[   \frac{1} {e_{3w}} \delta_{k+1/2} \Bigl[   \delta_{i+1/2} \left[ e_{2v}\,v \right]
    - \delta_{j+1/ 2} \left[ e_{1u}\,u \right]   \Bigr]    \right]    &&&
\end{flalign*}
\begin{flalign*}
  \equiv - A^{\,vm} \sum\limits_{i,j,k} \frac{1} {e_{3w}}
  \left( \delta_{k+1/2} \left[ \zeta  \right] \right)^2 \; e_{1f}\,e_{2f}  \; \leq 0    &&&
\end{flalign*}
Similarly, the horizontal divergence is obviously conserved:

\begin{flalign*}
  \int\limits_D \nabla \cdot
  \left( \frac{1} {e_3 }\; \frac{\partial } {\partial k}
    \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right) \right)\; dv = 0    &&&
\end{flalign*}
and the square of the horizontal divergence decreases (\ie\ the horizontal divergence is dissipated) if
the vertical diffusion coefficient is uniform over the whole domain:

\begin{flalign*}
  \int\limits_D \chi \;\nabla \cdot
  \left( \frac{1} {e_3 }\; \frac{\partial } {\partial k}
    \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k}  \right) \right)\;  dv = 0  &&&
\end{flalign*}
This property is only satisfied in the $z$-coordinate:
\begin{flalign*}
  \int\limits_D \chi \;\nabla \cdot
  \left( \frac{1} {e_3 }\; \frac{\partial } {\partial k}
    \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right)  \right)\; dv    &&&
\end{flalign*}
\begin{flalign*}
  \equiv \sum\limits_{i,j,k} \frac{\chi } {e_{1t}\,e_{2t}}
  \biggl\{ 	\Biggr.	\quad
  \delta_{i+1/2}
  &\left(   \frac{e_{2u}} {e_{3u}} \delta_k
    \left[ \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} [u] \right] \right)    &&\\
  \Biggl.
  + \delta_{j+1/2}
  &\left( \frac{e_{1v}} {e_{3v}} \delta_k
    \left[ \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2} [v] \right]   \right)
  \Biggr\} \;  e_{1t}\,e_{2t}\,e_{3t}   &&
\end{flalign*}

\begin{flalign*}
  \equiv A^{\,vm} \sum\limits_{i,j,k}  \chi \,
  \biggl\{	\biggr.	\quad
  \delta_{i+1/2}
  &\left(
    \delta_k \left[
      \frac{1} {e_{3uw}} \delta_{k+1/2} \left[ e_{2u}\,u \right] \right]   \right)    && \\
  \biggl.
  + \delta_{j+1/2}
  &\left(    \delta_k \left[
      \frac{1} {e_{3vw}} \delta_{k+1/2} \left[ e_{1v}\,v \right] \right]   \right)   \biggr\}    &&
\end{flalign*}

\begin{flalign*}
  \equiv -A^{\,vm} \sum\limits_{i,j,k}
  \frac{\delta_{k+1/2} \left[ \chi \right]} {e_{3w}}\; \biggl\{
  \delta_{k+1/2} \Bigl[
  \delta_{i+1/2} \left[ e_{2u}\,u \right]
  + \delta_{j+1/2} \left[ e_{1v}\,v \right]  \Bigr]    \biggr\}    &&&
\end{flalign*}

\begin{flalign*}
  \equiv -A^{\,vm} \sum\limits_{i,j,k}
  \frac{1} {e_{3w}} \delta_{k+1/2} \left[ \chi \right]\; \delta_{k+1/2} \left[ e_{1t}\,e_{2t} \;\chi \right]   &&&
\end{flalign*}

\begin{flalign*}
  \equiv -A^{\,vm} \sum\limits_{i,j,k}
  \frac{e_{1t}\,e_{2t}} {e_{3w}}\; \left( \delta_{k+1/2} \left[ \chi \right]  \right)^2     \quad  \equiv 0    &&&
\end{flalign*}

%% =================================================================================================
\section{Conservation properties on tracer physics}
\label{sec:INVARIANTS_8}

The numerical schemes used for tracer subgridscale physics are written such that
the heat and salt contents are conserved (equations in flux form).
Since a flux form is used to compute the temperature and salinity,
the quadratic form of these quantities (\ie\ their variance) globally tends to diminish.
As for the advection term, there is conservation of mass only if the Equation Of Seawater is linear.

%% =================================================================================================
\subsection{Conservation of tracers}
\label{subsec:INVARIANTS_8.1}

constraint of conservation of tracers:
\begin{flalign*}
  &\int\limits_D  \nabla  \cdot \left( A\;\nabla T \right)\;dv  &&& \\ \\
  &\equiv \sum\limits_{i,j,k}
  \biggl\{ 	\biggr.
  \delta_i
  \left[
    A_u^{\,lT} \frac{e_{2u}\,e_{3u}} {e_{1u}} \delta_{i+1/2}
    \left[ T \right]
  \right]
  + \delta_j
  \left[
    A_v^{\,lT} \frac{e_{1v}\,e_{3v}} {e_{2v}} \delta_{j+1/2}
    \left[ T \right]
  \right] && \\
  & \qquad \qquad \qquad \qquad \qquad \qquad \quad \;\;\;
  + \delta_k
  \left[
    A_w^{\,vT} \frac{e_{1t}\,e_{2t}} {e_{3t}} \delta_{k+1/2}
    \left[ T \right]
  \right]
  \biggr\}   \quad  \equiv 0
  &&
\end{flalign*}

In fact, this property simply results from the flux form of the operator.

%% =================================================================================================
\subsection{Dissipation of tracer variance}
\label{subsec:INVARIANTS_8.2}

constraint on the dissipation of tracer variance:
\begin{flalign*}
  \int\limits_D T\;\nabla & \cdot \left( A\;\nabla T \right)\;dv	&&&\\
  &\equiv   \sum\limits_{i,j,k} \; T
  \biggl\{  \biggr.
  \delta_i \left[ A_u^{\,lT} \frac{e_{2u}\,e_{3u}} {e_{1u}} \delta_{i+1/2} \left[T\right] \right]
  & + \delta_j \left[ A_v^{\,lT} \frac{e_{1v} \,e_{3v}} {e_{2v}} \delta_{j+1/2} \left[T\right] \right]
  \quad&& \\
  \biggl.
  &&+ \delta_k \left[A_w^{\,vT}\frac{e_{1t}\,e_{2t}} {e_{3t}}\delta_{k+1/2}\left[T\right]\right]
  \biggr\} &&
\end{flalign*}
\begin{flalign*}
  \equiv - \sum\limits_{i,j,k}
  \biggl\{ 	\biggr.	\quad
  &    A_u^{\,lT} \left( \frac{1} {e_{1u}} \delta_{i+1/2} \left[ T \right]  \right)^2   e_{1u}\,e_{2u}\,e_{3u}    && \\
  & + A_v^{\,lT} \left( \frac{1} {e_{2v}} \delta_{j+1/2} \left[ T \right]  \right)^2   e_{1v}\,e_{2v}\,e_{3v}     && \\ \biggl.
  & + A_w^{\,vT} \left( \frac{1} {e_{3w}} \delta_{k+1/2} \left[ T \right]   \right)^2    e_{1w}\,e_{2w}\,e_{3w}   \biggr\}
  \quad      \leq 0      &&
\end{flalign*}

%%%%  end of appendix in gm comment
%}

\subinc{\input{../../global/epilogue}}

\end{document}