Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
\documentclass[../main/NEMO_manual]{subfiles}
\begin{document}
\chapter{Curvilinear $s-$Coordinate Equations}
\label{apdx:SCOORD}
% {\em 4.0} & {\em Mike Bell} & {\em review} \\
% {\em 3.x} & {\em Gurvan Madec} & {\em original} \\
\chaptertoc
\paragraph{Changes record} ~\\
{\footnotesize
\begin{tabularx}{\textwidth}{l||X|X}
Release & Author(s) & Modifications \\
\hline
{\em 4.0} & {\em ...} & {\em ...} \\
{\em 3.6} & {\em ...} & {\em ...} \\
{\em 3.4} & {\em ...} & {\em ...} \\
{\em <=3.4} & {\em ...} & {\em ...}
\end{tabularx}
}
\clearpage
\section{Chain rule for $s-$coordinates}
\label{sec:SCOORD_chain}
In order to establish the set of Primitive Equation in curvilinear $s$-coordinates
(\ie\ an orthogonal curvilinear coordinate in the horizontal and
an Arbitrary Lagrangian Eulerian (ALE) coordinate in the vertical),
we start from the set of equations established in \autoref{subsec:MB_zco_Eq} for
the special case $k = z$ and thus $e_3 = 1$,
and we introduce an arbitrary vertical coordinate $a = a(i,j,z,t)$.
Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and
the horizontal slope of $s-$surfaces by:
\begin{equation}
\label{eq:SCOORD_s_slope}
\sigma_1 =\frac{1}{e_1 } \; \left. {\frac{\partial z}{\partial i}} \right|_s
\quad \text{and} \quad
\sigma_2 =\frac{1}{e_2 } \; \left. {\frac{\partial z}{\partial j}} \right|_s .
\end{equation}
The model fields (e.g. pressure $p$) can be viewed as functions of $(i,j,z,t)$ (e.g. $p(i,j,z,t)$) or as
functions of $(i,j,s,t)$ (e.g. $p(i,j,s,t)$). The symbol $\bullet$ will be used to represent any one of
these fields. Any ``infinitesimal'' change in $\bullet$ can be written in two forms:
\begin{equation}
\label{eq:SCOORD_s_infin_changes}
\begin{aligned}
& \delta \bullet = \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,s,t}
+ \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,s,t}
+ \delta s \left. \frac{ \partial \bullet }{\partial s} \right|_{i,j,t}
+ \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,s} , \\
& \delta \bullet = \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,z,t}
+ \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,z,t}
+ \delta z \left. \frac{ \partial \bullet }{\partial z} \right|_{i,j,t}
+ \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,z} .
\end{aligned}
\end{equation}
Using the first form and considering a change $\delta i$ with $j, z$ and $t$ held constant, shows that
\begin{equation}
\label{eq:SCOORD_s_chain_rule1}
\left. {\frac{\partial \bullet }{\partial i}} \right|_{j,z,t} =
\left. {\frac{\partial \bullet }{\partial i}} \right|_{j,s,t}
+ \left. {\frac{\partial s }{\partial i}} \right|_{j,z,t} \;
\left. {\frac{\partial \bullet }{\partial s}} \right|_{i,j,t} .
\end{equation}
The term $\left. \partial s / \partial i \right|_{j,z,t}$ can be related to the slope of constant $s$ surfaces,
(\autoref{eq:SCOORD_s_slope}), by applying the second of (\autoref{eq:SCOORD_s_infin_changes}) with $\bullet$ set to
$s$ and $j, t$ held constant
\begin{equation}
\label{eq:SCOORD_delta_s}
\delta s|_{j,t} =
\delta i \left. \frac{ \partial s }{\partial i} \right|_{j,z,t}
+ \delta z \left. \frac{ \partial s }{\partial z} \right|_{i,j,t} .
\end{equation}
Choosing to look at a direction in the $(i,z)$ plane in which $\delta s = 0$ and using
(\autoref{eq:SCOORD_s_slope}) we obtain
\begin{equation}
\left. \frac{ \partial s }{\partial i} \right|_{j,z,t} =
- \left. \frac{ \partial z }{\partial i} \right|_{j,s,t} \;
\left. \frac{ \partial s }{\partial z} \right|_{i,j,t}
= - \frac{e_1 }{e_3 }\sigma_1 .
\label{eq:SCOORD_ds_di_z}
\end{equation}
Another identity, similar in form to (\autoref{eq:SCOORD_ds_di_z}), can be derived
by choosing $\bullet$ to be $s$ and using the second form of (\autoref{eq:SCOORD_s_infin_changes}) to consider
changes in which $i , j$ and $s$ are constant. This shows that
\begin{equation}
\label{eq:SCOORD_w_in_s}
w_s = \left. \frac{ \partial z }{\partial t} \right|_{i,j,s} =
- \left. \frac{ \partial z }{\partial s} \right|_{i,j,t}
\left. \frac{ \partial s }{\partial t} \right|_{i,j,z}
= - e_3 \left. \frac{ \partial s }{\partial t} \right|_{i,j,z} .
\end{equation}
In what follows, for brevity, indication of the constancy of the $i, j$ and $t$ indices is
usually omitted. Using the arguments outlined above one can show that the chain rules needed to establish
the model equations in the curvilinear $s-$coordinate system are:
\begin{equation}
\label{eq:SCOORD_s_chain_rule2}
\begin{aligned}
&\left. {\frac{\partial \bullet }{\partial t}} \right|_z =
\left. {\frac{\partial \bullet }{\partial t}} \right|_s
+ \frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial t} , \\
&\left. {\frac{\partial \bullet }{\partial i}} \right|_z =
\left. {\frac{\partial \bullet }{\partial i}} \right|_s
+\frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial i}=
\left. {\frac{\partial \bullet }{\partial i}} \right|_s
-\frac{e_1 }{e_3 }\sigma_1 \frac{\partial \bullet }{\partial s} , \\
&\left. {\frac{\partial \bullet }{\partial j}} \right|_z =
\left. {\frac{\partial \bullet }{\partial j}} \right|_s
+ \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
\left. {\frac{\partial \bullet }{\partial j}} \right|_s
- \frac{e_2 }{e_3 }\sigma_2 \frac{\partial \bullet }{\partial s} , \\
&\;\frac{\partial \bullet }{\partial z} \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} .
\end{aligned}
\end{equation}
%% =================================================================================================
\section{Continuity equation in $s-$coordinates}
\label{sec:SCOORD_continuity}
Using (\autoref{eq:SCOORD_s_chain_rule1}) and
the fact that the horizontal scale factors $e_1$ and $e_2$ do not depend on the vertical coordinate,
the divergence of the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows in order to
obtain its expression in the curvilinear $s-$coordinate system:
\begin{subequations}
\begin{align*}
{
\begin{array}{*{20}l}
\nabla \cdot {\mathrm {\mathbf U}}
&= \frac{1}{e_1 \,e_2 } \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
+\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_z \right]
+ \frac{\partial w}{\partial z} \\ \\
& = \frac{1}{e_1 \,e_2 } \left[
\left. \frac{\partial (e_2 \,u)}{\partial i} \right|_s
- \frac{e_1 }{e_3 } \sigma_1 \frac{\partial (e_2 \,u)}{\partial s}
+ \left. \frac{\partial (e_1 \,v)}{\partial j} \right|_s
- \frac{e_2 }{e_3 } \sigma_2 \frac{\partial (e_1 \,v)}{\partial s} \right]
+ \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z} \\ \\
& = \frac{1}{e_1 \,e_2 } \left[
\left. \frac{\partial (e_2 \,u)}{\partial i} \right|_s
+ \left. \frac{\partial (e_1 \,v)}{\partial j} \right|_s \right]
+ \frac{1}{e_3 }\left[ \frac{\partial w}{\partial s}
- \sigma_1 \frac{\partial u}{\partial s}
- \sigma_2 \frac{\partial v}{\partial s} \right] \\ \\
& = \frac{1}{e_1 \,e_2 \,e_3 } \left[
\left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
-\left. e_2 \,u \frac{\partial e_3 }{\partial i} \right|_s
+ \left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s
- \left. e_1 v \frac{\partial e_3 }{\partial j} \right|_s \right] \\
& \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
+ \frac{1}{e_3 } \left[ \frac{\partial w}{\partial s}
- \sigma_1 \frac{\partial u}{\partial s}
- \sigma_2 \frac{\partial v}{\partial s} \right] \\
%
\intertext{Noting that $
\frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s
=\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s
=\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right)
=\frac{\partial \sigma_1}{\partial s}
$ and $
\frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s
=\frac{\partial \sigma_2}{\partial s}
$, it becomes:}
%
\nabla \cdot {\mathrm {\mathbf U}}
& = \frac{1}{e_1 \,e_2 \,e_3 } \left[
\left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
+\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right] \\
& \qquad \qquad \qquad \qquad \quad
+\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma_1 }{\partial s}-v\frac{\partial \sigma_2 }{\partial s}-\sigma_1 \frac{\partial u}{\partial s}-\sigma_2 \frac{\partial v}{\partial s}} \right] \\
\\
& = \frac{1}{e_1 \,e_2 \,e_3 } \left[
\left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
+\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right]
+ \frac{1}{e_3 } \; \frac{\partial}{\partial s} \left[ w - u\;\sigma_1 - v\;\sigma_2 \right]
\end{array}
}
\end{align*}
\end{subequations}
Here, $w$ is the vertical velocity relative to the $z-$coordinate system.
Using the first form of (\autoref{eq:SCOORD_s_infin_changes})
and the definitions (\autoref{eq:SCOORD_s_slope}) and (\autoref{eq:SCOORD_w_in_s}) for $\sigma_1$, $\sigma_2$ and $w_s$,
one can show that the vertical velocity, $w_p$ of a point
moving with the horizontal velocity of the fluid along an $s$ surface is given by
\begin{equation}
\label{eq:SCOORD_w_p}
\begin{split}
w_p = & \left. \frac{ \partial z }{\partial t} \right|_s
+ \frac{u}{e_1} \left. \frac{ \partial z }{\partial i} \right|_s
+ \frac{v}{e_2} \left. \frac{ \partial z }{\partial j} \right|_s \\
= & w_s + u \sigma_1 + v \sigma_2 .
\end{split}
\end{equation}
The vertical velocity across this surface is denoted by
\begin{equation}
\label{eq:SCOORD_w_s}
\omega = w - w_p = w - ( w_s + \sigma_1 \,u + \sigma_2 \,v ) .
\end{equation}
Hence
\begin{equation}
\frac{1}{e_3 } \frac{\partial}{\partial s} \left[ w - u\;\sigma_1 - v\;\sigma_2 \right] =
\frac{1}{e_3 } \frac{\partial}{\partial s} \left[ \omega + w_s \right] =
\frac{1}{e_3 } \left[ \frac{\partial \omega}{\partial s}
+ \left. \frac{ \partial }{\partial t} \right|_s \frac{\partial z}{\partial s} \right] =
\frac{1}{e_3 } \frac{\partial \omega}{\partial s} + \frac{1}{e_3 } \left. \frac{ \partial e_3}{\partial t} . \right|_s
\end{equation}
Using (\autoref{eq:SCOORD_w_s}) in our expression for $\nabla \cdot {\mathrm {\mathbf U}}$ we obtain
our final expression for the divergence of the velocity in the curvilinear $s-$coordinate system:
\begin{equation}
\nabla \cdot {\mathrm {\mathbf U}} =
\frac{1}{e_1 \,e_2 \,e_3 } \left[
\left. \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
+\left. \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s \right]
+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s}
+ \frac{1}{e_3 } \left. \frac{\partial e_3}{\partial t} \right|_s .
\end{equation}
As a result, the continuity equation \autoref{eq:MB_PE_continuity} in the $s-$coordinates is:
\begin{equation}
\label{eq:SCOORD_sco_Continuity}
\frac{1}{e_3 } \frac{\partial e_3}{\partial t}
+ \frac{1}{e_1 \,e_2 \,e_3 }\left[
{\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
+ \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
+\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0 .
\end{equation}
An additional term has appeared that takes into account
the contribution of the time variation of the vertical coordinate to the volume budget.
%% =================================================================================================
\section{Momentum equation in $s-$coordinate}
\label{sec:SCOORD_momentum}
Here we only consider the first component of the momentum equation,
the generalization to the second one being straightforward.
$\bullet$ \textbf{Total derivative in vector invariant form}
Let us consider \autoref{eq:MB_dyn_vect}, the first component of the momentum equation in the vector invariant form.
Its total $z-$coordinate time derivative,
$\left. \frac{D u}{D t} \right|_z$ can be transformed as follows in order to obtain
its expression in the curvilinear $s-$coordinate system:
\begin{subequations}
\begin{align*}
{
\begin{array}{*{20}l}
\left. \frac{D u}{D t} \right|_z
&= \left. {\frac{\partial u }{\partial t}} \right|_z
- \left. \zeta \right|_z v
+ \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z
+ w \;\frac{\partial u}{\partial z} \\ \\
&= \left. {\frac{\partial u }{\partial t}} \right|_z
- \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z
-\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v
+ \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z
+ w \;\frac{\partial u}{\partial z} \\
%
\intertext{introducing the chain rule (\autoref{eq:SCOORD_s_chain_rule1}) }
%
&= \left. {\frac{\partial u }{\partial t}} \right|_z
- \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s
-\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right.
\left. {-\frac{e_1}{e_3}\sigma_1 \frac{\partial (e_2 \,v)}{\partial s}
+\frac{e_2}{e_3}\sigma_2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v \\
& \qquad \qquad \qquad \qquad
{
+ \frac{1}{2e_1} \left( \left. \frac{\partial (u^2+v^2)}{\partial i} \right|_s
- \frac{e_1}{e_3}\sigma_1 \frac{\partial (u^2+v^2)}{\partial s} \right)
+ \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
} \\ \\
&= \left. {\frac{\partial u }{\partial t}} \right|_z
- \left. \zeta \right|_s \;v
+ \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
&\qquad \qquad \qquad \quad
+ \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
+ \left[ {\frac{\sigma_1 }{e_3 }\frac{\partial v}{\partial s}
- \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}} \right]\;v
- \frac{\sigma_1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s} \\ \\
&= \left. {\frac{\partial u }{\partial t}} \right|_z
- \left. \zeta \right|_s \;v
+ \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
&\qquad \qquad \qquad \quad
+ \frac{1}{e_3} \left[ {w\frac{\partial u}{\partial s}
+\sigma_1 v\frac{\partial v}{\partial s} - \sigma_2 v\frac{\partial u}{\partial s}
- \sigma_1 u\frac{\partial u}{\partial s} - \sigma_1 v\frac{\partial v}{\partial s}} \right] \\ \\
&= \left. {\frac{\partial u }{\partial t}} \right|_z
- \left. \zeta \right|_s \;v
+ \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
+ \frac{1}{e_3} \left[ w - \sigma_2 v - \sigma_1 u \right]
\; \frac{\partial u}{\partial s} . \\
%
\intertext{Introducing $\omega$, the dia-s-surface velocity given by (\autoref{eq:SCOORD_w_s}) }
%
&= \left. {\frac{\partial u }{\partial t}} \right|_z
- \left. \zeta \right|_s \;v
+ \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
+ \frac{1}{e_3 } \left( \omega + w_s \right) \frac{\partial u}{\partial s} \\
\end{array}
}
\end{align*}
\end{subequations}
Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule1})) to $u$ and
using (\autoref{eq:SCOORD_w_in_s}) provides the expression of the last term of the right hand side,
\[
{
\begin{array}{*{20}l}
\frac{w_s}{e_3} \;\frac{\partial u}{\partial s}
= - \left. \frac{\partial s}{\partial t} \right|_z \; \frac{\partial u }{\partial s}
= \left. {\frac{\partial u }{\partial t}} \right|_s - \left. {\frac{\partial u }{\partial t}} \right|_z \ .
\end{array}
}
\]
This leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative,
\ie\ the total $s-$coordinate time derivative :
\begin{align}
\label{eq:SCOORD_sco_Dt_vect}
\left. \frac{D u}{D t} \right|_s
= \left. {\frac{\partial u }{\partial t}} \right|_s
- \left. \zeta \right|_s \;v
+ \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
+ \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s} .
\end{align}
Therefore, the vector invariant form of the total time derivative has exactly the same mathematical form in
$z-$ and $s-$coordinates.
This is not the case for the flux form as shown in next paragraph.
$\bullet$ \textbf{Total derivative in flux form}
Let us start from the total time derivative in the curvilinear $s-$coordinate system we have just establish.
Following the procedure used to establish (\autoref{eq:MB_flux_form}), it can be transformed into :
% \begin{subequations}
\begin{align*}
{
\begin{array}{*{20}l}
\left. \frac{D u}{D t} \right|_s &= \left. {\frac{\partial u }{\partial t}} \right|_s
& - \zeta \;v
+ \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i}
+ \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s} \\ \\
&= \left. {\frac{\partial u }{\partial t}} \right|_s
&+\frac{1}{e_1\;e_2} \left( \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i}
+ \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j} \right)
+ \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
&&- \,u \left[ \frac{1}{e_1 e_2 } \left( \frac{\partial(e_2 u)}{\partial i}
+ \frac{\partial(e_1 v)}{\partial j} \right)
+ \frac{1}{e_3} \frac{\partial \omega}{\partial s} \right] \\ \\
&&- \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i}
-u \;\frac{\partial e_1 }{\partial j} \right) . \\
\end{array}
}
\end{align*}
Introducing the vertical scale factor inside the horizontal derivative of the first two terms
(\ie\ the horizontal divergence), it becomes :
\begin{align*}
{
\begin{array}{*{20}l}
% \begin{align*} {\begin{array}{*{20}l}
% {\begin{array}{*{20}l} \left. \frac{D u}{D t} \right|_s
&= \left. {\frac{\partial u }{\partial t}} \right|_s
&+ \frac{1}{e_1\,e_2\,e_3} \left( \frac{\partial( e_2 e_3 \,u^2 )}{\partial i}
+ \frac{\partial( e_1 e_3 \,u v )}{\partial j}
- e_2 u u \frac{\partial e_3}{\partial i}
- e_1 u v \frac{\partial e_3 }{\partial j} \right)
+ \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
&& - \,u \left[ \frac{1}{e_1 e_2 e_3} \left( \frac{\partial(e_2 e_3 \, u)}{\partial i}
+ \frac{\partial(e_1 e_3 \, v)}{\partial j}
- e_2 u \;\frac{\partial e_3 }{\partial i}
- e_1 v \;\frac{\partial e_3 }{\partial j} \right)
+ \frac{1}{e_3} \frac{\partial \omega}{\partial s} \right] \\ \\
&& - \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i}
-u \;\frac{\partial e_1 }{\partial j} \right) \\ \\
&= \left. {\frac{\partial u }{\partial t}} \right|_s
&+ \frac{1}{e_1\,e_2\,e_3} \left( \frac{\partial( e_2 e_3 \,u\,u )}{\partial i}
+ \frac{\partial( e_1 e_3 \,u\,v )}{\partial j} \right)
+ \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
&& - \,u \left[ \frac{1}{e_1 e_2 e_3} \left( \frac{\partial(e_2 e_3 \, u)}{\partial i}
+ \frac{\partial(e_1 e_3 \, v)}{\partial j} \right)
+ \frac{1}{e_3} \frac{\partial \omega}{\partial s} \right]
- \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i}
-u \;\frac{\partial e_1 }{\partial j} \right) . \\
%
\intertext {Introducing a more compact form for the divergence of the momentum fluxes,
and using (\autoref{eq:SCOORD_sco_Continuity}), the $s-$coordinate continuity equation,
it becomes : }
%
&= \left. {\frac{\partial u }{\partial t}} \right|_s
&+ \left. \nabla \cdot \left( {{\mathrm {\mathbf U}}\,u} \right) \right|_s
+ \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
- \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i}
-u \;\frac{\partial e_1 }{\partial j} \right)
\\
\end{array}
}
\end{align*}
which leads to the $s-$coordinate flux formulation of the total $s-$coordinate time derivative,
\ie\ the total $s-$coordinate time derivative in flux form:
\begin{flalign}
\label{eq:SCOORD_sco_Dt_flux}
\left. \frac{D u}{D t} \right|_s = \frac{1}{e_3} \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_s
+ \left. \nabla \cdot \left( {{\mathrm {\mathbf U}}\,u} \right) \right|_s
- \frac{v}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i}
-u \;\frac{\partial e_1 }{\partial j} \right).
\end{flalign}
which is the total time derivative expressed in the curvilinear $s-$coordinate system.
It has the same form as in the $z-$coordinate but for
the vertical scale factor that has appeared inside the time derivative which
comes from the modification of (\autoref{eq:SCOORD_sco_Continuity}),
the continuity equation.
$\bullet$ \textbf{horizontal pressure gradient}
The horizontal pressure gradient term can be transformed as follows:
\[
\begin{split}
-\frac{1}{\rho_o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z
& =-\frac{1}{\rho_o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial p}{\partial s}} \right] \\
& =-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma_1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
&=-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho_o }\sigma_1 .
\end{split}
\]
Applying similar manipulation to the second component and
replacing $\sigma_1$ and $\sigma_2$ by their expression \autoref{eq:SCOORD_s_slope}, it becomes:
\begin{equation}
\label{eq:SCOORD_grad_p_1}
\begin{split}
-\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
&=-\frac{1}{\rho_o \,e_1 } \left( \left. {\frac{\partial p}{\partial i}} \right|_s
+ g\;\rho \;\left. {\frac{\partial z}{\partial i}} \right|_s \right) \\
%
-\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
&=-\frac{1}{\rho_o \,e_2 } \left( \left. {\frac{\partial p}{\partial j}} \right|_s
+ g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s \right) . \\
\end{split}
\end{equation}
An additional term appears in (\autoref{eq:SCOORD_grad_p_1}) which accounts for
the tilt of $s-$surfaces with respect to geopotential $z-$surfaces.
As in $z$-coordinate,
the horizontal pressure gradient can be split in two parts following \citet{marsaleix.auclair.ea_OM08}.
Let defined a density anomaly, $d$, by $d=(\rho - \rho_o)/ \rho_o$,
and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$.
The pressure is then given by:
\[
\begin{split}
p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \rho_o \left( d + 1 \right) \; e_3 \; dk \\
&= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + \rho_o g \, \int_z^\eta e_3 \; dk .
\end{split}
\]
Therefore, $p$ and $p_h'$ are linked through:
\begin{equation}
\label{eq:SCOORD_pressure}
p = \rho_o \; p_h' + \rho_o \, g \, ( \eta - z )
\end{equation}
and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is:
\[
\frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
\]
Substituing \autoref{eq:SCOORD_pressure} in \autoref{eq:SCOORD_grad_p_1} and
using the definition of the density anomaly it becomes an expression in two parts:
\begin{equation}
\label{eq:SCOORD_grad_p_2}
\begin{split}
-\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
&=-\frac{1}{e_1 } \left( \left. {\frac{\partial p_h'}{\partial i}} \right|_s
+ g\; d \;\left. {\frac{\partial z}{\partial i}} \right|_s \right) - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} , \\
%
-\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
&=-\frac{1}{e_2 } \left( \left. {\frac{\partial p_h'}{\partial j}} \right|_s
+ g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s \right) - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} . \\
\end{split}
\end{equation}
This formulation of the pressure gradient is characterised by the appearance of
a term depending on the sea surface height only
(last term on the right hand side of expression \autoref{eq:SCOORD_grad_p_2}).
This term will be loosely termed \textit{surface pressure gradient} whereas
the first term will be termed the \textit{hydrostatic pressure gradient} by analogy to
the $z$-coordinate formulation.
In fact, the true surface pressure gradient is $1/\rho_o \nabla (\rho \eta)$,
and $\eta$ is implicitly included in the computation of $p_h'$ through the upper bound of the vertical integration.
$\bullet$ \textbf{The other terms of the momentum equation}
The coriolis and forcing terms as well as the the vertical physics remain unchanged as
they involve neither time nor space derivatives.
The form of the lateral physics is discussed in \autoref{apdx:DIFFOPERS}.
$\bullet$ \textbf{Full momentum equation}
To sum up, in a curvilinear $s$-coordinate system,
the vector invariant momentum equation solved by the model has the same mathematical expression as
the one in a curvilinear $z-$coordinate, except for the pressure gradient term:
\begin{subequations}
\label{eq:SCOORD_dyn_vect}
\begin{multline}
\label{eq:SCOORD_PE_dyn_vect_u}
\frac{\partial u}{\partial t}=
+ \left( {\zeta +f} \right)\,v
- \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left( u^2+v^2 \right)
- \frac{1}{e_3} \omega \frac{\partial u}{\partial k} \\
- \frac{1}{e_1 } \left( \frac{\partial p_h'}{\partial i} + g\; d \; \frac{\partial z}{\partial i} \right)
- \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
+ D_u^{\vect{U}} + F_u^{\vect{U}} ,
\end{multline}
\begin{multline}
\label{eq:SCOORD_dyn_vect_v}
\frac{\partial v}{\partial t}=
- \left( {\zeta +f} \right)\,u
- \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left( u^2+v^2 \right)
- \frac{1}{e_3 } \omega \frac{\partial v}{\partial k} \\
- \frac{1}{e_2 } \left( \frac{\partial p_h'}{\partial j} + g\; d \; \frac{\partial z}{\partial j} \right)
- \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
+ D_v^{\vect{U}} + F_v^{\vect{U}} .
\end{multline}
\end{subequations}
whereas the flux form momentum equation differs from it by
the formulation of both the time derivative and the pressure gradient term:
\begin{subequations}
\label{eq:SCOORD_dyn_flux}
\begin{multline}
\label{eq:SCOORD_PE_dyn_flux_u}
\frac{1}{e_3} \frac{\partial \left( e_3\,u \right) }{\partial t} =
- \nabla \cdot \left( {{\mathrm {\mathbf U}}\,u} \right)
+ \left\{ {f + \frac{1}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i}
-u \;\frac{\partial e_1 }{\partial j} \right)} \right\} \,v \\
- \frac{1}{e_1 } \left( \frac{\partial p_h'}{\partial i} + g\; d \; \frac{\partial z}{\partial i} \right)
- \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
+ D_u^{\vect{U}} + F_u^{\vect{U}} ,
\end{multline}
\begin{multline}
\label{eq:SCOORD_dyn_flux_v}
\frac{1}{e_3}\frac{\partial \left( e_3\,v \right) }{\partial t}=
- \nabla \cdot \left( {{\mathrm {\mathbf U}}\,v} \right)
- \left\{ {f + \frac{1}{e_1 e_2 }\left( v \;\frac{\partial e_2 }{\partial i}
-u \;\frac{\partial e_1 }{\partial j} \right)} \right\} \,u \\
- \frac{1}{e_2 } \left( \frac{\partial p_h'}{\partial j} + g\; d \; \frac{\partial z}{\partial j} \right)
- \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
+ D_v^{\vect{U}} + F_v^{\vect{U}} .
\end{multline}
\end{subequations}
Both formulation share the same hydrostatic pressure balance expressed in terms of
hydrostatic pressure and density anomalies, $p_h'$ and $d=( \frac{\rho}{\rho_o}-1 )$:
\begin{equation}
\label{eq:SCOORD_dyn_zph}
\frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
\end{equation}
It is important to realize that the change in coordinate system has only concerned the position on the vertical.
It has not affected (\textbf{i},\textbf{j},\textbf{k}), the orthogonal curvilinear set of unit vectors.
($u$,$v$) are always horizontal velocities so that their evolution is driven by \emph{horizontal} forces,
in particular the pressure gradient.
By contrast, $\omega$ is not $w$, the third component of the velocity, but the dia-surface velocity component,
\ie\ the volume flux across the moving $s$-surfaces per unit horizontal area.
%% =================================================================================================
\section{Tracer equation}
\label{sec:SCOORD_tracer}
The tracer equation is obtained using the same calculation as for the continuity equation and then
regrouping the time derivative terms in the left hand side :
\begin{multline}
\label{eq:SCOORD_tracer}
\frac{1}{e_3} \frac{\partial \left( e_3 T \right)}{\partial t}
= -\frac{1}{e_1 \,e_2 \,e_3}
\left[ \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right)
+ \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right) \right] \\
- \frac{1}{e_3} \frac{\partial }{\partial k} \left( Tw \right)
+ D^{T} +F^{T}
\end{multline}
The expression for the advection term is a straight consequence of (\autoref{eq:SCOORD_sco_Continuity}),
the expression of the 3D divergence in the $s-$coordinates established above.
\subinc{\input{../../global/epilogue}}
\end{document}