Skip to content
Snippets Groups Projects
apdx_s_coord.tex 30 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
\documentclass[../main/NEMO_manual]{subfiles}

\begin{document}

\chapter{Curvilinear $s-$Coordinate Equations}
\label{apdx:SCOORD}

%    {\em 4.0} & {\em Mike Bell} & {\em review}  \\
%    {\em 3.x} & {\em Gurvan Madec} & {\em original}  \\

\chaptertoc

\paragraph{Changes record} ~\\

{\footnotesize
  \begin{tabularx}{\textwidth}{l||X|X}
    Release & Author(s) & Modifications \\
    \hline
    {\em   4.0} & {\em ...} & {\em ...} \\
    {\em   3.6} & {\em ...} & {\em ...} \\
    {\em   3.4} & {\em ...} & {\em ...} \\
    {\em <=3.4} & {\em ...} & {\em ...}
  \end{tabularx}
}

\clearpage

\section{Chain rule for $s-$coordinates}
\label{sec:SCOORD_chain}

In order to establish the set of Primitive Equation in curvilinear $s$-coordinates
(\ie\ an orthogonal curvilinear coordinate in the horizontal and
an Arbitrary Lagrangian Eulerian (ALE) coordinate in the vertical),
we start from the set of equations established in \autoref{subsec:MB_zco_Eq} for
the special case $k = z$ and thus $e_3 = 1$,
and we introduce an arbitrary vertical coordinate $a = a(i,j,z,t)$.
Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and
the horizontal slope of $s-$surfaces by:
\begin{equation}
  \label{eq:SCOORD_s_slope}
  \sigma_1 =\frac{1}{e_1 } \; \left. {\frac{\partial z}{\partial i}} \right|_s
  \quad \text{and} \quad
  \sigma_2 =\frac{1}{e_2 } \; \left. {\frac{\partial z}{\partial j}} \right|_s .
\end{equation}

The model fields (e.g. pressure $p$) can be viewed as functions of $(i,j,z,t)$ (e.g. $p(i,j,z,t)$) or as
functions of $(i,j,s,t)$ (e.g. $p(i,j,s,t)$). The symbol $\bullet$ will be used to represent any one of
these fields.  Any ``infinitesimal'' change in $\bullet$ can be written in two forms:
\begin{equation}
  \label{eq:SCOORD_s_infin_changes}
  \begin{aligned}
    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,s,t}
                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,s,t}
                + \delta s \left. \frac{ \partial \bullet }{\partial s} \right|_{i,j,t}
                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,s} , \\
    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,z,t}
                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,z,t}
                + \delta z \left. \frac{ \partial \bullet }{\partial z} \right|_{i,j,t}
                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,z} .
  \end{aligned}
\end{equation}
Using the first form and considering a change $\delta i$ with $j, z$ and $t$ held constant, shows that
\begin{equation}
  \label{eq:SCOORD_s_chain_rule1}
      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,z,t}  =
      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,s,t}
    + \left. {\frac{\partial s       }{\partial i}} \right|_{j,z,t} \;
      \left. {\frac{\partial \bullet }{\partial s}} \right|_{i,j,t} .
\end{equation}
The term $\left. \partial s / \partial i \right|_{j,z,t}$ can be related to the slope of constant $s$ surfaces,
(\autoref{eq:SCOORD_s_slope}), by applying the second of (\autoref{eq:SCOORD_s_infin_changes}) with $\bullet$ set to
$s$ and $j, t$ held constant
\begin{equation}
\label{eq:SCOORD_delta_s}
\delta s|_{j,t} =
         \delta i \left. \frac{ \partial s }{\partial i} \right|_{j,z,t}
       + \delta z \left. \frac{ \partial s }{\partial z} \right|_{i,j,t} .
\end{equation}
Choosing to look at a direction in the $(i,z)$ plane in which $\delta s = 0$ and using
(\autoref{eq:SCOORD_s_slope}) we obtain
\begin{equation}
\left. \frac{ \partial s }{\partial i} \right|_{j,z,t} =
         -  \left. \frac{ \partial z }{\partial i} \right|_{j,s,t} \;
            \left. \frac{ \partial s }{\partial z} \right|_{i,j,t}
	 = - \frac{e_1 }{e_3 }\sigma_1  .
\label{eq:SCOORD_ds_di_z}
\end{equation}
Another identity, similar in form to (\autoref{eq:SCOORD_ds_di_z}), can be derived
by choosing $\bullet$ to be $s$ and using the second form of (\autoref{eq:SCOORD_s_infin_changes}) to consider
changes in which $i , j$ and $s$ are constant. This shows that
\begin{equation}
\label{eq:SCOORD_w_in_s}
w_s = \left. \frac{ \partial z }{\partial t} \right|_{i,j,s} =
- \left. \frac{ \partial z }{\partial s} \right|_{i,j,t}
  \left. \frac{ \partial s }{\partial t} \right|_{i,j,z}
  = - e_3 \left. \frac{ \partial s }{\partial t} \right|_{i,j,z} .
\end{equation}

In what follows, for brevity, indication of the constancy of the $i, j$ and $t$ indices is
usually omitted. Using the arguments outlined above one can show that the chain rules needed to establish
the model equations in the curvilinear $s-$coordinate system are:
\begin{equation}
  \label{eq:SCOORD_s_chain_rule2}
  \begin{aligned}
    &\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
    \left. {\frac{\partial \bullet }{\partial t}} \right|_s
	 + \frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial t} , \\
    &\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
    +\frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial i}=
    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
    -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial \bullet }{\partial s} , \\
    &\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
    + \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
    - \frac{e_2 }{e_3 }\sigma_2 \frac{\partial \bullet }{\partial s} , \\
    &\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} .
  \end{aligned}
\end{equation}

%% =================================================================================================
\section{Continuity equation in $s-$coordinates}
\label{sec:SCOORD_continuity}

Using (\autoref{eq:SCOORD_s_chain_rule1}) and
the fact that the horizontal scale factors $e_1$ and $e_2$ do not depend on the vertical coordinate,
the divergence of the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows in order to
obtain its expression in the curvilinear $s-$coordinate system:

\begin{subequations}
  \begin{align*}
    {
    \begin{array}{*{20}l}
      \nabla \cdot {\mathrm {\mathbf U}}
      &= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
        +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_z  \right]
        + \frac{\partial w}{\partial z} \\ \\
      &     = \frac{1}{e_1 \,e_2 }  \left[
		  \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
		  - \frac{e_1 }{e_3 } \sigma_1 \frac{\partial (e_2 \,u)}{\partial s}
        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s
		  - \frac{e_2 }{e_3 } \sigma_2 \frac{\partial (e_1 \,v)}{\partial s}	\right]
        + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z} \\ \\
      &     = \frac{1}{e_1 \,e_2 }   \left[
		  \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s       	\right]
        + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
        -  \sigma_1 \frac{\partial u}{\partial s}
        -  \sigma_2 \frac{\partial v}{\partial s}      \right] \\ \\
      &     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
		  \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_s
		  -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s
        + \left.  \frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
		  - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right] \\
      & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
        + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
        -  \sigma_1 \frac{\partial u}{\partial s}
        -  \sigma_2 \frac{\partial v}{\partial s}      \right]      \\
      %
      \intertext{Noting that $
      \frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s
      =\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s
      =\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right)
      =\frac{\partial \sigma_1}{\partial s}
      $ and $
      \frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s
      =\frac{\partial \sigma_2}{\partial s}
      $, it becomes:}
    %
      \nabla \cdot {\mathrm {\mathbf U}}
      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
		  \left.  \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
        +\left.  \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right] \\
      & \qquad \qquad \qquad \qquad \quad
        +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma_1 }{\partial s}-v\frac{\partial \sigma_2 }{\partial s}-\sigma_1 \frac{\partial u}{\partial s}-\sigma_2 \frac{\partial v}{\partial s}} \right] \\
      \\
      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
		  \left.  \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
        +\left.  \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
        + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right]
    \end{array}
        }
  \end{align*}
\end{subequations}

Here, $w$ is the vertical velocity relative to the $z-$coordinate system.
Using the first form of (\autoref{eq:SCOORD_s_infin_changes})
and the definitions (\autoref{eq:SCOORD_s_slope}) and (\autoref{eq:SCOORD_w_in_s}) for $\sigma_1$, $\sigma_2$ and  $w_s$,
one can show that the vertical velocity, $w_p$ of a point
moving with the horizontal velocity of the fluid along an $s$ surface is given by
\begin{equation}
\label{eq:SCOORD_w_p}
\begin{split}
w_p  = & \left. \frac{ \partial z }{\partial t} \right|_s
     + \frac{u}{e_1} \left. \frac{ \partial z }{\partial i} \right|_s
     + \frac{v}{e_2} \left. \frac{ \partial z }{\partial j} \right|_s \\
     = & w_s + u \sigma_1 + v \sigma_2 .
\end{split}
\end{equation}
 The vertical velocity across this surface is denoted by
\begin{equation}
  \label{eq:SCOORD_w_s}
  \omega  = w - w_p = w - ( w_s + \sigma_1 \,u + \sigma_2 \,v )  .
\end{equation}
Hence
\begin{equation}
\frac{1}{e_3 } \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right] =
\frac{1}{e_3 } \frac{\partial}{\partial s} \left[  \omega + w_s \right] =
   \frac{1}{e_3 } \left[ \frac{\partial \omega}{\partial s}
 + \left. \frac{ \partial }{\partial t} \right|_s \frac{\partial z}{\partial s} \right] =
   \frac{1}{e_3 } \frac{\partial \omega}{\partial s} + \frac{1}{e_3 } \left. \frac{ \partial e_3}{\partial t} . \right|_s
\end{equation}

Using (\autoref{eq:SCOORD_w_s}) in our expression for $\nabla \cdot {\mathrm {\mathbf U}}$ we obtain
our final expression for the divergence of the velocity in the curvilinear $s-$coordinate system:
\begin{equation}
      \nabla \cdot {\mathrm {\mathbf U}} =
         \frac{1}{e_1 \,e_2 \,e_3 }    \left[
		  \left.  \frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
        +\left.  \frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
        + \frac{1}{e_3 } \frac{\partial \omega }{\partial s}
        + \frac{1}{e_3 } \left. \frac{\partial e_3}{\partial t} \right|_s .
\end{equation}

As a result, the continuity equation \autoref{eq:MB_PE_continuity} in the $s-$coordinates is:
\begin{equation}
  \label{eq:SCOORD_sco_Continuity}
  \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
  + \frac{1}{e_1 \,e_2 \,e_3 }\left[
    {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
      +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
  +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0 .
\end{equation}
An additional term has appeared that takes into account
the contribution of the time variation of the vertical coordinate to the volume budget.

%% =================================================================================================
\section{Momentum equation in $s-$coordinate}
\label{sec:SCOORD_momentum}

Here we only consider the first component of the momentum equation,
the generalization to the second one being straightforward.

$\bullet$ \textbf{Total derivative in vector invariant form}

Let us consider \autoref{eq:MB_dyn_vect}, the first component of the momentum equation in the vector invariant form.
Its total $z-$coordinate time derivative,
$\left. \frac{D u}{D t} \right|_z$ can be transformed as follows in order to obtain
its expression in the curvilinear $s-$coordinate system:

\begin{subequations}
  \begin{align*}
    {
    \begin{array}{*{20}l}
      \left. \frac{D u}{D t} \right|_z
      &= \left. {\frac{\partial u }{\partial t}} \right|_z
        - \left. \zeta \right|_z v
        + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z
        + w \;\frac{\partial u}{\partial z} \\ \\
      &= \left. {\frac{\partial u }{\partial t}} \right|_z
        -  \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z
        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v
        +  \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z
        +  w \;\frac{\partial u}{\partial z}      \\
        %
      \intertext{introducing the chain rule (\autoref{eq:SCOORD_s_chain_rule1}) }
      %
      &= \left. {\frac{\partial u }{\partial t}} \right|_z
        - \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s
        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right.
        \left. {-\frac{e_1}{e_3}\sigma_1 \frac{\partial (e_2 \,v)}{\partial s}
        +\frac{e_2}{e_3}\sigma_2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v  \\
      & \qquad \qquad \qquad \qquad
        {
        + \frac{1}{2e_1} \left(                                  \left.  \frac{\partial (u^2+v^2)}{\partial i} \right|_s
        - \frac{e_1}{e_3}\sigma_1 \frac{\partial (u^2+v^2)}{\partial s}               \right)
        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
        } \\ \\
      &= \left. {\frac{\partial u }{\partial t}} \right|_z
        - \left. \zeta \right|_s \;v
        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
      &\qquad \qquad \qquad \quad
        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
        + \left[   {\frac{\sigma_1 }{e_3 }\frac{\partial v}{\partial s}
        - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v
        - \frac{\sigma_1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s} \\ \\
      &= \left. {\frac{\partial u }{\partial t}} \right|_z
        - \left. \zeta \right|_s \;v
        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
      &\qquad \qquad \qquad \quad
        + \frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
        +\sigma_1 v\frac{\partial v}{\partial s} - \sigma_2 v\frac{\partial u}{\partial s}
        - \sigma_1 u\frac{\partial u}{\partial s} - \sigma_1 v\frac{\partial v}{\partial s}} \right] \\ \\
      &= \left. {\frac{\partial u }{\partial t}} \right|_z
        - \left. \zeta \right|_s \;v
        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
        + \frac{1}{e_3} \left[  w - \sigma_2 v - \sigma_1 u  \right]
        \; \frac{\partial u}{\partial s} .  \\
        %
      \intertext{Introducing $\omega$, the dia-s-surface velocity given by (\autoref{eq:SCOORD_w_s}) }
      %
      &= \left. {\frac{\partial u }{\partial t}} \right|_z
        - \left. \zeta \right|_s \;v
        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
        + \frac{1}{e_3 } \left( \omega + w_s \right) \frac{\partial u}{\partial s}   \\
    \end{array}
    }
  \end{align*}
\end{subequations}
Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule1})) to $u$ and
using (\autoref{eq:SCOORD_w_in_s}) provides the expression of the last term of the right hand side,
\[
  {
    \begin{array}{*{20}l}
      \frac{w_s}{e_3}  \;\frac{\partial u}{\partial s}
      = - \left. \frac{\partial s}{\partial t} \right|_z \;  \frac{\partial u }{\partial s}
      = \left. {\frac{\partial u }{\partial t}} \right|_s  - \left. {\frac{\partial u }{\partial t}} \right|_z \ .
    \end{array}
  }
\]
This leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative,
\ie\ the total $s-$coordinate time derivative :
\begin{align}
  \label{eq:SCOORD_sco_Dt_vect}
  \left. \frac{D u}{D t} \right|_s
  = \left. {\frac{\partial u }{\partial t}} \right|_s
  - \left. \zeta \right|_s \;v
  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
  + \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s} .
\end{align}
Therefore, the vector invariant form of the total time derivative has exactly the same mathematical form in
$z-$ and $s-$coordinates.
This is not the case for the flux form as shown in next paragraph.

$\bullet$ \textbf{Total derivative in flux form}

Let us start from the total time derivative in the curvilinear $s-$coordinate system we have just establish.
Following the procedure used to establish (\autoref{eq:MB_flux_form}), it can be transformed into :
% \begin{subequations}
\begin{align*}
  {
  \begin{array}{*{20}l}
    \left. \frac{D u}{D t} \right|_s  &= \left. {\frac{\partial u }{\partial t}} \right|_s
    & -  \zeta \;v
      + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i}
      + \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s} \\ \\
                                      &= \left. {\frac{\partial u }{\partial t}} \right|_s
    &+\frac{1}{e_1\;e_2}  \left(    \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i}
      + \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j}     \right)
      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
                                      &&- \,u \left[     \frac{1}{e_1 e_2 } \left(    \frac{\partial(e_2 u)}{\partial i}
                                         + \frac{\partial(e_1 v)}{\partial j}    \right)
                                         + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
                                      &&- \frac{v}{e_1 e_2 }\left(    v	\;\frac{\partial e_2 }{\partial i}
                                         -u	\;\frac{\partial e_1 }{\partial j} 	\right) . \\
  \end{array}
  }
\end{align*}
Introducing the vertical scale factor inside the horizontal derivative of the first two terms
(\ie\ the horizontal divergence), it becomes :
\begin{align*}
  {
  \begin{array}{*{20}l}
    % \begin{align*} {\begin{array}{*{20}l}
    %     {\begin{array}{*{20}l} \left. \frac{D u}{D t} \right|_s
    &= \left. {\frac{\partial u }{\partial t}} \right|_s
    &+ \frac{1}{e_1\,e_2\,e_3}  \left(  \frac{\partial( e_2 e_3 \,u^2 )}{\partial i}
      + \frac{\partial( e_1 e_3 \,u v )}{\partial j}
      -  e_2 u u \frac{\partial e_3}{\partial i}
      -  e_1 u v \frac{\partial e_3 }{\partial j}    \right)
      + \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
    && - \,u \left[  \frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
       + \frac{\partial(e_1 e_3 \, v)}{\partial j}
       -  e_2 u \;\frac{\partial e_3 }{\partial i}
       -  e_1 v \;\frac{\partial e_3 }{\partial j}   \right)
       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
    && - \frac{v}{e_1 e_2 }\left( 	v  \;\frac{\partial e_2 }{\partial i}
       -u  \;\frac{\partial e_1 }{\partial j} 	\right) \\ \\
    &= \left. {\frac{\partial u }{\partial t}} \right|_s
    &+ \frac{1}{e_1\,e_2\,e_3}  \left(  \frac{\partial( e_2 e_3 \,u\,u )}{\partial i}
      + \frac{\partial( e_1 e_3 \,u\,v )}{\partial j}    \right)
      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
    && - \,u \left[  \frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
       + \frac{\partial(e_1 e_3 \, v)}{\partial j}  \right)
       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]
       - \frac{v}{e_1 e_2 }\left( 	v   \;\frac{\partial e_2 }{\partial i}
       -u   \;\frac{\partial e_1 }{\partial j} 	\right)     .             \\
     %
    \intertext {Introducing a more compact form for the divergence of the momentum fluxes,
    and using (\autoref{eq:SCOORD_sco_Continuity}), the $s-$coordinate continuity equation,
    it becomes : }
  %
    &= \left. {\frac{\partial u }{\partial t}} \right|_s
    &+ \left.  \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
      + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
      - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
      -u  \;\frac{\partial e_1 }{\partial j} 	\right)
    \\
  \end{array}
  }
\end{align*}
which leads to the $s-$coordinate flux formulation of the total $s-$coordinate time derivative,
\ie\ the total $s-$coordinate time derivative in flux form:
\begin{flalign}
  \label{eq:SCOORD_sco_Dt_flux}
  \left. \frac{D u}{D t} \right|_s   = \frac{1}{e_3}  \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_s
  + \left.  \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
  - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
    -u  \;\frac{\partial e_1 }{\partial j}            \right).
\end{flalign}
which is the total time derivative expressed in the curvilinear $s-$coordinate system.
It has the same form as in the $z-$coordinate but for
the vertical scale factor that has appeared inside the time derivative which
comes from the modification of (\autoref{eq:SCOORD_sco_Continuity}),
the continuity equation.

$\bullet$ \textbf{horizontal pressure gradient}

The horizontal pressure gradient term can be transformed as follows:
\[
  \begin{split}
    -\frac{1}{\rho_o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z
    & =-\frac{1}{\rho_o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial p}{\partial s}} \right] \\
    & =-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma_1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
    &=-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho_o }\sigma_1 .
  \end{split}
\]
Applying similar manipulation to the second component and
replacing $\sigma_1$ and $\sigma_2$ by their expression \autoref{eq:SCOORD_s_slope}, it becomes:
\begin{equation}
  \label{eq:SCOORD_grad_p_1}
  \begin{split}
    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
    &=-\frac{1}{\rho_o \,e_1 } \left(     \left.              {\frac{\partial p}{\partial i}} \right|_s
      + g\;\rho  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right) \\
             %
    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
    &=-\frac{1}{\rho_o \,e_2 } \left(    \left.               {\frac{\partial p}{\partial j}} \right|_s
      + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right) . \\
  \end{split}
\end{equation}

An additional term appears in (\autoref{eq:SCOORD_grad_p_1}) which accounts for
the tilt of $s-$surfaces with respect to geopotential $z-$surfaces.

As in $z$-coordinate,
the horizontal pressure gradient can be split in two parts following \citet{marsaleix.auclair.ea_OM08}.
Let defined a density anomaly, $d$, by $d=(\rho - \rho_o)/ \rho_o$,
and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$.
The pressure is then given by:
\[
  \begin{split}
    p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \rho_o \left( d + 1 \right) \; e_3 \; dk   \\
    &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + \rho_o g \, \int_z^\eta e_3 \; dk .
  \end{split}
\]
Therefore, $p$ and $p_h'$ are linked through:
\begin{equation}
  \label{eq:SCOORD_pressure}
  p = \rho_o \; p_h' + \rho_o \, g \, ( \eta - z )
\end{equation}
and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is:
\[
  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
\]

Substituing \autoref{eq:SCOORD_pressure} in \autoref{eq:SCOORD_grad_p_1} and
using the definition of the density anomaly it becomes an expression in two parts:
\begin{equation}
  \label{eq:SCOORD_grad_p_2}
  \begin{split}
    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
    &=-\frac{1}{e_1 } \left(     \left.              {\frac{\partial p_h'}{\partial i}} \right|_s
      + g\; d  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right)  - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} ,  \\
             %
    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
    &=-\frac{1}{e_2 } \left(    \left.               {\frac{\partial p_h'}{\partial j}} \right|_s
      + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right)  - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} . \\
  \end{split}
\end{equation}
This formulation of the pressure gradient is characterised by the appearance of
a term depending on the sea surface height only
(last term on the right hand side of expression \autoref{eq:SCOORD_grad_p_2}).
This term will be loosely termed \textit{surface pressure gradient} whereas
the first term will be termed the \textit{hydrostatic pressure gradient} by analogy to
the $z$-coordinate formulation.
In fact, the true surface pressure gradient is $1/\rho_o \nabla (\rho \eta)$,
and $\eta$ is implicitly included in the computation of $p_h'$ through the upper bound of the vertical integration.

$\bullet$ \textbf{The other terms of the momentum equation}

The coriolis and forcing terms as well as the the vertical physics remain unchanged as
they involve neither time nor space derivatives.
The form of the lateral physics is discussed in \autoref{apdx:DIFFOPERS}.

$\bullet$ \textbf{Full momentum equation}

To sum up, in a curvilinear $s$-coordinate system,
the vector invariant momentum equation solved by the model has the same mathematical expression as
the one in a curvilinear $z-$coordinate, except for the pressure gradient term:
\begin{subequations}
  \label{eq:SCOORD_dyn_vect}
  \begin{multline}
    \label{eq:SCOORD_PE_dyn_vect_u}
    \frac{\partial u}{\partial t}=
    +   \left( {\zeta +f} \right)\,v
    -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
    -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
  \end{multline}
  \begin{multline}
    \label{eq:SCOORD_dyn_vect_v}
    \frac{\partial v}{\partial t}=
    -   \left( {\zeta +f} \right)\,u
    -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^2  \right)
    -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
  \end{multline}
\end{subequations}
whereas the flux form momentum equation differs from it by
the formulation of both the time derivative and the pressure gradient term:
\begin{subequations}
  \label{eq:SCOORD_dyn_flux}
  \begin{multline}
    \label{eq:SCOORD_PE_dyn_flux_u}
    \frac{1}{e_3} \frac{\partial \left(  e_3\,u  \right) }{\partial t} =
    - \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)
    +   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,v     \\
    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
  \end{multline}
  \begin{multline}
    \label{eq:SCOORD_dyn_flux_v}
    \frac{1}{e_3}\frac{\partial \left(  e_3\,v  \right) }{\partial t}=
    -  \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,v}   \right)
    -   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,u     \\
    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
  \end{multline}
\end{subequations}
Both formulation share the same hydrostatic pressure balance expressed in terms of
hydrostatic pressure and density anomalies, $p_h'$ and $d=( \frac{\rho}{\rho_o}-1 )$:
\begin{equation}
  \label{eq:SCOORD_dyn_zph}
  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
\end{equation}

It is important to realize that the change in coordinate system has only concerned the position on the vertical.
It has not affected (\textbf{i},\textbf{j},\textbf{k}), the orthogonal curvilinear set of unit vectors.
($u$,$v$) are always horizontal velocities so that their evolution is driven by \emph{horizontal} forces,
in particular the pressure gradient.
By contrast, $\omega$ is not $w$, the third component of the velocity, but the dia-surface velocity component,
\ie\ the volume flux across the moving $s$-surfaces per unit horizontal area.

%% =================================================================================================
\section{Tracer equation}
\label{sec:SCOORD_tracer}

The tracer equation is obtained using the same calculation as for the continuity equation and then
regrouping the time derivative terms in the left hand side :

\begin{multline}
  \label{eq:SCOORD_tracer}
  \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t}
  = -\frac{1}{e_1 \,e_2 \,e_3}
  \left[           \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right)
    +   \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)               \right]       \\
  -  \frac{1}{e_3}  \frac{\partial }{\partial k} \left(                   Tw  \right)
  +  D^{T} +F^{T}
\end{multline}

The expression for the advection term is a straight consequence of (\autoref{eq:SCOORD_sco_Continuity}),
the expression of the 3D divergence in the $s-$coordinates established above.

\subinc{\input{../../global/epilogue}}

\end{document}