Newer
Older
\documentclass[../main/NEMO_manual]{subfiles}
\begin{document}
\chapter{Output and Diagnostics (IOM, DIA, TRD, FLO)}
\label{chap:DIA}
% {\em 4.0} & {\em Mirek Andrejczuk, Massimiliano Drudi} & {\em } \\
% {\em } & {\em Dorotea Iovino, Nicolas Martin} & {\em } \\
% {\em 3.6} & {\em Gurvan Madec, Sebastien Masson } & {\em } \\
% {\em 3.4} & {\em Gurvan Madec, Rachid Benshila, Andrew Coward } & {\em } \\
% {\em } & {\em Christian Ethe, Sebastien Masson } & {\em } \\
\chaptertoc
\paragraph{Changes record} ~\\
{\footnotesize
\begin{tabularx}{\textwidth}{l||X|X}
Release & Author(s) & Modifications \\
\hline
{\em 4.0} & {\em ...} & {\em ...} \\
{\em 3.6} & {\em ...} & {\em ...} \\
{\em 3.4} & {\em ...} & {\em ...} \\
{\em <=3.4} & {\em ...} & {\em ...}
\end{tabularx}
}
\clearpage
%% =================================================================================================
\section{Model output}
\label{sec:DIA_io_old}
The model outputs are of three types: the output log/progress listings;
the diagnostic output file(s); and the restart file(s)
The output listing and file(s) are predefined but should be checked and eventually adapted
to the user's needs. The output listing is stored in the \textit{ocean.output} file. The
information is printed from within the code on the logical unit \texttt{numout}. To
locate these prints, use the UNIX command "\textit{grep -i numout}" in the source code
directory. The \textit{ocean.output} file is the first place to check if something appears
to have gone wrong with the model since any detectable errors will be reported here.
Additional progress information can be requested using the options explained in
\autoref{subsec:MISC_statusinfo}.
Diagnostic output files are written in NetCDF format and the structure of legacy output files is predefined.
The legacy output files contain by default the time averaged fields, but by activating the macro \key{diainstant}
it is possible to switch the full output to the instantaneous time value.
When compiled with \key{xios}, \NEMO\ can employ the full capability of an I/O server (XIOS)
which provides flexibility in the choice of the fields to be written as well as how the writing tasks are distributed
over the processors in a massively parallel computing environment. A complete description
of the use of this I/O server is presented in the next section.
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
The restart file is used by the code when the user wants to start the model with initial
conditions defined by a previous simulation. Restart files are NetCDF files containing
all the information that is necessary in order for there to be no changes in the model
results (even at the computer precision) between a run performed with several stops and
restarts and the same run performed in one continuous integration step. It should be
noted that this requires that the restart file contains two consecutive time steps for all
the prognostic variables. The default behaviour of \NEMO\ is to generate a restart file
for each MPP region. These files will be read in by the same regions on restarting.
However, if a change in MPP decomposition is required, then the invidual restart files
must first be combined into a whole domain restart file. This can be done using the
\forcode{REBUILD_NEMO} tool. Alternatively, users may experiment with the new options in
4.2 to write restarts via XIOS (see \autoref{subsec:XIOS_restarts}) with which it is possible to
write a whole domain restart file from a running model.
%% =================================================================================================
\section{Standard model output (\texttt{iom\_put})}
\label{sec:DIA_iom}
Since version 3.2, \rou{iom\_put} is the \NEMO\ output interface of choice.
It has been designed to be simple to use, flexible and efficient.
The two main purposes of \rou{iom\_put} are:
\begin{enumerate}
\item The complete and flexible control of the output files through external XML files adapted by
the user from standard templates.
\item To achieve high performance and scalable output through the optional distribution of
all diagnostic output related tasks to dedicated processes.
\end{enumerate}
\noindent The first functionality allows the user to specify, without code changes or recompilation,
aspects of the diagnostic output stream, such as:
\begin{itemize}
\item The choice of output frequencies that can be different for each file (including real months and years).
\item The choice of file contents; includes complete flexibility over which data are written in which files
(the same data can be written in different files).
\item The possibility to split output files at a chosen frequency.
\item The possibility to extract a vertical or an horizontal subdomain.
\item The choice of the temporal operation to perform, \eg: average, accumulate, instantaneous, min, max and once.
\item Control over metadata via a large XML "database" of possible output fields.
\item Control over the compression and/or precision of output fields (subject to certain conditions)
\end{itemize}
\noindent In addition, \rou{iom\_put} allows the user to add in the code the output of any new
variable (scalar, 1D, 2D or 3D) in a very easy way. All details of \rou{iom\_put}
functionalities are listed in the following subsections. An example of the main XML file
that control the outputs can be found in \path{cfgs/ORCA2_ICE_PISCES/EXPREF/iodef.xml}.\\
\noindent The second functionality targets output performance when running in parallel. XIOS
provides the possibility to specify N dedicated I/O processes (in addition to the \NEMO\
processes) to collect and write the outputs. With an appropriate choice of N by the user,
the bottleneck associated with the writing of the output files can be greatly reduced.
Since version 3.6, the \rou{iom\_put} interface depends on an external code called \XIOS,
which is developed independently and has its own repository and support pages. Further details
are available in the \href{https://sites.nemo-ocean.io/user-guide/}{NEMO User guide}.
Note that by default the model is interfaced with the trunk version of
\href{https://forge.ipsl.jussieu.fr/ioserver/browser/XIOS2/trunk}{XIOS2}, but it is possible to use also
the more recent version \href{https://forge.ipsl.jussieu.fr/ioserver/browser/XIOS3/trunk}{XIOS3}
by adding the macro \key{xios3} in the configuration cpp file.\\
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
The IO server can also take advantage of the parallel I/O functionality of NetCDF4 to
create a single output file and therefore to bypass any rebuilding phase. This facility is ideal for
small to moderate size configurations but can be problematic with large models due to the large memory
requirements and the inability to use NetCDF4's compression capabilities in this "one\_file" mode.
XIOS now has the option of using two levels of I/O servers so it may be possible, in some circumstances,
to use a single I/O server at the second level to enable compression. In many cases. though, it is
often more robust to use "multiple\_file" mode (where each XIOS server writes its own file) and to
recombine these files as a post-processing step. The \forcode{REBUILD_NEMO} tool in the \forcode{tools}
directory is provided for this purpose.
Note that writing in parallel into the same NetCDF files requires that your NetCDF4 library is linked to
an HDF5 library that has been correctly compiled (\ie\ with the configure option $--$enable-parallel).
Note that the files created by \rou{iom\_put} through XIOS are incompatible with NetCDF3.
All post-processsing and visualization tools must therefore be compatible with NetCDF4 and not only NetCDF3.
Even when not using the "one\_file" functionality of NetCDF4, using N dedicated I/O
servers, where N is typically much less than the number of \NEMO\ processors, will reduce
the number of output files created. This can greatly reduce the post-processing burden
otherwise associated with using large numbers of \NEMO\ processors. Note that for smaller
configurations, the rebuilding phase can be avoided, even without a parallel-enabled
NetCDF4 library, simply by employing only one dedicated I/O server.
%% =================================================================================================
\subsection{XIOS: Reading and writing restart file}
\label{subsec:XIOS_restarts}
New from version 4.2, XIOS may be used to read from a single file restart produced by \NEMO.
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
This does not add a new functionality (since NEMO has long had the capability for all
processes to read their patch from a single, combined restart file) but it may be advantageous
on systems which struggle with too many simultaneous accesses to one file. The
variables written to file \forcode{numror} (OCE), \forcode{numrir} (SI3), \forcode{numrtr}
(TOP), \forcode{numrsr} (SED) can be handled by XIOS. To activate restart reading using
XIOS, set \np[=.true. ]{ln_xios_read}{ln\_xios\_read} in \textit{namelist\_cfg}. This
setting will be ignored when multiple restart files are present, and default \NEMO
functionality will be used for reading. There is no need to change iodef.xml file to use
XIOS to read restart, all definitions are done within the \NEMO\ code. For high resolution
configurations, however, there may be a need to add the following line in iodef.xml (xios
context):
\begin{xmllines}
<variable id="recv_field_timeout" type="double">1800</variable>
\end{xmllines}
\noindent This variable sets timeout for reading.
\noindent If XIOS is to be used to read restart from files generated with an earlier \NEMO\ version (3.6 for instance),
dimension \forcode{z} defined in restart file must be renamed to \forcode{nav_lev}.\\
XIOS can also be used to write \NEMO\ restarts. A namelist parameter
\np{nn_wxios}{nn\_wxios} is used to determine the type of restart \NEMO\ will write. If it
is set to 0, default \NEMO\ functionality will be used - each processor writes its own
restart file; if it is set to 1 XIOS will write restart into a single file; for
\np[=2]{nn_wxios}{nn\_wxios} the restart will be written by XIOS into multiple files, one
for each XIOS server. Note, however, that \textbf{\NEMO\ will not read restart generated
by XIOS when \np[=2]{nn_wxios}{nn\_wxios}}. The restart will have to be rebuilt before
continuing the run. This option aims to reduce number of restart files generated by \NEMO\
only, and may be useful when there is a need to change number of processors used to run
simulation.
The use of XIOS to read and write restart files is in preparation of NEMO for exascale
computing platforms. There may not be any performance gains on current clusters but it
should reduce file system bottlenecks in any future attempts to run NEMO on hundreds of
thousands of cores.
%% =================================================================================================
\subsection{XIOS: XML Inputs-Outputs Server}
%% =================================================================================================
\subsubsection{Attached or detached mode?}
\rou{iom\_put} is based on \href{http://forge.ipsl.jussieu.fr/ioserver/wiki}{XIOS},
the io\_server developed by Yann Meurdesoif from IPSL.
The behaviour of the I/O subsystem is controlled by settings in the external XML files listed above.
Key settings in the iodef.xml file are the tags associated with each defined file.
\xmlline|<variable id="using_server" type="bool"></variable>|
The \texttt{using\_server} setting determines whether or not the server will be used in
\textit{attached mode}
(as a library) [\texttt{.false.}] or in \textit{detached mode}
(as an external executable on N additional, dedicated cpus) [\texttt{.true.}].
The \textit{attached mode} is simpler to use but much less efficient for
massively parallel applications.
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
The type of each file can be either ''multiple\_file'' or ''one\_file''.
In \textit{attached mode} and if the type of file is ''multiple\_file'',
then each \NEMO\ process will also act as an IO server and produce its own set of output files.
Superficially, this emulates the standard behaviour in previous versions.
However, the subdomain written out by each process does not correspond to
the \forcode{jpi x jpj x jpk} domain actually computed by the process (although it may if \forcode{jpni=1}).
Instead each process will have collected and written out a number of complete longitudinal strips.
If the ''one\_file'' option is chosen then all processes will collect their longitudinal strips and
write (in parallel) to a single output file.
In \textit{detached mode} and if the type of file is ''multiple\_file'',
then each stand-alone XIOS process will collect data for a range of complete longitudinal strips and
write to its own set of output files.
If the ''one\_file'' option is chosen then all XIOS processes will collect their longitudinal strips and
write (in parallel) to a single output file.
Note running in detached mode requires launching a Multiple Process Multiple Data (MPMD) parallel job.
The following subsection provides a typical example but the syntax will vary in different MPP environments.
%% =================================================================================================
\subsubsection{Number of cpu used by XIOS in detached mode}
The number of cores used by the XIOS is specified when launching the model. The number of
cores dedicated to XIOS should be from \texttildelow1/10 to \texttildelow1/50 of the
number of cores dedicated to \NEMO. Some manufacturers suggest using O($\sqrt{N}$)
dedicated IO processors for N processors but this is a general recommendation and not
specific to \NEMO. It is difficult to provide precise recommendations because the optimal
choice will depend on the particular hardware properties of the target system (parallel
filesystem performance, available memory, memory bandwidth etc.) and the volume and
frequency of data to be created. Here is an example of 2 cpus for the io\_server and 62
cpu for nemo using mpirun:
\begin{cmds}
mpirun -np 62 ./nemo.exe : -np 2 ./xios_server.exe
\end{cmds}
%% =================================================================================================
\subsubsection{Control of XIOS: the context in iodef.xml}
As well as the \texttt{using\_server} flag, other controls on the use of XIOS are set in
the XIOS context in \textit{iodef.xml}.
See the XML basics section below for more details on XML syntax and rules.
\begin{table}
\begin{tabularx}{\textwidth}{|lXl|}
\hline
variable name &
description &
example \\
\hline
\hline
info\_level &
verbosity level (0 to 100) &
0 \\
\hline
using\_server &
activate attached(false) or detached(true) mode &
true \\
\hline
using\_oasis &
XIOS is used with OASIS(true) or not (false) &
false \\
\hline
oasis\_codes\_id &
when using oasis, define the identifier of \NEMO\ in the namcouple.
Note that the identifier of XIOS is xios.x &
oceanx \\
\hline
\end{tabularx}
\end{table}
The rest of the XML controls and definitions for XIOS-\NEMO\ interaction are contained in a series of
XML files included via the \texttt{context\_nemo.xml} file which, is itself, included in iodef.xml. E.g.:
\begin{xmllines}
iodef.xml: <context id="nemo" src="./context_nemo.xml"/> <!-- NEMO -->
context_nemo.xml: <field_definition src="./field_def_nemo-oce.xml"/> <!-- NEMO ocean dynamics -->
context_nemo.xml: <field_definition src="./field_def_nemo-ice.xml"/> <!-- NEMO sea-ice model -->
context_nemo.xml: <field_definition src="./field_def_nemo-pisces.xml"/> <!-- NEMO ocean biology -->
context_nemo.xml: <file_definition src="./file_def_nemo-oce.xml"/> <!-- NEMO ocean dynamics -->
context_nemo.xml: <file_definition src="./file_def_nemo-ice.xml"/> <!-- NEMO sea-ice model -->
context_nemo.xml: <file_definition src="./file_def_nemo-pisces.xml"/> <!-- NEMO ocean biology -->
context_nemo.xml: <axis_definition src="./axis_def_nemo.xml"/>
context_nemo.xml: <domain_definition src="./domain_def_nemo.xml"/>
context_nemo.xml: <grid_definition src="./grid_def_nemo.xml"/>
\end{xmllines}
which shows the hierarchy of XML files in use by the ORCA2\_ICE\_PISCES reference configuration. This nesting
of XML files will be explained further in later sections.
%% =================================================================================================
\subsection{Practical issues}
%% =================================================================================================
\subsubsection{Installation}
As mentioned, XIOS is supported separately and must be downloaded and compiled before it can be used with \NEMO.
See the installation guide on the \href{http://forge.ipsl.jussieu.fr/ioserver/wiki}{XIOS} wiki for help and guidance.
\NEMO\ will need to link to the compiled XIOS library.
The \href{https://forge.ipsl.jussieu.fr/nemo/chrome/site/doc/NEMO/guide/html/install.html#extract-and-install-xios}
{Extract and install XIOS} guide provides an example illustration of how this can be achieved.
%% =================================================================================================
\subsubsection{Add your own outputs}
It is very easy to add your own outputs with iom\_put.
Many standard fields and diagnostics are already prepared (\ie, steps 1 to 3 below have been done) and
simply need to be activated by including the required output in a file definition in iodef.xml (step 4).
To add new output variables, all 4 of the following steps must be taken.
\begin{enumerate}
\item in \NEMO\ code, add a \forcode{CALL iom_put( 'identifier', array )} where you want
to output an array. In most cases, this will be in a part of the code which is executed
only once per timestep and after the array has been updated for that timestep. Note,
adding this call enables the possibility of outputing this array; whether or not and at
which frequency the values are actually written will be determined but the content of
associated XML files.
\item If necessary, add \forcode{USE iom ! I/O manager library} to the list of used
modules in the upper part of your module.
\item in the appropriate \path{cfgs/SHARED/field_def_nemo-....xml} files, add the
definition of your variable using the same identifier you used in the f90 code (see
subsequent sections for a details of the XML syntax and rules). For example:
\begin{xmllines}
<field_definition>
<field_group id="grid_T" grid_ref="grid_T_3D"> <!-- T grid -->
...
<field id="identifier" long_name="blabla" ... />
...
</field_definition>
\end{xmllines}
Note your definition must be added to the field\_group whose reference grid is consistent
with the size of the array passed to \rou{iom\_put}. The grid\_ref attribute refers to
definitions set in grid\_def\_nemo.xml which, in turn, reference domains and axes either
defined in the code (iom\_set\_domain\_attr and iom\_set\_axis\_attr in \mdl{iom}) or
defined in the domain\_def\_nemo.xml and axis\_def\_nemo.xml files. \eg:
\begin{xmllines}
<grid id="grid_T_3D" >
<domain domain_ref="grid_T" />
<axis axis_ref="deptht" />
</grid>
\end{xmllines}
Note, if your array is computed within the surface module each \np{nn_fsbc}{nn\_fsbc}
time\_step, add the field definition within the field\_group defined with the id "SBC":
\xmlcode{<field_group id="SBC" ...>} which has been defined with the correct frequency of
operations (iom\_set\_field\_attr in \mdl{iom}) \item Finally, to activate actual output,
add your field in one or more of the output files defined in file\_def\_nemo-*.xml (again
see subsequent sections for syntax and rules)
\begin{xmllines}
<file id="file1" ... />
...
<field field_ref="identifier" />
...
</file>
\end{xmllines}
\end{enumerate}
%% =================================================================================================
\subsection{XML fundamentals}
%% =================================================================================================
\subsubsection{ XML basic rules}
XML tags begin with the less-than character ("$<$") and end with the greater-than character ("$>$").
You use tags to mark the start and end of elements, which are the logical units of information in an XML document.
In addition to marking the beginning of an element, XML start tags also provide a place to specify attributes.
An attribute specifies a single property for an element, using a name/value pair, for example:
\xmlcode{<a b="x" c="y" d="z"> ... </a>}.
See \href{http://www.xmlnews.org/docs/xml-basics.html}{here} for more details.
%% =================================================================================================
\subsubsection{Structure of the XML file used in \NEMO}
The XML file used in XIOS is structured by 7 families of tags:
context, axis, domain, grid, field, file and variable.
Each tag family has hierarchy of three flavors (except for context):
\begin{table}
\begin{tabular*}{\textwidth}{|p{0.15\textwidth}p{0.4\textwidth}p{0.35\textwidth}|}
\hline
flavor & description &
example \\
\hline
\hline
root & declaration of the root element that can contain element groups or elements &
\xmlcode{<file_definition ... >} \\
\hline
group & declaration of a group element that can contain element groups or elements &
\xmlcode{<file_group ... >} \\
\hline
element & declaration of an element that can contain elements &
\xmlcode{<file ... >} \\
\hline
\end{tabular*}
\end{table}
Each element may have several attributes.
Some attributes are mandatory, other are optional but have a default value and other are completely optional.
Id is a special attribute used to identify an element or a group of elements.
It must be unique for a kind of element.
It is optional, but no reference to the corresponding element can be done if it is not defined.
The XML file is split into context tags that are used to isolate IO definition from
different codes or different parts of a code.
No interference is possible between 2 different contexts.
Each context has its own calendar and an associated timestep.
In \NEMO, we used the following contexts (that can be defined in any order):
\begin{table}
\begin{tabular}{|p{0.15\textwidth}p{0.4\textwidth}p{0.35\textwidth}|}
\hline
context & description &
example \\
\hline
\hline
context xios & context containing information for XIOS &
\xmlcode{<context id="xios" ... >} \\
\hline
context nemo & context containing IO information for \NEMO\ (mother grid when using AGRIF) &
\xmlcode{<context id="nemo" ... >} \\
\hline
context 1\_nemo & context containing IO information for \NEMO\ child grid 1 (when using AGRIF) &
\xmlcode{<context id="1_nemo" ... >} \\
\hline
context n\_nemo & context containing IO information for \NEMO\ child grid n (when using AGRIF) &
\xmlcode{<context id="n_nemo" ... >} \\
\hline
\end{tabular}
\end{table}
\noindent The xios context contains only 1 tag:
\begin{table}
\begin{tabular}{|p{0.15\textwidth}p{0.4\textwidth}p{0.35\textwidth}|}
\hline
context tag &
description &
example \\
\hline
\hline
variable\_definition &
define variables needed by XIOS.
This can be seen as a kind of namelist for XIOS. &
\xmlcode{<variable_definition ... >} \\
\hline
\end{tabular}
\end{table}
\noindent Each context tag related to \NEMO\ (mother or child grids) is divided into 5 parts
(that can be defined in any order):
\begin{table}
\begin{tabular}{|p{0.15\textwidth}p{0.4\textwidth}p{0.35\textwidth}|}
\hline
context tag & description &
example \\
\hline
\hline
field\_definition & define all variables that can potentially be outputted &
\xmlcode{<field_definition ... >} \\
\hline
file\_definition & define the netcdf files to be created and the variables they will contain &
\xmlcode{<file_definition ... >} \\
\hline
axis\_definition & define vertical axis &
\xmlcode{<axis_definition ... >} \\
\hline
domain\_definition & define the horizontal grids &
\xmlcode{<domain_definition ... >} \\
\hline
grid\_definition & define the 2D and 3D grids (association of an axis and a domain) &
\xmlcode{<grid_definition ... >} \\
\hline
\end{tabular}
\end{table}
%% =================================================================================================
\subsubsection{Nesting XML files}
The XML file can be split in different parts to improve its readability and facilitate its use.
The inclusion of XML files into the main XML file can be done through the attribute src:
\begin{xmllines}
<context id="nemo" src="./context_nemo.xml"/>
\end{xmllines}
\noindent In \NEMO, by default, the field definition is done in 4 separate files (
\path{cfgs/SHARED/field_def_nemo-oce.xml},
\path{cfgs/SHARED/field_def_nemo-pisces.xml}, \path{cfgs/SHARED/field_def_nemo-innerttrc.xml} and
\path{cfgs/SHARED/field_def_nemo-ice.xml} ) and the grid definition is done in another 3 files (\path{cfgs/SHARED/grid_def_nemo.xml}, \path{cfgs/SHARED/axis_def_nemo.xml} and \path{cfgs/SHARED/domain_def_nemo.xml})
that
are included in each context\_nemo.xml file through the following commands:
\begin{xmllines}
<!-- Fields definition -->
<field_definition src="./field_def_nemo-oce.xml" /> <!-- NEMO ocean dynamics -->
<field_definition src="./field_def_nemo-ice.xml" /> <!-- NEMO ocean sea ice -->
<field_definition src="./field_def_nemo-pisces.xml" /> <!-- NEMO ocean biogeochemical -->
<field_definition src="./field_def_nemo-innerttrc.xml"/> <!-- NEMO ocean inert passive tracer -->
<!-- Files definition -->
<file_definition src="./file_def_nemo-oce.xml"/> <!-- NEMO ocean dynamics -->
<file_definition src="./file_def_nemo-ice.xml"/> <!-- NEMO ocean sea ice -->
<file_definition src="./file_def_nemo-innerttrc.xml"/> <!-- NEMO ocean inert passive tracer -->
<axis_definition src="./axis_def_nemo.xml"/> <!-- Axis definition -->
<domain_definition src="./domain_def_nemo.xml"/> <!-- Domain definition -->
<grid_definition src="./grid_def_nemo.xml"/> <!-- Grids definition -->
\end{xmllines}
%% =================================================================================================
\subsubsection{Use of inheritance}
XML extensively uses the concept of inheritance.
XML has a tree based structure with a parent-child oriented relation: all children inherit attributes from parent,
but an attribute defined in a child replace the inherited attribute value.
Note that the special attribute ''id'' is never inherited.
\\
\\
example 1: Direct inheritance.
\begin{xmllines}
<field_definition operation="average" >
<field id="sst" /> <!-- averaged sst -->
<field id="sss" operation="instant"/> <!-- instantaneous sss -->
</field_definition>
\end{xmllines}
\noindent The field ''sst'' which is part (or a child) of the field\_definition will inherit the value ''average'' of
the attribute ''operation'' from its parent.
Note that a child can overwrite the attribute definition inherited from its parents.
In the example above, the field ''sss'' will for example output instantaneous values instead of average values.
\\
\\
example 2: Inheritance by reference: inherit (and overwrite, if needed) the attributes of a tag you are refering to:
\begin{xmllines}
<field_definition>
<field id="sst" long_name="sea surface temperature" />
<field id="sss" long_name="sea surface salinity" />
</field_definition>
<file_definition>
<file id="myfile" output_freq="1d" />
<field field_ref="sst" /> <!-- default def -->
<field field_ref="sss" long_name="my description" /> <!-- overwrite -->
</file>
</file_definition>
\end{xmllines}
%% =================================================================================================
\subsubsection{Use of groups}
Groups can be used for 2 purposes.
Firstly, the group can be used to define common attributes to be shared by the elements of
the group through inheritance.
In the following example, we define a group of field that will share a common grid ''grid\_T\_2D''.
Note that for the field ''toce'', we overwrite the grid definition inherited from the group by ''grid\_T\_3D''.
\begin{xmllines}
<field_group id="grid_T" grid_ref="grid_T_2D">
<field id="toce" long_name="temperature" unit="degC" grid_ref="grid_T_3D"/>
<field id="sst" long_name="sea surface temperature" unit="degC" />
<field id="sss" long_name="sea surface salinity" unit="psu" />
<field id="ssh" long_name="sea surface height" unit="m" />
...
\end{xmllines}
\noindent Secondly, the group can be used to replace a list of elements.
Several examples of groups of fields are proposed at the end of the XML field files (
\path{cfgs/SHARED/field_def_nemo-oce.xml},
\path{cfgs/SHARED/field_def_nemo-pisces.xml} and
\path{cfgs/SHARED/field_def_nemo-ice.xml} ) .
For example, a short list of the usual variables related to the U grid:
\begin{xmllines}
<field_group id="groupU" >
<field field_ref="uoce" />
<field field_ref="ssu" />
<field field_ref="utau" />
</field_group>
\end{xmllines}
\noindent that can be directly included in a file through the following syntax:
\begin{xmllines}
<file id="myfile_U" output_freq="1d" />
<field_group group_ref="groupU" />
<field field_ref="uocetr_eff" /> <!-- add another field -->
</file>
\end{xmllines}
%% =================================================================================================
\subsection{Detailed functionalities}
The files \path{cfgs/ORCA2_ICE_PISCES/EXPREF/*.xml} provide several examples of the use of
the new functionalities offered by the XML interface of XIOS.
%% =================================================================================================
\subsubsection{Define horizontal subdomains}
Horizontal subdomains are defined through the attributes zoom\_ibegin, zoom\_jbegin, zoom\_ni, zoom\_nj of
the tag family domain.
It must therefore be done in the domain part of the XML file.
For example, in \path{cfgs/SHARED/domain_def.xml}, we provide the following example of a definition of
a 5 by 5 box with the bottom left corner at point (10,10).
\begin{xmllines}
<domain id="myzoomT" domain_ref="grid_T">
<zoom_domain ibegin="10" jbegin="10" ni="5" nj="5" />
\end{xmllines}
The use of this subdomain is done through the redefinition of the attribute domain\_ref of the tag family field.
For example:
\begin{xmllines}
<file id="myfile_vzoom" output_freq="1d" >
<field field_ref="toce" domain_ref="myzoomT"/>
</file>
\end{xmllines}
\noindent Moorings are seen as an extreme case corresponding to a 1 by 1 subdomain.
The Equatorial section, the TAO, RAMA and PIRATA moorings are already registered in the code and
can therefore be outputted without taking care of their (i,j) position in the grid.
These predefined domains can be activated by the use of specific domain\_ref:
''EqT'', ''EqU'' or ''EqW'' for the equatorial sections and
the mooring position for TAO, RAMA and PIRATA followed by ''T'' (for example: ''8s137eT'', ''1.5s80.5eT'' ...)
\begin{xmllines}
<file id="myfile_vzoom" output_freq="1d" >
<field field_ref="toce" domain_ref="0n180wT"/>
</file>
\end{xmllines}
\noindent Note that if the domain decomposition used in XIOS cuts the subdomain in several parts and if
you use the ''multiple\_file'' type for your output files,
you will end up with several files you will need to rebuild using unprovided tools (like ncpdq and ncrcat,
\href{http://nco.sourceforge.net/nco.html#Concatenation}{see nco manual}).
We are therefore advising to use the ''one\_file'' type in this case.
%% =================================================================================================
\subsubsection{Define vertical zooms}
Vertical zooms are defined through the attributes begin and n of the zoom\_axis tag family.
It must therefore be done in the axis part of the XML file.
For example, in \path{cfgs/ORCA2_ICE_PISCES/EXPREF/axis_def_nemo.xml}, we provide the following example:
\begin{xmllines}
<axis_definition>
<axis id="deptht" long_name="Vertical T levels" unit="m" positive="down" />
<axis id="deptht300" azix_ref="deptht" >
<zoom_axis begin="1" n="19" />
</axis>
\end{xmllines}
\noindent The use of this vertical zoom is done through the definition of a new grid in \texttt{grid\_def\_nemo.xml}:
\begin{xmllines}
<grid id="grid_T_zoom_300">
<domain domain_ref="grid_T" />
<axis axis_ref="deptht300" />
</grid>
\end{xmllines}
\noindent and subsequent application in a field definition (e.g. \texttt{field\_def\_nemo-oce.xml}):
\begin{xmllines}
<field id="toce_e3t_300" field_ref="toce_e3t" unit="degree_C"
grid_ref="grid_T_zoom_300" detect_missing_value="true" />
\end{xmllines}
\noindent This variable can then be added to a file\_definition for actual output.
%% =================================================================================================
\subsubsection{Control of the output file names}
The output file names are defined by the attributs ''name'' and ''name\_suffix'' of the tag family file.
For example:
\begin{xmllines}
<file_group id="1d" output_freq="1d" name="myfile_1d" >
<file id="myfileA" name_suffix="_AAA" > <!-- will create file "myfile_1d_AAA" -->
...
</file>
<file id="myfileB" name_suffix="_BBB" > <!-- will create file "myfile_1d_BBB" -->
...
</file>
</file_group>
\end{xmllines}
However it is often very convienent to define the file name with the name of the experiment,
the output file frequency and the date of the beginning and the end of the simulation
(which are informations stored either in the namelist or in the XML file).
To do so, we added the following rule:
if the id of the tag file is ''fileN'' (where N = 1 to 999 on 1 to 3 digits) or
one of the predefined sections or moorings (see next subsection),
the following part of the name and the name\_suffix (that can be inherited) will be automatically replaced by:
\begin{table}
\begin{tabularx}{\textwidth}{|lX|}
\hline
\centering placeholder string &
automatically replaced by \\
\hline
\hline
\centering @expname@ &
the experiment name (from cn\_exp in the namelist) \\
\hline
\centering @freq@ &
output frequency (from attribute output\_freq) \\
\hline
\centering @startdate@ &
starting date of the simulation (from nn\_date0 in the restart or the namelist).
\newline
\verb?yyyymmdd? format \\
\hline
\centering @startdatefull@ &
starting date of the simulation (from nn\_date0 in the restart or the namelist).
\newline
\verb?yyyymmdd_hh:mm:ss? format \\
\hline
\centering @enddate@ &
ending date of the simulation (from nn\_date0 and nn\_itend in the namelist).
\newline
\verb?yyyymmdd? format \\
\hline
\centering @enddatefull@ &
ending date of the simulation (from nn\_date0 and nn\_itend in the namelist).
\newline
\verb?yyyymmdd_hh:mm:ss? format \\
\hline
\end{tabularx}
\end{table}
\noindent For example,
\begin{xmllines}
<file id="myfile_hzoom" name="myfile_@expname@_@startdate@_freq@freq@" output_freq="1d" >
\end{xmllines}
\noindent with the namelist:
\begin{forlines}
cn_exp = "ORCA2"
nn_date0 = 19891231
ln_rstart = .false.
\end{forlines}
\noindent will give the following file name radical: \textit{myfile\_ORCA2\_19891231\_freq1d}
%% =================================================================================================
\subsubsection{Other controls of the XML attributes from \NEMO}
The values of some attributes are defined by subroutine calls within \NEMO
(calls to iom\_set\_domain\_attr, iom\_set\_axis\_attr and iom\_set\_field\_attr in \mdl{iom}).
Any definition given in the XML file will be overwritten.
By convention, these attributes are defined to ''auto'' (for string) or ''0000'' (for integer) in the XML file
(but this is not necessary).
\\
There is the list of these attributes in the previous table.
\\
\begin{table}
\begin{tabular}{|l|c|c|}
\hline
tag ids affected by automatic definition &
name attribute &
attribute value \\
of some of their attributes &
&
\\
\hline
\hline
field\_definition &
freq\_op &
\np{rn_rdt}{rn\_rdt} \\
\hline
SBC &
freq\_op &
\np{rn_rdt}{rn\_rdt} $\times$ \np{nn_fsbc}{nn\_fsbc} \\
\hline
ptrc\_T &
freq\_op &
\np{rn_rdt}{rn\_rdt} $\times$ \np{nn_dttrc}{nn\_dttrc} \\
\hline
diad\_T &
freq\_op &
\np{rn_rdt}{rn\_rdt} $\times$ \np{nn_dttrc}{nn\_dttrc} \\
\hline
EqT, EqU, EqW &
jbegin, ni, &
according to the grid \\
&
name\_suffix &
\\
\hline
TAO, RAMA and PIRATA moorings &
zoom\_ibegin, zoom\_jbegin, &
according to the grid \\
&
name\_suffix &
\\
\hline
\end{tabular}
\end{table}
%% =================================================================================================
\subsubsection{Advanced use of XIOS functionalities}
%% =================================================================================================
\subsection{XML reference tables}
\label{subsec:DIA_IOM_xmlref}
\begin{enumerate}
\item Simple computation: directly define the computation when refering to the variable in the file definition.
\begin{xmllines}
<field field_ref="sst" name="tosK" unit="degK" > sst + 273.15 </field>
<field field_ref="taum" name="taum2" unit="N2/m4" long_name="square of wind stress module" > taum * taum </field>
<field field_ref="qt" name="stupid_check" > qt - qsr - qns </field>
\end{xmllines}
\item Simple computation: define a new variable and use it in the file definition.
in field\_definition:
\begin{xmllines}
<field id="sst2" long_name="square of sea surface temperature" unit="degC2" > sst * sst </field >
\end{xmllines}
in file\_definition:
\begin{xmllines}
<field field_ref="sst2" > sst2 </field>
\end{xmllines}
Note that in this case, the following syntaxe \xmlcode{<field field_ref="sst2" />} is not working as
sst2 won't be evaluated.
\item Change of variable precision:
\begin{xmllines}
<!-- force to keep real 8 -->
<field field_ref="sst" name="tos_r8" prec="8" />
<!-- integer 2 with add_offset and scale_factor attributes -->
<field field_ref="sss" name="sos_i2" prec="2" add_offset="20." scale_factor="1.e-3" />
\end{xmllines}
Note that, then the code is crashing, writting real4 variables forces a numerical conversion from
real8 to real4 which will create an internal error in NetCDF and will avoid the creation of the output files.
Forcing double precision outputs with prec="8" (for example in the field\_definition) will avoid this problem.
\item add user defined attributes:
\begin{xmllines}
<file_group id="1d" output_freq="1d" output_level="10" enabled=".true."> <!-- 1d files -->
<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >
<field field_ref="sst" name="tos" >
<variable id="my_attribute1" type="string" > blabla </variable>
<variable id="my_attribute2" type="integer" > 3 </variable>
<variable id="my_attribute3" type="float" > 5.0 </variable>
</field>
<variable id="my_global_attribute" type="string" > blabla_global </variable>
</file>
</file_group>
\end{xmllines}
\item use of the ``@'' function: example 1, weighted temporal average
- define a new variable in field\_definition
\begin{xmllines}
<field id="toce_e3t" long_name="temperature * e3t" unit="degC*m" grid_ref="grid_T_3D" >toce * e3t</field>
\end{xmllines}
- use it when defining your file.
\begin{xmllines}
<file_group id="5d" output_freq="5d" output_level="10" enabled=".true." > <!-- 5d files -->
<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >
<field field_ref="toce" operation="instant" freq_op="5d" > @toce_e3t / @e3t </field>
</file>
</file_group>
\end{xmllines}
The freq\_op="5d" attribute is used to define the operation frequency of the ``@'' function: here 5 day.
The temporal operation done by the ``@'' is the one defined in the field definition:
here we use the default, average.
So, in the above case, @toce\_e3t will do the 5-day mean of toce*e3t.
Operation="instant" refers to the temporal operation to be performed on the field''@toce\_e3t / @e3t'':
here the temporal average is alreday done by the ``@'' function so we just use instant to do the ratio of
the 2 mean values.
field\_ref="toce" means that attributes not explicitely defined, are inherited from toce field.
Note that in this case, freq\_op must be equal to the file output\_freq.
\item use of the ``@'' function: example 2, monthly SSH standard deviation
- define a new variable in field\_definition
\begin{xmllines}
<field id="ssh2" long_name="square of sea surface temperature" unit="degC2" > ssh * ssh </field >
\end{xmllines}
- use it when defining your file.
\begin{xmllines}
<file_group id="1m" output_freq="1m" output_level="10" enabled=".true." > <!-- 1m files -->
<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >
<field field_ref="ssh" name="sshstd" long_name="sea_surface_temperature_standard_deviation"
operation="instant" freq_op="1m" >
sqrt( @ssh2 - @ssh * @ssh )
</field>
</file>
</file_group>
\end{xmllines}
The freq\_op="1m" attribute is used to define the operation frequency of the ``@'' function: here 1 month.
The temporal operation done by the ``@'' is the one defined in the field definition:
here we use the default, average.
So, in the above case, @ssh2 will do the monthly mean of ssh*ssh.
Operation="instant" refers to the temporal operation to be performed on the field ''sqrt( @ssh2 - @ssh * @ssh )'':
here the temporal average is alreday done by the ``@'' function so we just use instant.
field\_ref="ssh" means that attributes not explicitely defined, are inherited from ssh field.
Note that in this case, freq\_op must be equal to the file output\_freq.
\item use of the ``@'' function: example 3, monthly average of SST diurnal cycle
- define 2 new variables in field\_definition
\begin{xmllines}
<field id="sstmax" field_ref="sst" long_name="max of sea surface temperature" operation="maximum" />
<field id="sstmin" field_ref="sst" long_name="min of sea surface temperature" operation="minimum" />
\end{xmllines}
- use these 2 new variables when defining your file.
\begin{xmllines}
<file_group id="1m" output_freq="1m" output_level="10" enabled=".true." > <!-- 1m files -->
<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >
<field field_ref="sst" name="sstdcy" long_name="amplitude of sst diurnal cycle" operation="average" freq_op="1d" >
@sstmax - @sstmin
</field>
</file>
</file_group>
\end{xmllines}
\end{enumerate}
The freq\_op="1d" attribute is used to define the operation frequency of the ``@'' function: here 1 day.
The temporal operation done by the ``@'' is the one defined in the field definition:
here maximum for sstmax and minimum for sstmin.
So, in the above case, @sstmax will do the daily max and @sstmin the daily min.
Operation="average" refers to the temporal operation to be performed on the field ``@sstmax - @sstmin'':
here monthly mean (of daily max - daily min of the sst).
field\_ref="sst" means that attributes not explicitely defined, are inherited from sst field.
%% =================================================================================================
\subsubsection{Tag list per family}
\begin{table}
\begin{tabularx}{\textwidth}{|l|X|X|l|X|}
\hline
tag name &
description &
accepted attribute &
child of &
parent of \\
\hline
\hline
simulation &
this tag is the root tag which encapsulates all the content of the XML file &
none &
none &
context \\
\hline
context &
encapsulates parts of the XML file dedicated to different codes or different parts of a code &
id (''xios'', ''nemo'' or ''n\_nemo'' for the nth AGRIF zoom), src, time\_origin &
simulation &
all root tags: ... \_definition \\
\hline
\end{tabularx}
\caption{XIOS: context tags}
\end{table}
\begin{table}
\begin{tabularx}{\textwidth}{|l|X|X|X|l|}
\hline
tag name &
description &
accepted attribute &
child of &
parent of \\
\hline
\hline
field\_definition &
encapsulates the definition of all the fields that can potentially be outputted &
axis\_ref, default\_value, domain\_ref, enabled, grid\_ref, level, operation, prec, src &
context &
field or field\_group \\
\hline
field\_group &
encapsulates a group of fields &
axis\_ref, default\_value, domain\_ref, enabled, group\_ref, grid\_ref,
id, level, operation, prec, src &
field\_definition, field\_group, file &
field or field\_group \\
\hline
field &
define a specific field &
axis\_ref, default\_value, domain\_ref, enabled, field\_ref, grid\_ref,
id, level, long\_name, name, operation, prec, standard\_name, unit &
field\_definition, field\_group, file &
none \\
\hline
\end{tabularx}
\caption{XIOS: field tags ("\texttt{field\_*}")}
\end{table}
\begin{table}
\begin{tabularx}{\textwidth}{|l|X|X|X|l|}
\hline
tag name &
description &
accepted attribute &
child of &
parent of \\
\hline
\hline
file\_definition &
encapsulates the definition of all the files that will be outputted &
enabled, min\_digits, name, name\_suffix, output\_level,
split\_freq\_format, split\_freq, sync\_freq, type, src &
context &
file or file\_group \\
\hline
file\_group &
encapsulates a group of files that will be outputted &
enabled, description, id, min\_digits, name, name\_suffix, output\_freq, output\_level,
split\_freq\_format, split\_freq, sync\_freq, type, src &
file\_definition, file\_group &
file or file\_group \\
\hline
file &
define the contents of a file to be outputted &
enabled, description, id, min\_digits, name, name\_suffix, output\_freq, output\_level,
split\_freq\_format, split\_freq, sync\_freq, type, src &
file\_definition, file\_group &
field \\
\hline
\end{tabularx}
\caption{XIOS: file tags ("\texttt{file\_*}")}
\end{table}
\begin{table}
\begin{tabularx}{\textwidth}{|l|X|X|X|X|}
\hline
tag name &
description &
accepted attribute &
child of &
parent of \\
\hline
\hline
axis\_definition &
define all the vertical axis potentially used by the variables &
src &
context &
axis\_group, axis \\
\hline
axis\_group &
encapsulates a group of vertical axis &
id, lon\_name, positive, src, standard\_name, unit, zoom\_begin, zoom\_end, zoom\_size &
axis\_definition, axis\_group &
axis\_group, axis \\
\hline
axis &
define a vertical axis &
id, lon\_name, positive, src, standard\_name, unit, zoom\_begin, zoom\_end, zoom\_size &
axis\_definition, axis\_group &
none \\
\hline
\end{tabularx}
\caption{XIOS: axis tags ("\texttt{axis\_*}")}
\end{table}
\begin{table}
\begin{tabularx}{\textwidth}{|l|X|X|X|X|}
\hline
tag name &
description &
accepted attribute &
child of &
parent of \\
\hline
\hline
domain\_\-definition &
define all the horizontal domains potentially used by the variables &
src &
context &
domain\_\-group, domain \\
\hline
domain\_group &
encapsulates a group of horizontal domains &
id, lon\_name, src, zoom\_ibegin, zoom\_jbegin, zoom\_ni, zoom\_nj &
domain\_\-definition, domain\_group &
domain\_\-group, domain \\
\hline
domain &
define an horizontal domain &
id, lon\_name, src, zoom\_ibegin, zoom\_jbegin, zoom\_ni, zoom\_nj &
domain\_\-definition, domain\_group &
none \\
\hline
\end{tabularx}
\caption{XIOS: domain tags ("\texttt{domain\_*)}"}
\end{table}
\begin{table}
\begin{tabularx}{\textwidth}{|l|X|X|X|X|}
\hline
tag name &
description &
accepted attribute &
child of &
parent of \\
\hline
\hline
grid\_definition &
define all the grid (association of a domain and/or an axis) potentially used by the variables &
src &
context &
grid\_group, grid \\
\hline
grid\_group &
encapsulates a group of grids &
id, domain\_ref,axis\_ref &
grid\_definition, grid\_group &
grid\_group, grid \\
\hline
grid &
define a grid &
id, domain\_ref,axis\_ref &
grid\_definition, grid\_group &
none \\
\hline
\end{tabularx}
\caption{XIOS: grid tags ("\texttt{grid\_*}")}
\end{table}
%% =================================================================================================
\subsubsection{Attributes list per family}
\begin{table}
\begin{tabularx}{\textwidth}{|l|X|l|l|}
\hline
attribute name &
description &
example &
accepted by \\
\hline
\hline
axis\_ref &
refers to the id of a vertical axis &
axis\_ref="deptht" &
field, grid families \\
\hline
domain\_ref &
refers to the id of a domain &
domain\_ref="grid\_T" &
field or grid families \\
\hline
field\_ref &
id of the field we want to add in a file &
field\_ref="toce" &
field \\
\hline
grid\_ref &
refers to the id of a grid &
grid\_ref="grid\_T\_2D" &
field family \\
\hline
group\_ref &
refer to a group of variables &
group\_ref="mooring" &
field\_group \\
\hline
\end{tabularx}
\caption{XIOS: reference attributes ("\texttt{*\_ref}")}
\end{table}
\begin{table}
\begin{tabularx}{\textwidth}{|l|X|l|l|}
\hline
attribute name &
description &
example &
accepted by \\
\hline
\hline
zoom\_ibegin &
starting point along x direction of the zoom.
Automatically defined for TAO/RAMA/PIRATA moorings &
zoom\_ibegin="1" &
domain family \\
\hline
zoom\_jbegin &
starting point along y direction of the zoom.
Automatically defined for TAO/RAMA/PIRATA moorings &
zoom\_jbegin="1" &
domain family \\
\hline
zoom\_ni &
zoom extent along x direction &
zoom\_ni="1" &
domain family \\
\hline
zoom\_nj &
zoom extent along y direction &
zoom\_nj="1" &
domain family \\
\hline
\end{tabularx}
\caption{XIOS: domain attributes ("\texttt{zoom\_*}")}
\end{table}
\begin{table}
\begin{tabularx}{\textwidth}{|l|X|l|l|}
\hline
attribute name &
description &
example &
accepted by \\
\hline
\hline
min\_digits &
specify the minimum of digits used in the core number in the name of the NetCDF file &
min\_digits="4" &
file family \\
\hline
name\_suffix &
suffix to be inserted after the name and before the cpu number and the ''.nc'' termination of a file &
name\_suffix="\_myzoom" &
file family \\
\hline
output\_level &
output priority of variables in a file: 0 (high) to 10 (low).
All variables listed in the file with a level smaller or equal to output\_level will be output.
Other variables won't be output even if they are listed in the file. &
output\_level="10" &
file family \\
\hline
split\_freq &
frequency at which to temporally split output files.
Units can be ts (timestep), y, mo, d, h, mi, s.
Useful for long runs to prevent over-sized output files. &
split\_freq="1mo" &
file family \\
\hline
split\_freq\-\_format &
date format used in the name of temporally split output files.
Can be specified using the following syntaxes: \%y, \%mo, \%d, \%h \%mi and \%s &
split\_freq\_format= "\%y\%mo\%d" &
file family \\
\hline
sync\_freq &
NetCDF file synchronization frequency (update of the time\_counter).
Units can be ts (timestep), y, mo, d, h, mi, s. &
sync\_freq="10d" &
file family \\
\hline
type (1) &
specify if the output files are to be split spatially (multiple\_file) or not (one\_file) &
type="multiple\_file" &
file familly \\
\hline
\end{tabularx}
\caption{XIOS: file attributes}
\end{table}
\begin{table}
\begin{tabularx}{\textwidth}{|l|X|l|l|}
\hline
attribute name &
description &
example &
accepted by \\
\hline
\hline
default\_value &
missing\_value definition &
default\_value="1.e20" &
field family \\
\hline
level &
output priority of a field: 0 (high) to 10 (low) &
level="1" &
field family \\
\hline
operation &
type of temporal operation: average, accumulate, instantaneous, min, max and once &
operation="average" &
field family \\
\hline
output\_freq &
operation frequency. units can be ts (timestep), y, mo, d, h, mi, s. &
output\_freq="1d12h" &
field family \\
\hline
prec &
output precision: real 4 or real 8 &
prec="4" &
field family \\
\hline
long\_name &
define the long\_name attribute in the NetCDF file &
long\_name="Vertical T levels" &
field \\
\hline
standard\_name &
define the standard\_name attribute in the NetCDF file &
standard\_name= "Eastward\_Sea\_Ice\_Transport" &
field \\
\hline
\end{tabularx}
\caption{XIOS: field attributes}
\end{table}
\begin{table}
\begin{tabularx}{\textwidth}{|l|X|X|X|}
\hline
attribute name &
description &
example &
accepted by \\
\hline
\hline
enabled &
switch on/off the output of a field or a file &
enabled=".true." &
field, file families \\
\hline
description &
just for information, not used &
description="ocean T grid variables" &
all tags \\
\hline
id &
allow to identify a tag &
id="nemo" &
accepted by all tags except simulation \\
\hline
name &
name of a variable or a file. If the name of a file is undefined, its id is used as a name &
name="tos" &
field or file families \\
\hline
positive &
convention used for the orientation of vertival axis (positive downward in \NEMO). &
positive="down" &
axis family \\
\hline
src &
allow to include a file &
src="./field\_def.xml" &
accepted by all tags except simulation \\
\hline
time\_origin &
specify the origin of the time counter &
time\_origin="1900-01-01 00:00:00" &
context \\
\hline
type (2) &
define the type of a variable tag &
type="boolean" &
variable \\
\hline
unit &
unit of a variable or the vertical axis &
unit="m" &
field and axis families \\
\hline
\end{tabularx}
\caption{XIOS: miscellaneous attributes}
\end{table}
%% =================================================================================================
\subsection{CF metadata standard compliance}
Output from the XIOS IO server is compliant with
\href{http://cfconventions.org/Data/cf-conventions/cf-conventions-1.5/build/cf-conventions.html}{version 1.5} of
the CF metadata standard.
Therefore while a user may wish to add their own metadata to the output files (as demonstrated in example 4 of
section \autoref{subsec:DIA_IOM_xmlref}) the metadata should, for the most part, comply with the CF-1.5 standard.
Some metadata that may significantly increase the file size (horizontal cell areas and vertices) are controlled by
the namelist parameter \np{ln_cfmeta}{ln\_cfmeta} in the \nam{run}{run} namelist.
This must be set to true if these metadata are to be included in the output files.
%% =================================================================================================
\subsection{Enabling NetCDF4 compression with XIOS}
XIOS supports the use of gzip compression when compiled with NetCDF4 libraries but is subject to the
same restrictions as the underlying HDF5 component. That is, compression is not availiable when the
IO servers are writing in parallel to shared output files. Thus, compression can only be applied in
multiple\_file mode only or with two-levels of servers with multiple servers feeding a single server.
The XML tag to activate compression is:
\begin{xmllines}
compression_level="n"
\end{xmllines}
where n is an integer between 0 and 9. A value of 2 is normally recommended as a suitable trade-off between
algorithm performance and compression levels. This tag can be applied either at file level or to indivdual
fields, e.g.:
\begin{xmllines}
<file_definition>
<file name="output" output_freq="1ts" compression_level="2">
<field id="field_A" grid_ref="grid_A" operation="average" compression_level=" 4" />
<field id="field_B" grid_ref="grid_A" operation="average" compression_level=" 0" />
<field id="field_C" grid_ref="grid_A" operation="average" />
</file>
</file_definition>
\end{xmllines}
It is unclear how XIOS decides on suitable chunking parameters before applying compression so it may
be necessary to rechunk data whilst combining multiple\_file output. \forcode{REBUILD_NEMO} is capable
of doing this.
\section[NetCDF4 support]{NetCDF4 support}
\label{sec:DIA_nc4}
Since version 5.0, only NetCDF4 (version 4.1 onwards, recommended) built with HDF5 (version 1.8.4
onwards, recommended) is supported. This allows chunking and (loss-less) compression.
These options are built on the standard NetCDF output and allow the user control
over the size of the chunks via namelist settings. Chunking and compression can lead to
significant reductions in file sizes for a small runtime overhead. For a fuller
discussion on chunking and other performance issues the reader is referred to the NetCDF4
documentation found
\href{https://www.unidata.ucar.edu/software/netcdf/docs/netcdf_perf_chunking.html}{here}.
This section only applies to the NetCDF output written directly by \NEMO; i.e. restart
files and mean files produced via the old IOIPSL interface when \key{xios} is not being
used. As such it has limited use since chunking and compression can be applied at the
rebuilding phase of such output.
Datasets created with chunking and compression are not backwards
compatible with NetCDF3 "classic" format but most analysis codes can be relinked simply
with the new libraries and will then read both NetCDF3 and NetCDF4 files. \NEMO\
executables linked with NetCDF4 libraries can be made to produce NetCDF3 files by setting
the \np{ln_nc4zip}{ln\_nc4zip} logical to false in the \nam{nc4}{nc4} namelist:
\begin{listing}
\nlst{namnc4}
\caption{\forcode{&namnc4}}
\label{lst:namnc4}
\end{listing}
Chunking and compression are applied only to 4D fields and there is no advantage in
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
chunking across more than one time dimension since previously written chunks would have to
be read back and decompressed before being added to. Therefore, user control over chunk
sizes is provided only for the three space dimensions. The user sets an approximate
number of chunks along each spatial axis. The actual size of the chunks will depend on
global domain size for mono-processors or, more likely, the local processor domain size
for distributed processing. The derived values are subject to practical minimum values
(to avoid wastefully small chunk sizes) and cannot be greater than the domain size in any
dimension. The algorithm used is:
\begin{forlines}
ichunksz(1) = MIN(idomain_size, MAX((idomain_size-1) / nn_nchunks_i + 1 ,16 ))
ichunksz(2) = MIN(jdomain_size, MAX((jdomain_size-1) / nn_nchunks_j + 1 ,16 ))
ichunksz(3) = MIN(kdomain_size, MAX((kdomain_size-1) / nn_nchunks_k + 1 , 1 ))
ichunksz(4) = 1
\end{forlines}
\noindent As an example, setting:
\begin{forlines}
nn_nchunks_i=4, nn_nchunks_j=4 and nn_nchunks_k=31
\end{forlines}
\noindent for a standard ORCA2\_LIM configuration gives chunksizes of {\small\texttt 46x38x1} respectively in
the mono-processor case (\ie\ global domain of {\small\texttt 182x149x31}).
An illustration of the potential space savings that NetCDF4 chunking and compression provides is given in
table \autoref{tab:DIA_NC4} which compares the results of two short runs of the ORCA2\_LIM reference configuration with
a 4x2 mpi partitioning.
Note the variation in the compression ratio achieved which reflects chiefly the dry to wet volume ratio of
each processing region.
\begin{table}
\centering
\begin{tabular}{lrrr}
Filename & NetCDF3 & NetCDF4 & Reduction \\
& filesize & filesize & \% \\
& (KB) & (KB) & \\
ORCA2\_restart\_0000.nc & 16420 & 8860 & 47\% \\
ORCA2\_restart\_0001.nc & 16064 & 11456 & 29\% \\
ORCA2\_restart\_0002.nc & 16064 & 9744 & 40\% \\
ORCA2\_restart\_0003.nc & 16420 & 9404 & 43\% \\
ORCA2\_restart\_0004.nc & 16200 & 5844 & 64\% \\
ORCA2\_restart\_0005.nc & 15848 & 8172 & 49\% \\
ORCA2\_restart\_0006.nc & 15848 & 8012 & 50\% \\
ORCA2\_restart\_0007.nc & 16200 & 5148 & 69\% \\
ORCA2\_2d\_grid\_T\_0000.nc & 2200 & 1504 & 32\% \\
ORCA2\_2d\_grid\_T\_0001.nc & 2200 & 1748 & 21\% \\
ORCA2\_2d\_grid\_T\_0002.nc & 2200 & 1592 & 28\% \\
ORCA2\_2d\_grid\_T\_0003.nc & 2200 & 1540 & 30\% \\
ORCA2\_2d\_grid\_T\_0004.nc & 2200 & 1204 & 46\% \\
ORCA2\_2d\_grid\_T\_0005.nc & 2200 & 1444 & 35\% \\
ORCA2\_2d\_grid\_T\_0006.nc & 2200 & 1428 & 36\% \\
ORCA2\_2d\_grid\_T\_0007.nc & 2200 & 1148 & 48\% \\
... & ... & ... & ... \\
ORCA2\_2d\_grid\_W\_0000.nc & 4416 & 2240 & 50\% \\
ORCA2\_2d\_grid\_W\_0001.nc & 4416 & 2924 & 34\% \\
ORCA2\_2d\_grid\_W\_0002.nc & 4416 & 2512 & 44\% \\
ORCA2\_2d\_grid\_W\_0003.nc & 4416 & 2368 & 47\% \\
ORCA2\_2d\_grid\_W\_0004.nc & 4416 & 1432 & 68\% \\
ORCA2\_2d\_grid\_W\_0005.nc & 4416 & 1972 & 56\% \\
ORCA2\_2d\_grid\_W\_0006.nc & 4416 & 2028 & 55\% \\
ORCA2\_2d\_grid\_W\_0007.nc & 4416 & 1368 & 70\% \\
\end{tabular}
\caption{Filesize comparison between NetCDF3 and NetCDF4 with chunking and compression}
\label{tab:DIA_NC4}
\end{table}
%% =================================================================================================
\section[Tracer/Dynamics trends (\forcode{&namtrd})]{Tracer/Dynamics trends (\protect\nam{trd}{trd})}
\label{sec:DIA_trd}
\begin{listing}
\nlst{namtrd}
\caption{\forcode{&namtrd}}
\label{lst:namtrd}
\end{listing}
Each trend of the dynamics and/or temperature and salinity time evolution equations can be send to
\mdl{trddyn} and/or \mdl{trdtra} modules (see TRD directory) just after their computation
(\ie\ at the end of each \textit{dyn....F90} and/or \textit{tra....F90} routines).
This capability is controlled by options offered in \nam{trd}{trd} namelist.
Note that the output are done with XIOS, and therefore the \key{xios} is required.
What is done depends on the \nam{trd}{trd} logical set to \forcode{.true.}:
\begin{description}
\item [{\np{ln_glo_trd}{ln\_glo\_trd}}]: at each \np{nn_trd}{nn\_trd} time-step a check of the basin averaged properties of
the momentum and tracer equations is performed.
This also includes a check of $T^2$, $S^2$, $\tfrac{1}{2} (u^2+v2)$,
and potential energy time evolution equations properties;
\item [{\np{ln_dyn_trd}{ln\_dyn\_trd}}]: each 3D trend of the evolution of the two momentum components is output;
\item [{\np{ln_dyn_mxl}{ln\_dyn\_mxl}}]: each 3D trend of the evolution of the two momentum components averaged over the mixed layer is output;
\item [{\np{ln_vor_trd}{ln\_vor\_trd}}]: a vertical summation of the moment tendencies is performed,
then the curl is computed to obtain the barotropic vorticity tendencies which are output;
\item [{\np{ln_KE_trd}{ln\_KE\_trd}}] : each 3D trend of the Kinetic Energy equation is output;
\item [{\np{ln_tra_trd}{ln\_tra\_trd}}]: each 3D trend of the evolution of temperature and salinity is output;
\item [{\np{ln_tra_mxl}{ln\_tra\_mxl}}]: each 2D trend of the evolution of temperature and salinity averaged over the mixed layer is output;
\end{description}
Note that the mixed layer tendency diagnostic can also be used on biogeochemical models via
the \key{trdtrc} and \key{trdmxl\_trc} CPP keys.
\textbf{Note that} in the current version, many changes has been introduced but not fully tested.
In particular, options associated with \np{ln_dyn_mxl}{ln\_dyn\_mxl}, \np{ln_vor_trd}{ln\_vor\_trd}, and \np{ln_tra_mxl}{ln\_tra\_mxl} are not working,
and none of the options have been tested with variable volume (\ie\ \np[=.true.]{ln_linssh}{ln\_linssh}).
%% =================================================================================================
\section[FLO: On-Line Floats trajectories]{FLO: On-Line Floats trajectories}
\label{sec:DIA_FLO}
\begin{listing}
\nlst{namflo}
\caption{\forcode{&namflo}}
\label{lst:namflo}
\end{listing}
The on-line computation of floats advected either by the three dimensional velocity field or constraint to
remain at a given depth ($w = 0$ in the computation) have been introduced in the system during the CLIPPER project.
Options are defined by \nam{flo}{flo} namelist variables and the interface is activated by setting \np[=.true.]{ln_float}{ln\_float}.
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
The algorithm used is based either on the work of \cite{blanke.raynaud_JPO97} (default option),
or on a $4^th$ Runge-Hutta algorithm (\np[=.true.]{ln_flork4}{ln\_flork4}).
Note that the \cite{blanke.raynaud_JPO97} algorithm have the advantage of providing trajectories which
are consistent with the numeric of the code, so that the trajectories never intercept the bathymetry.
%% =================================================================================================
\subsubsection{Input data: initial coordinates}
Initial coordinates can be given with Ariane Tools convention
(IJK coordinates, (\np[=.true.]{ln_ariane}{ln\_ariane}) ) or with longitude and latitude.
In case of Ariane convention, input filename is \textit{init\_float\_ariane}.
Its format is: \\
{ \texttt{I J K nisobfl itrash}}
\noindent with:
- I,J,K : indexes of initial position
- nisobfl: 0 for an isobar float, 1 for a float following the w velocity
- itrash : set to zero; it is a dummy variable to respect Ariane Tools convention
\noindent Example: \\
\noindent
{
\texttt{
100.00000 90.00000 -1.50000 1.00000 0.00000 \\
102.00000 90.00000 -1.50000 1.00000 0.00000 \\
104.00000 90.00000 -1.50000 1.00000 0.00000 \\
106.00000 90.00000 -1.50000 1.00000 0.00000 \\
108.00000 90.00000 -1.50000 1.00000 0.00000}
} \\
In the other case (longitude and latitude), input filename is init\_float.
Its format is: \\
{ \texttt{Long Lat depth nisobfl ngrpfl itrash}}
\noindent with:
- Long, Lat, depth : Longitude, latitude, depth
- nisobfl: 0 for an isobar float, 1 for a float following the w velocity
- ngrpfl : number to identify searcher group
- itrash :set to 1; it is a dummy variable.
\noindent Example: \\
\noindent
{
\texttt{
20.0 0.0 0.0 0 1 1 \\
-21.0 0.0 0.0 0 1 1 \\
-22.0 0.0 0.0 0 1 1 \\
-23.0 0.0 0.0 0 1 1 \\
-24.0 0.0 0.0 0 1 1 }
} \\
\np{jpnfl}{jpnfl} is the total number of floats during the run.
When initial positions are read in a restart file (\np[=.true.]{ln_rstflo}{ln\_rstflo} ),
\np{jpnflnewflo}{jpnflnewflo} can be added in the initialization file.
%% =================================================================================================
\subsubsection{Output data}
\np{nn_writefl}{nn\_writefl} is the frequency of writing in float output file and \np{nn_stockfl}{nn\_stockfl} is the frequency of
creation of the float restart file.
Output data can be written in ascii files (\np[=.true.]{ln_flo_ascii}{ln\_flo\_ascii}).
In that case, output filename is trajec\_float.
Another possiblity of writing format is Netcdf (\np[=.false.]{ln_flo_ascii}{ln\_flo\_ascii}) with
\key{xios} and outputs selected in iodef.xml.
Here it is an example of specification to put in files description section:
\begin{xmllines}
<group id="1d_grid_T" name="auto" description="ocean T grid variables" >
<file id="floats" description="floats variables">
<field ref="traj_lon" name="floats_longitude" freq_op="86400" />
<field ref="traj_lat" name="floats_latitude" freq_op="86400" />
<field ref="traj_dep" name="floats_depth" freq_op="86400" />
<field ref="traj_temp" name="floats_temperature" freq_op="86400" />
<field ref="traj_salt" name="floats_salinity" freq_op="86400" />
<field ref="traj_dens" name="floats_density" freq_op="86400" />
<field ref="traj_group" name="floats_group" freq_op="86400" />
</file>
</group>
\end{xmllines}
%% =================================================================================================
\section[Transports across sections]{Transports across sections}
\label{sec:DIA_diag_dct}
\begin{listing}
\nlst{nam_diadct}
\caption{\forcode{&nam_diadct}}
\label{lst:nam_diadct}
\end{listing}
A module is available to compute the transport of volume, heat and salt through sections.
This diagnostic is actived with \np[=.true.]{ln_diadct}{ln\_diadct}.
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
Each section is defined by the coordinates of its 2 extremities.
The pathways between them are contructed using tools which can be found in \texttt{tools/SECTIONS\_DIADCT}
and are written in a binary file \texttt{section\_ijglobal.diadct} which is later read in by
\NEMO\ to compute on-line transports.
The on-line transports module creates three output ascii files:
- \texttt{volume\_transport} for volume transports (unit: $10^{6} m^{3} s^{-1}$)
- \texttt{heat\_transport} for heat transports (unit: $10^{15} W$)
- \texttt{salt\_transport} for salt transports (unit: $10^{9}Kg s^{-1}$) \\
Namelist variables in \nam{_diadct}{\_diadct} control how frequently the flows are summed and the time scales over which
they are averaged, as well as the level of output for debugging:
\np{nn_dct}{nn\_dct} : frequency of instantaneous transports computing
\np{nn_dctwri}{nn\_dctwri}: frequency of writing ( mean of instantaneous transports )
\np{nn_debug}{nn\_debug} : debugging of the section
%% =================================================================================================
\subsubsection{Creating a binary file containing the pathway of each section}
In \texttt{tools/SECTIONS\_DIADCT/run},
the file \textit{{list\_sections.ascii\_global}} contains a list of all the sections that are to be computed
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
(this list of sections is based on MERSEA project metrics).
Another file is available for the GYRE configuration (\texttt{ {list\_sections.ascii\_GYRE}}).
Each section is defined by: \\
\noindent { \texttt{long1 lat1 long2 lat2 nclass (ok/no)strpond (no)ice section\_name}} \\
with:
- \texttt{long1 lat1}, coordinates of the first extremity of the section;
- \texttt{long2 lat2}, coordinates of the second extremity of the section;
- \texttt{nclass} the number of bounds of your classes (\eg\ bounds for 2 classes);
- \texttt{okstrpond} to compute heat and salt transports, \texttt{nostrpond} if no;
- \texttt{ice} to compute surface and volume ice transports, \texttt{noice} if no. \\
\noindent The results of the computing of transports, and the directions of positive and
negative flow do not depend on the order of the 2 extremities in this file. \\
\noindent If nclass $\neq$ 0, the next lines contain the class type and the nclass bounds: \\
{
\texttt{
long1 lat1 long2 lat2 nclass (ok/no)strpond (no)ice section\_name \\
classtype \\
zbound1 \\
zbound2 \\
. \\
. \\
nclass-1 \\
nclass}
}
\noindent where \texttt{classtype} can be:
- \texttt{zsal} for salinity classes
- \texttt{ztem} for temperature classes
- \texttt{zlay} for depth classes
- \texttt{zsigi} for insitu density classes
- \texttt{zsigp} for potential density classes \\
The script \texttt{job.ksh} computes the pathway for each section and creates a binary file
\texttt{section\_ijglobal.diadct} which is read by \NEMO. \\
It is possible to use this tools for new configuations: \texttt{job.ksh} has to be updated with
the coordinates file name and path. \\
Examples of two sections, the ACC\_Drake\_Passage with no classes,
and the ATL\_Cuba\_Florida with 4 temperature clases (5 class bounds), are shown: \\
\noindent
{
\texttt{
-68. -54.5 -60. -64.7 00 okstrpond noice ACC\_Drake\_Passage \\
-80.5 22.5 -80.5 25.5 05 nostrpond noice ATL\_Cuba\_Florida \\
ztem \\
-2.0 \\
4.5 \\
7.0 \\
12.0 \\
40.0}
}
%% =================================================================================================
\subsubsection{To read the output files}
The output format is: \\
{
\texttt{
date, time-step number, section number, \\
section name, section slope coefficient, class number, \\
class name, class bound 1 , classe bound2, \\
transport\_direction1, transport\_direction2, \\
transport\_total}
} \\
For sections with classes, the first \texttt{nclass-1} lines correspond to the transport for each class and
the last line corresponds to the total transport summed over all classes.
For sections with no classes, class number \texttt{1} corresponds to \texttt{total class} and
this class is called \texttt{N}, meaning \texttt{none}.
- \texttt{transport\_direction1} is the positive part of the transport ($\geq$ 0).
- \texttt{transport\_direction2} is the negative part of the transport ($\leq$ 0). \\
\noindent The \texttt{section slope coefficient} gives information about the significance of transports signs and
direction: \\
\begin{table}
\begin{tabular}{|l|l|l|l|l|}
\hline
section slope coefficient & section type & direction 1 & direction 2 & total transport \\
\hline
0. & horizontal & northward & southward & postive: northward \\
\hline
1000. & vertical & eastward & westward & postive: eastward \\
\hline
\texttt{$\neq$ 0, $\neq$ 1000.} & diagonal & eastward & westward & postive: eastward \\
\hline
\end{tabular}
\end{table}
%% =================================================================================================
\section{Diagnosing the steric effect in sea surface height}
\label{sec:DIA_steric}
Changes in steric sea level are caused when changes in the density of the water column imply an expansion or
contraction of the column.
It is essentially produced through surface heating/cooling and to a lesser extent through non-linear effects of
the equation of state (cabbeling, thermobaricity...).
Non-Boussinesq models contain all ocean effects within the ocean acting on the sea level.
In particular, they include the steric effect.
In contrast, Boussinesq models, such as \NEMO, conserve volume, rather than mass,
and so do not properly represent expansion or contraction.
The steric effect is therefore not explicitely represented.
This approximation does not represent a serious error with respect to the flow field calculated by the model
\citep{greatbatch_JGR94}, but extra attention is required when investigating sea level,
as steric changes are an important contribution to local changes in sea level on seasonal and climatic time scales.
This is especially true for investigation into sea level rise due to global warming.
Fortunately, the steric contribution to the sea level consists of a spatially uniform component that
can be diagnosed by considering the mass budget of the world ocean \citep{greatbatch_JGR94}.
In order to better understand how global mean sea level evolves and thus how the steric sea level can be diagnosed,
we compare, in the following, the non-Boussinesq and Boussinesq cases.
Let denote
$\mathcal{M}$ the total mass of liquid seawater ($\mathcal{M} = \int_D \rho dv$),
$\mathcal{V}$ the total volume of seawater ($\mathcal{V} = \int_D dv$),
$\mathcal{A}$ the total surface of the ocean ($\mathcal{A} = \int_S ds$),
$\bar{\rho}$ the global mean seawater (\textit{in situ}) density
($\bar{\rho} = 1/\mathcal{V} \int_D \rho \,dv$), and
$\bar{\eta}$ the global mean sea level
($\bar{\eta} = 1/\mathcal{A} \int_S \eta \,ds$).
A non-Boussinesq fluid conserves mass. It satisfies the following relations:
\begin{equation}
\begin{split}
\mathcal{M} &= \mathcal{V} \;\bar{\rho} \\
\mathcal{V} &= \mathcal{A} \;\bar{\eta}
\end{split}
\label{eq:DIA_MV_nBq}
\end{equation}
Temporal changes in total mass is obtained from the density conservation equation:
\begin{equation}
\frac{1}{e_3} \partial_t ( e_3\,\rho) + \nabla( \rho \, \textbf{U} )
= \left. \frac{\textit{emp}}{e_3}\right|_\textit{surface}
\label{eq:DIA_Co_nBq}
\end{equation}
where $\rho$ is the \textit{in situ} density, and \textit{emp} the surface mass exchanges with the other media of
the Earth system (atmosphere, sea-ice, land).
Its global averaged leads to the total mass change
\begin{equation}
\partial_t \mathcal{M} = \mathcal{A} \;\overline{\textit{emp}}
\label{eq:DIA_Mass_nBq}
\end{equation}
where $\overline{\textit{emp}} = \int_S \textit{emp}\,ds$ is the net mass flux through the ocean surface.
Bringing \autoref{eq:DIA_Mass_nBq} and the time derivative of \autoref{eq:DIA_MV_nBq} together leads to
the evolution equation of the mean sea level
\begin{equation}
\partial_t \bar{\eta} = \frac{\overline{\textit{emp}}}{ \bar{\rho}}
- \frac{\mathcal{V}}{\mathcal{A}} \;\frac{\partial_t \bar{\rho} }{\bar{\rho}}
\label{eq:DIA_ssh_nBq}
\end{equation}
The first term in equation \autoref{eq:DIA_ssh_nBq} alters sea level by adding or subtracting mass from the ocean.
The second term arises from temporal changes in the global mean density; \ie\ from steric effects.
In a Boussinesq fluid, $\rho$ is replaced by $\rho_o$ in all the equation except when $\rho$ appears multiplied by
the gravity (\ie\ in the hydrostatic balance of the primitive Equations).
In particular, the mass conservation equation, \autoref{eq:DIA_Co_nBq}, degenerates into the incompressibility equation:
\[
\frac{1}{e_3} \partial_t ( e_3 ) + \nabla( \textbf{U} ) = \left. \frac{\textit{emp}}{\rho_o \,e_3}\right|_ \textit{surface}
% \label{eq:DIA_Co_Bq}
\]
and the global average of this equation now gives the temporal change of the total volume,
\[
\partial_t \mathcal{V} = \mathcal{A} \;\frac{\overline{\textit{emp}}}{\rho_o}
% \label{eq:DIA_V_Bq}
\]
Only the volume is conserved, not mass, or, more precisely, the mass which is conserved is the Boussinesq mass,
$\mathcal{M}_o = \rho_o \mathcal{V}$.
The total volume (or equivalently the global mean sea level) is altered only by net volume fluxes across
the ocean surface, not by changes in mean mass of the ocean: the steric effect is missing in a Boussinesq fluid.
Nevertheless, following \citep{greatbatch_JGR94}, the steric effect on the volume can be diagnosed by
considering the mass budget of the ocean.
The apparent changes in $\mathcal{M}$, mass of the ocean, which are not induced by surface mass flux
must be compensated by a spatially uniform change in the mean sea level due to expansion/contraction of the ocean
\citep{greatbatch_JGR94}.
In others words, the Boussinesq mass, $\mathcal{M}_o$, can be related to $\mathcal{M}$,
the total mass of the ocean seen by the Boussinesq model, via the steric contribution to the sea level,
$\eta_s$, a spatially uniform variable, as follows:
\begin{equation}
\mathcal{M}_o = \mathcal{M} + \rho_o \,\eta_s \,\mathcal{A}
\label{eq:DIA_M_Bq}
\end{equation}
Any change in $\mathcal{M}$ which cannot be explained by the net mass flux through the ocean surface
is converted into a mean change in sea level.
Introducing the total density anomaly, $\mathcal{D}= \int_D d_a \,dv$,
where $d_a = (\rho -\rho_o ) / \rho_o$ is the density anomaly used in \NEMO\ (cf. \autoref{subsec:TRA_eos})
in \autoref{eq:DIA_M_Bq} leads to a very simple form for the steric height:
\begin{equation}
\eta_s = - \frac{1}{\mathcal{A}} \mathcal{D}
\label{eq:DIA_steric_Bq}
\end{equation}
The above formulation of the steric height of a Boussinesq ocean requires four remarks.
First, one can be tempted to define $\rho_o$ as the initial value of $\mathcal{M}/\mathcal{V}$,
\ie\ set $\mathcal{D}_{t=0}=0$, so that the initial steric height is zero.
We do not recommend that.
Indeed, in this case $\rho_o$ depends on the initial state of the ocean.
Since $\rho_o$ has a direct effect on the dynamics of the ocean
(it appears in the pressure gradient term of the momentum equation)
it is definitively not a good idea when inter-comparing experiments.
We better recommend to fixe once for all $\rho_o$ to $1035\;Kg\,m^{-3}$.
This value is a sensible choice for the reference density used in a Boussinesq ocean climate model since,
with the exception of only a small percentage of the ocean, density in the World Ocean varies by no more than
2$\%$ from this value (\cite{gill_bk82}, page 47).
Second, we have assumed here that the total ocean surface, $\mathcal{A}$,
does not change when the sea level is changing as it is the case in all global ocean GCMs
(wetting and drying of grid point is not allowed).
Third, the discretisation of \autoref{eq:DIA_steric_Bq} depends on the type of free surface which is considered.
In the non linear free surface case, \ie\ \np[=.true.]{ln_linssh}{ln\_linssh}, it is given by
\[
\eta_s = - \frac{ \sum_{i,\,j,\,k} d_a\; e_{1t} e_{2t} e_{3t} }{ \sum_{i,\,j,\,k} e_{1t} e_{2t} e_{3t} }
% \label{eq:DIA_discrete_steric_Bq_nfs}
\]
whereas in the linear free surface,
the volume above the \textit{z=0} surface must be explicitly taken into account to
better approximate the total ocean mass and thus the steric sea level:
\[
\eta_s = - \frac{ \sum_{i,\,j,\,k} d_a\; e_{1t}e_{2t}e_{3t} + \sum_{i,\,j} d_a\; e_{1t}e_{2t} \eta }
{ \sum_{i,\,j,\,k} e_{1t}e_{2t}e_{3t} + \sum_{i,\,j} e_{1t}e_{2t} \eta }
% \label{eq:DIA_discrete_steric_Bq_fs}
\]
The fourth and last remark concerns the effective sea level and the presence of sea-ice.
In the real ocean, sea ice (and snow above it) depresses the liquid seawater through its mass loading.
This depression is a result of the mass of sea ice/snow system acting on the liquid ocean.
There is, however, no dynamical effect associated with these depressions in the liquid ocean sea level,
so that there are no associated ocean currents.
Hence, the dynamically relevant sea level is the effective sea level,
\ie\ the sea level as if sea ice (and snow) were converted to liquid seawater \citep{campin.marshall.ea_OM08}.
However, in the current version of \NEMO\ the sea-ice is levitating above the ocean without mass exchanges between
ice and ocean.
Therefore the model effective sea level is always given by $\eta + \eta_s$, whether or not there is sea ice present.
In AR5 outputs, the thermosteric sea level is demanded.
It is steric sea level due to changes in ocean density arising just from changes in temperature.
It is given by:
\[
\eta_s = - \frac{1}{\mathcal{A}} \int_D d_a(T,S_o,p_o) \,dv
% \label{eq:DIA_thermosteric_Bq}
\]
where $S_o$ and $p_o$ are the initial salinity and pressure, respectively.
Both steric and thermosteric sea level are computed in \mdl{diaar5}.
%% =================================================================================================
\section{Other diagnostics}
\label{sec:DIA_diag_others}
Aside from the standard model variables, other diagnostics can be computed on-line.
The available ready-to-add diagnostics modules can be found in directory DIA.
%% =================================================================================================
\subsection[Depth of various quantities (\textit{diahth.F90})]{Depth of various quantities (\protect\mdl{diahth})}
Among the available diagnostics the following ones are obtained when defining the \key{diahth} CPP key:
- the mixed layer depth (based on a density criterion \citep{de-boyer-montegut.madec.ea_JGR04}) (\mdl{diahth})
- the turbocline depth (based on a turbulent mixing coefficient criterion) (\mdl{diahth})
- the depth of the 20\deg{C} isotherm (\mdl{diahth})
- the depth of the thermocline (maximum of the vertical temperature gradient) (\mdl{diahth})
\begin{figure}[!t]
\centering
\includegraphics[width=0.66\textwidth]{DIA_mask_subasins}
\caption[Decomposition of the World Ocean to compute transports as well as
the meridional stream-function]{
Decomposition of the World Ocean (here ORCA2) into sub-basin used in to
compute the heat and salt transports as well as the meridional stream-function:
Atlantic basin (red), Pacific basin (green),
Indian basin (blue), Indo-Pacific basin (blue+green).
Note that semi-enclosed seas (Red, Med and Baltic seas) as well as
Hudson Bay are removed from the sub-basins.
Note also that the Arctic Ocean has been split into Atlantic and
Pacific basins along the North fold line.
}
\label{fig:DIA_mask_subasins}
\end{figure}
%% =================================================================================================
\subsection[CMIP specific diagnostics (\textit{diaar5.F90}, \textit{diaptr.F90})]{CMIP specific diagnostics (\protect\mdl{diaar5})}
A series of diagnostics has been added in the \mdl{diaar5} and \mdl{diaptr}.
In \mdl{diaar5} they correspond to outputs that are required for AR5 simulations (CMIP5)
(see also \autoref{sec:DIA_steric} for one of them).
The module \mdl{diaar5} is active when one of the following outputs is required :
global total volume (voltot), global mean ssh (sshtot), global total mass (masstot), global mean temperature (temptot),
global mean ssh steric (sshsteric), global mean ssh thermosteric (sshthster), global mean salinity (saltot),
sea water pressure at sea floor (botpres), dynamic sea surface height (sshdyn).
In \mdl{diaptr} when \np[=.true.]{ln_diaptr}{ln\_diaptr}
(see the \nam{ptr}{ptr} namelist below) can be computed on-line the poleward heat and salt transports,
their advective and diffusive component, and the meriodional stream function .
When \np[=.true.]{ln_subbas}{ln\_subbas}, transports and stream function are computed for the Atlantic, Indian,
Pacific and Indo-Pacific Oceans (defined north of 30\deg{S}) as well as for the World Ocean.
The sub-basin decomposition requires an input file (\textit{subbasins}) which contains three 2D mask arrays,
the Indo-Pacific mask been deduced from the sum of the Indian and Pacific mask (\autoref{fig:DIA_mask_subasins}).
\begin{listing}
% \nlst{namptr}
\caption{\forcode{&namptr}}
\label{lst:namptr}
\end{listing}
%% =================================================================================================
\subsection{25 hour mean output for tidal models}
\begin{listing}
\nlst{nam_dia25h}
\caption{\forcode{&nam_dia25h}}
\label{lst:nam_dia25h}
\end{listing}
A module is available to compute a crudely detided M2 signal by obtaining a 25 hour mean.
The 25 hour mean is available for daily runs by summing up the 25 hourly instantananeous hourly values from
midnight at the start of the day to midight at the day end.
This diagnostic is actived with the logical $ln\_dia25h$.
%% =================================================================================================
\subsection{Courant numbers}
Courant numbers provide a theoretical indication of the model's numerical stability.
The advective Courant numbers can be calculated according to
\[
C_u = |u|\frac{\rdt}{e_{1u}}, \quad C_v = |v|\frac{\rdt}{e_{2v}}, \quad C_w = |w|\frac{\rdt}{e_{3w}}
% \label{eq:DIA_CFL}
\]
in the zonal, meridional and vertical directions respectively.
The vertical component is included although it is not strictly valid as the vertical velocity is calculated from
the continuity equation rather than as a prognostic variable.
Physically this represents the rate at which information is propogated across a grid cell.
Values greater than 1 indicate that information is propagated across more than one grid cell in a single time step.
The variables can be activated by setting the \np{nn_diacfl}{nn\_diacfl} namelist parameter to 1 in the \nam{ctl}{ctl} namelist.
The diagnostics will be written out to an ascii file named cfl\_diagnostics.ascii.
In this file the maximum value of $C_u$, $C_v$, and $C_w$ are printed at each timestep along with the coordinates of
where the maximum value occurs.
At the end of the model run the maximum value of $C_u$, $C_v$, and $C_w$ for the whole model run is printed along
with the coordinates of each.
The maximum values from the run are also copied to the ocean.output file.
\subinc{\input{../../global/epilogue}}
\end{document}