Skip to content
Snippets Groups Projects
chap_DYN.tex 76.4 KiB
Newer Older
\documentclass[../main/NEMO_manual]{subfiles}

\begin{document}

\chapter{Ocean Dynamics (DYN)}
\label{chap:DYN}

\chaptertoc

\paragraph{Changes record} ~\\

{\footnotesize
  \begin{tabularx}{\textwidth}{l||X|X}
    Release & Author(s) & Modifications \\
    \hline
    {\em   4.0} & {\em ...} & {\em ...} \\
    {\em   3.6} & {\em ...} & {\em ...} \\
    {\em   3.4} & {\em ...} & {\em ...} \\
    {\em <=3.4} & {\em ...} & {\em ...}
  \end{tabularx}
}

\clearpage

Using the representation described in \autoref{chap:DOM},
several semi-discrete space forms of the dynamical equations are available depending on
the vertical coordinate used and on the conservation properties of the vorticity term.
In all the equations presented here, the masking has been omitted for simplicity.
One must be aware that all the quantities are masked fields and
that each time an average or difference operator is used, the resulting field is multiplied by a mask.

The prognostic ocean dynamics equation can be summarized as follows:
\[
  \text{NXT} = \dbinom	{\text{VOR} + \text{KEG} + \text {ZAD} }
  {\text{COR} + \text{ADV}                       }
  + \text{HPG} + \text{SPG} + \text{LDF} + \text{ZDF}
\]
NXT stands for next, referring to the time-stepping.
The first group of terms on the rhs of this equation corresponds to the Coriolis and advection terms that
are decomposed into either a vorticity part (VOR), a kinetic energy part (KEG) and
a vertical advection part (ZAD) in the vector invariant formulation,
or a Coriolis and advection part (COR+ADV) in the flux formulation.
The terms following these are the pressure gradient contributions
(HPG, Hydrostatic Pressure Gradient, and SPG, Surface Pressure Gradient);
and contributions from lateral diffusion (LDF) and vertical diffusion (ZDF),
which are added to the rhs in the \mdl{dynldf} and \mdl{dynzdf} modules.
The vertical diffusion term includes the surface and bottom stresses.
The external forcings and parameterisations require complex inputs
(surface wind stress calculation using bulk formulae, estimation of mixing coefficients)
that are carried out in modules SBC, LDF and ZDF and are described in
\autoref{chap:SBC}, \autoref{chap:LDF} and \autoref{chap:ZDF}, respectively.

In the present chapter we also describe the diagnostic equations used to compute the horizontal divergence,
curl of the velocities (\emph{divcur} module) and the vertical velocity (\emph{wzvmod} module).

The different options available to the user are managed by namelist variables.
For term \textit{ttt} in the momentum equations, the logical namelist variables are \textit{ln\_dynttt\_xxx},
where \textit{xxx} is a 3 or 4 letter acronym corresponding to each optional scheme.
%If a CPP key is used for this term its name is \key{ttt}.
The corresponding code can be found in the \textit{dynttt\_xxx} module in the DYN directory,
and it is usually computed in the \textit{dyn\_ttt\_xxx} subroutine.

The user has the option of extracting and outputting each tendency term from the 3D momentum equations
(\texttt{trddyn?} defined), as described in \autoref{chap:MISC}.
Furthermore, the tendency terms associated with the 2D barotropic vorticity balance (when \texttt{trdvor?} is defined)
can be derived from the 3D terms.
\cmtgm{STEVEN: not quite sure I've got the sense of the last sentence.
  Does MISC correspond to "extracting tendency terms" or "vorticity balance"?}

%% =================================================================================================
\section{Sea surface height and diagnostic variables ($\eta$, $\zeta$, $\chi$, $w$)}
\label{sec:DYN_divcur_wzv}

%% =================================================================================================
\subsection[Horizontal divergence and relative vorticity (\textit{divcur.F90})]{Horizontal divergence and relative vorticity (\protect\mdl{divcur})}
\label{subsec:DYN_divcur}

The vorticity is defined at an $f$-point (\ie\ corner point) as follows:
\begin{equation}
  \label{eq:DYN_divcur_cur}
  \zeta =\frac{1}{e_{1f}\,e_{2f} }\left( {\;\delta_{i+1/2} \left[ {e_{2v}\;v} \right]
      -\delta_{j+1/2} \left[ {e_{1u}\;u} \right]\;} \right)
\end{equation}

The horizontal divergence is defined at a $T$-point.
It is given by:
\[
  % \label{eq:DYN_divcur_div}
  \chi =\frac{1}{e_{1t}\,e_{2t}\,e_{3t} }
  \left( {\delta_i \left[ {e_{2u}\,e_{3u}\,u} \right]
      +\delta_j \left[ {e_{1v}\,e_{3v}\,v} \right]} \right)
\]

Note that although the vorticity has the same discrete expression in $z$- and $s$-coordinates,
its physical meaning is not identical.
$\zeta$ is a pseudo vorticity along $s$-surfaces
(only pseudo because $(u,v)$ are still defined along geopotential surfaces,
but are not necessarily defined at the same depth).

The vorticity and divergence at the \textit{before} step are used in the computation of
the horizontal diffusion of momentum.
Note that because they have been calculated prior to the Asselin filtering of the \textit{before} velocities,
the \textit{before} vorticity and divergence arrays must be included in the restart file to
ensure perfect restartability.
The vorticity and divergence at the \textit{now} time step are used for the computation of
the nonlinear advection and of the vertical velocity respectively.

%% =================================================================================================
\subsection[Horizontal divergence and relative vorticity (\textit{sshwzv.F90})]{Horizontal divergence and relative vorticity (\protect\mdl{sshwzv})}
\label{subsec:DYN_sshwzv}

The sea surface height is given by:
\begin{equation}
  \label{eq:DYN_spg_ssh}
  \begin{aligned}
    \frac{\partial \eta }{\partial t}
    &\equiv    \frac{1}{e_{1t} e_{2t} }\sum\limits_k { \left\{  \delta_i \left[ {e_{2u}\,e_{3u}\;u} \right]
        +\delta_j \left[ {e_{1v}\,e_{3v}\;v} \right]  \right\} }
    -    \frac{\textit{emp}}{\rho_w }   \\
    &\equiv    \sum\limits_k {\chi \ e_{3t}}  -  \frac{\textit{emp}}{\rho_w }
  \end{aligned}
\end{equation}
where \textit{emp} is the surface freshwater budget (evaporation minus precipitation),
expressed in Kg/m$^2$/s (which is equal to mm/s),
and $\rho_w$=1,035~Kg/m$^3$ is the reference density of sea water (Boussinesq approximation).
If river runoff is expressed as a surface freshwater flux (see \autoref{chap:SBC}) then
\textit{emp} can be written as the evaporation minus precipitation, minus the river runoff.
The sea-surface height is evaluated using exactly the same time stepping scheme as
the tracer equation \autoref{eq:TRA_nxt}:
a leapfrog scheme in combination with an Asselin time filter,
\ie\ the velocity appearing in \autoref{eq:DYN_spg_ssh} is centred in time (\textit{now} velocity).
This is of paramount importance.
Replacing $T$ by the number $1$ in the tracer equation and summing over the water column must lead to
the sea surface height equation otherwise tracer content will not be conserved
\citep{griffies.pacanowski.ea_MWR01, leclair.madec_OM09}.

The vertical velocity is computed by an upward integration of the horizontal divergence starting at the bottom,
taking into account the change of the thickness of the levels:
\begin{equation}
  \label{eq:DYN_wzv}
  \left\{
    \begin{aligned}
      &\left. w \right|_{k_b-1/2} \quad= 0    \qquad \text{where } k_b \text{ is the level just above the sea floor }  	\\
      &\left. w \right|_{k+1/2}     = \left. w \right|_{k-1/2}  +  \left. e_{3t} \right|_{k}\;  \left. \chi \right|_k
      - \frac{1} {2 \rdt} \left(  \left. e_{3t}^{t+1}\right|_{k} - \left. e_{3t}^{t-1}\right|_{k}\right)
    \end{aligned}
  \right.
\end{equation}

In the case of a non-linear free surface (\np[=.false.]{ln_linssh}{ln\_linssh}), the top vertical velocity is $-\textit{emp}/\rho_w$,
as changes in the divergence of the barotropic transport are absorbed into the change of the level thicknesses,
re-orientated downward.
\cmtgm{not sure of this...  to be modified with the change in emp setting}
In the case of a linear free surface, the time derivative in \autoref{eq:DYN_wzv} disappears.
The upper boundary condition applies at a fixed level $z=0$.
The top vertical velocity is thus equal to the divergence of the barotropic transport
(\ie\ the first term in the right-hand-side of \autoref{eq:DYN_spg_ssh}).

Note also that whereas the vertical velocity has the same discrete expression in $z$- and $s$-coordinates,
its physical meaning is not the same:
in the second case, $w$ is the velocity normal to the $s$-surfaces.
Note also that the $k$-axis is re-orientated downwards in the \fortran\ code compared to
the indexing used in the semi-discrete equations such as \autoref{eq:DYN_wzv}
(see \autoref{subsec:DOM_Num_Index_vertical}).

%% =================================================================================================
\section{Coriolis and advection: vector invariant form}
\label{sec:DYN_adv_cor_vect}

\begin{listing}
  \nlst{namdyn_adv}
  \caption{\forcode{&namdyn_adv}}
  \label{lst:namdyn_adv}
\end{listing}

The vector invariant form of the momentum equations is the one most often used in
applications of the \NEMO\ ocean model.
The flux form option (see next section) has been present since version $2$.
Options are defined through the \nam{dyn_adv}{dyn\_adv} namelist variables Coriolis and
momentum advection terms are evaluated using a leapfrog scheme,
\ie\ the velocity appearing in these expressions is centred in time (\textit{now} velocity).
At the lateral boundaries either free slip, no slip or partial slip boundary conditions are applied following
\autoref{chap:LBC}.

%% =================================================================================================
\subsection[Vorticity term (\textit{dynvor.F90})]{Vorticity term (\protect\mdl{dynvor})}
\label{subsec:DYN_vor}

\begin{listing}
  \nlst{namdyn_vor}
  \caption{\forcode{&namdyn_vor}}
  \label{lst:namdyn_vor}
\end{listing}

Options are defined through the \nam{dyn_vor}{dyn\_vor} namelist variables.
Four discretisations of the vorticity term (\texttt{ln\_dynvor\_xxx}\forcode{=.true.}) are available:
conserving potential enstrophy of horizontally non-divergent flow (ENS scheme);
conserving horizontal kinetic energy (ENE scheme);
conserving potential enstrophy for the relative vorticity term and
horizontal kinetic energy for the planetary vorticity term (MIX scheme);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
or conserving both the potential enstrophy of horizontally non-divergent flow and horizontal kinetic energy
(EEN scheme) (see \autoref{subsec:INVARIANTS_vorEEN}).
In the case of ENS, ENE or MIX schemes the land sea mask may be slightly modified to ensure the consistency of
vorticity term with analytical equations (\np[=.true.]{ln_dynvor_con}{ln\_dynvor\_con}).
The vorticity terms are all computed in dedicated routines that can be found in the \mdl{dynvor} module.

%                 enstrophy conserving scheme
%% =================================================================================================
\subsubsection[Enstrophy conserving scheme (\forcode{ln_dynvor_ens})]{Enstrophy conserving scheme (\protect\np{ln_dynvor_ens}{ln\_dynvor\_ens})}
\label{subsec:DYN_vor_ens}

In the enstrophy conserving case (ENS scheme),
the discrete formulation of the vorticity term provides a global conservation of the enstrophy
($ [ (\zeta +f ) / e_{3f} ]^2 $ in $s$-coordinates) for a horizontally non-divergent flow (\ie\ $\chi$=$0$),
but does not conserve the total kinetic energy.
It is given by:
\begin{equation}
  \label{eq:DYN_vor_ens}
  \left\{
    \begin{aligned}
      {+\frac{1}{e_{1u} } } & {\overline {\left( { \frac{\zeta +f}{e_{3f} }} \right)} }^{\,i}
      & {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i, j+1/2}    \\
      {- \frac{1}{e_{2v} } } & {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)} }^{\,j}
      & {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2, j}
    \end{aligned}
  \right.
\end{equation}

%                 energy conserving scheme
%% =================================================================================================
\subsubsection[Energy conserving scheme (\forcode{ln_dynvor_ene})]{Energy conserving scheme (\protect\np{ln_dynvor_ene}{ln\_dynvor\_ene})}
\label{subsec:DYN_vor_ene}

The kinetic energy conserving scheme (ENE scheme) conserves the global kinetic energy but not the global enstrophy.
It is given by:
\begin{equation}
  \label{eq:DYN_vor_ene}
  \left\{
    \begin{aligned}
      {+\frac{1}{e_{1u}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)
            \;  \overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} }    \\
      {- \frac{1}{e_{2v}}\; {\overline {\left( {\frac{\zeta +f}{e_{3f} }} \right)
            \;  \overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} }
    \end{aligned}
  \right.
\end{equation}

%                 mix energy/enstrophy conserving scheme
%% =================================================================================================
\subsubsection[Mixed energy/enstrophy conserving scheme (\forcode{ln_dynvor_mix})]{Mixed energy/enstrophy conserving scheme (\protect\np{ln_dynvor_mix}{ln\_dynvor\_mix})}
\label{subsec:DYN_vor_mix}

For the mixed energy/enstrophy conserving scheme (MIX scheme), a mixture of the two previous schemes is used.
It consists of the ENS scheme (\autoref{eq:DYN_vor_ens}) for the relative vorticity term,
and of the ENE scheme (\autoref{eq:DYN_vor_ene}) applied to the planetary vorticity term.
\[
  % \label{eq:DYN_vor_mix}
  \left\{ {
      \begin{aligned}
        {+\frac{1}{e_{1u} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^{\,i}
          \; {\overline{\overline {\left( {e_{1v}\,e_{3v}\;v} \right)}} }^{\,i,j+1/2} -\frac{1}{e_{1u} }
          \; {\overline {\left( {\frac{f}{e_{3f} }} \right)
              \;\overline {\left( {e_{1v}\,e_{3v}\;v} \right)} ^{\,i+1/2}} }^{\,j} } \\
        {-\frac{1}{e_{2v} }\; {\overline {\left( {\frac{\zeta }{e_{3f} }} \right)} }^j
          \; {\overline{\overline {\left( {e_{2u}\,e_{3u}\;u} \right)}} }^{\,i+1/2,j} +\frac{1}{e_{2v} }
          \; {\overline {\left( {\frac{f}{e_{3f} }} \right)
              \;\overline {\left( {e_{2u}\,e_{3u}\;u} \right)} ^{\,j+1/2}} }^{\,i} } \hfill
      \end{aligned}
    } \right.
\]

%                 energy and enstrophy conserving scheme
%% =================================================================================================
\subsubsection[Energy and enstrophy conserving scheme (\forcode{ln_dynvor_een})]{Energy and enstrophy conserving scheme (\protect\np{ln_dynvor_een}{ln\_dynvor\_een})}
\label{subsec:DYN_vor_een}

In both the ENS and ENE schemes,
it is apparent that the combination of $i$ and $j$ averages of the velocity allows for
the presence of grid point oscillation structures that will be invisible to the operator.
These structures are \textit{computational modes} that will be at least partly damped by
the momentum diffusion operator (\ie\ the subgrid-scale advection), but not by the resolved advection term.
The ENS and ENE schemes therefore do not contribute to dump any grid point noise in the horizontal velocity field.
Loading
Loading full blame...