Skip to content
Snippets Groups Projects
zdfosm.F90 213 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
            &                                       ghamv, 'W', 1.0_wp )
         DO jk = 2, jpkm1
            DO jj = Njs0, Nje0
               DO ji = Nis0, Nie0
                  ghamu(ji,jj,jk) = ( ghamu(ji,jj,jk) + ghamu(ji+1,jj,jk) ) /   &
                     &              MAX( 1.0_wp, tmask(ji,jj,jk) + tmask (ji+1,jj,jk) ) * umask(ji,jj,jk)
                  ghamv(ji,jj,jk) = ( ghamv(ji,jj,jk) + ghamv(ji,jj+1,jk) ) /   &
                     &              MAX( 1.0_wp, tmask(ji,jj,jk) + tmask (ji,jj+1,jk) ) * vmask(ji,jj,jk)
                  ghamt(ji,jj,jk) = ghamt(ji,jj,jk) * tmask(ji,jj,jk)
                  ghams(ji,jj,jk) = ghams(ji,jj,jk) * tmask(ji,jj,jk)
               END DO
            END DO
         END DO
         ! Lateral boundary conditions on final outputs for hbl, on T-grid (sign unchanged)
         CALL lbc_lnk( 'zdfosm', hbl,  'T', 1.0_wp,   &
            &                    hmle, 'T', 1.0_wp )
         !
         CALL zdf_osm_iomput( "ghamt", tmask * ghamt       )   ! <Tw_NL>
         CALL zdf_osm_iomput( "ghams", tmask * ghams       )   ! <Sw_NL>
         CALL zdf_osm_iomput( "ghamu", umask * ghamu       )   ! <uw_NL>
         CALL zdf_osm_iomput( "ghamv", vmask * ghamv       )   ! <vw_NL>
         CALL zdf_osm_iomput( "hbl",   tmask(:,:,1) * hbl  )   ! Boundary-layer depth
         CALL zdf_osm_iomput( "hmle",  tmask(:,:,1) * hmle )   ! FK layer depth
      END IF
      !
   END SUBROUTINE zdf_osm

   SUBROUTINE zdf_osm_vertical_average( Kbb, Kmm, knlev, pt, ps,   &
      &                                 pb, pu, pv, kp_ext, pdt,   &
      &                                 pds, pdb, pdu, pdv )
      !!---------------------------------------------------------------------
      !!                ***  ROUTINE zdf_vertical_average  ***
      !!
      !! ** Purpose : Determines vertical averages from surface to knlev,
      !!              and optionally the differences between these vertical
      !!              averages and values at an external level
      !!
      !! ** Method  : Averages are calculated from the surface to knlev.
      !!              The external level used to calculate differences is
      !!              knlev+kp_ext
      !!----------------------------------------------------------------------
      INTEGER,                            INTENT(in   )           ::   Kbb, Kmm   ! Ocean time-level indices
      INTEGER,  DIMENSION(T2D(nn_hls-1)), INTENT(in   )           ::   knlev      ! Number of levels to average over.
Guillaume Samson's avatar
Guillaume Samson committed
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out)           ::   pt, ps     ! Average temperature and salinity
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out)           ::   pb         ! Average buoyancy
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out)           ::   pu, pv     ! Average current components
      INTEGER,  DIMENSION(T2D(nn_hls-1)), INTENT(in   ), OPTIONAL ::   kp_ext     ! External-level offsets
Guillaume Samson's avatar
Guillaume Samson committed
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out), OPTIONAL ::   pdt        ! Difference between average temperature,
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out), OPTIONAL ::   pds        !    salinity,
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out), OPTIONAL ::   pdb        !    buoyancy, and
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out), OPTIONAL ::   pdu, pdv   !    velocity components and the OSBL
      !!
      INTEGER                              ::   jk, jkflt, jkmax, ji, jj   ! Loop indices
      INTEGER                              ::   ibld_ext                   ! External-layer index
      REAL(wp), DIMENSION(T2D(nn_hls-1)) ::   zthick                     ! Layer thickness
Guillaume Samson's avatar
Guillaume Samson committed
      REAL(wp)                             ::   zthermal                   ! Thermal expansion coefficient
      REAL(wp)                             ::   zbeta                      ! Haline contraction coefficient
      !!----------------------------------------------------------------------
      !
      ! Averages over depth of boundary layer
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pt(ji,jj) = 0.0_wp
         ps(ji,jj) = 0.0_wp
         pu(ji,jj) = 0.0_wp
         pv(ji,jj) = 0.0_wp
      END_2D
      zthick(:,:) = epsln
      jkflt = jpk
      jkmax = 0
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( knlev(ji,jj) < jkflt ) jkflt = knlev(ji,jj)
         IF ( knlev(ji,jj) > jkmax ) jkmax = knlev(ji,jj)
      END_2D
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkflt )   ! Upper, flat part of layer
         zthick(ji,jj) = zthick(ji,jj) + e3t(ji,jj,jk,Kmm)
         pt(ji,jj)     = pt(ji,jj)     + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_tem,Kmm)
         ps(ji,jj)     = ps(ji,jj)     + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_sal,Kmm)
         pu(ji,jj)     = pu(ji,jj)     + e3t(ji,jj,jk,Kmm) *                                        &
            &                               ( uu(ji,jj,jk,Kbb) + uu(ji - 1,jj,jk,Kbb) ) /           &
            &                               MAX( 1.0_wp , umask(ji,jj,jk) + umask(ji - 1,jj,jk) )
         pv(ji,jj)     = pv(ji,jj)     + e3t(ji,jj,jk,Kmm) *                                        &
            &                               ( vv(ji,jj,jk,Kbb) + vv(ji,jj - 1,jk,Kbb) ) /           &
            &                               MAX( 1.0_wp , vmask(ji,jj,jk) + vmask(ji,jj - 1,jk) )         
      END_3D
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, jkflt+1, jkmax )   ! Lower, non-flat part of layer
         IF ( knlev(ji,jj) >= jk ) THEN
            zthick(ji,jj) = zthick(ji,jj) + e3t(ji,jj,jk,Kmm)
            pt(ji,jj)     = pt(ji,jj)     + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_tem,Kmm)
            ps(ji,jj)     = ps(ji,jj)     + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_sal,Kmm)
            pu(ji,jj)     = pu(ji,jj)     + e3t(ji,jj,jk,Kmm) *                                        &
               &                               ( uu(ji,jj,jk,Kbb) + uu(ji - 1,jj,jk,Kbb) ) /           &
               &                               MAX( 1.0_wp , umask(ji,jj,jk) + umask(ji - 1,jj,jk) )
            pv(ji,jj)     = pv(ji,jj)     + e3t(ji,jj,jk,Kmm) *                                        &
               &                               ( vv(ji,jj,jk,Kbb) + vv(ji,jj - 1,jk,Kbb) ) /           &
               &                               MAX( 1.0_wp , vmask(ji,jj,jk) + vmask(ji,jj - 1,jk) )
         END IF
      END_3D
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pt(ji,jj) = pt(ji,jj) / zthick(ji,jj)
         ps(ji,jj) = ps(ji,jj) / zthick(ji,jj)
         pu(ji,jj) = pu(ji,jj) / zthick(ji,jj)
         pv(ji,jj) = pv(ji,jj) / zthick(ji,jj)
         zthermal  = rab_n(ji,jj,1,jp_tem)   ! ideally use nbld not 1??
         zbeta     = rab_n(ji,jj,1,jp_sal)
         pb(ji,jj) = grav * zthermal * pt(ji,jj) - grav * zbeta * ps(ji,jj)
      END_2D
      !
      ! Differences between vertical averages and values at an external layer
      IF ( PRESENT( kp_ext ) ) THEN
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            ibld_ext = knlev(ji,jj) + kp_ext(ji,jj)
            IF ( ibld_ext <= mbkt(ji,jj)-1 ) THEN   ! ag 09/03
               ! Two external levels are available
               pdt(ji,jj) = pt(ji,jj) - ts(ji,jj,ibld_ext,jp_tem,Kmm)
               pds(ji,jj) = ps(ji,jj) - ts(ji,jj,ibld_ext,jp_sal,Kmm)
               pdu(ji,jj) = pu(ji,jj) - ( uu(ji,jj,ibld_ext,Kbb) + uu(ji-1,jj,ibld_ext,Kbb ) ) /              &
                  &                        MAX(1.0_wp , umask(ji,jj,ibld_ext ) + umask(ji-1,jj,ibld_ext ) )
               pdv(ji,jj) = pv(ji,jj) - ( vv(ji,jj,ibld_ext,Kbb) + vv(ji,jj-1,ibld_ext,Kbb ) ) /              &
                  &                        MAX(1.0_wp , vmask(ji,jj,ibld_ext ) + vmask(ji,jj-1,ibld_ext ) )
               zthermal   = rab_n(ji,jj,1,jp_tem)   ! ideally use nbld not 1??
               zbeta      = rab_n(ji,jj,1,jp_sal)
               pdb(ji,jj) = grav * zthermal * pdt(ji,jj) - grav * zbeta * pds(ji,jj)
            ELSE
               pdt(ji,jj) = 0.0_wp
               pds(ji,jj) = 0.0_wp
               pdu(ji,jj) = 0.0_wp
               pdv(ji,jj) = 0.0_wp
               pdb(ji,jj) = 0.0_wp
            ENDIF
         END_2D
      END IF
      !
   END SUBROUTINE zdf_osm_vertical_average

   SUBROUTINE zdf_osm_velocity_rotation_2d( pu, pv, fwd )
      !!---------------------------------------------------------------------
      !!            ***  ROUTINE zdf_velocity_rotation_2d  ***
      !!
      !! ** Purpose : Rotates frame of reference of velocity components pu and
      !!              pv (2d)
      !!
      !! ** Method : The velocity components are rotated into (fwd=.TRUE.) or
      !!             from (fwd=.FALSE.) the frame specified by scos_wind and
      !!             ssin_wind
      !!
      !!----------------------------------------------------------------------      
      REAL(wp),           INTENT(inout), DIMENSION(jpi,jpj) ::   pu, pv   ! Components of current
      LOGICAL,  OPTIONAL, INTENT(in   )                     ::   fwd      ! Forward (default) or reverse rotation
      !!
      INTEGER  ::   ji, jj       ! Loop indices
      REAL(wp) ::   ztmp, zfwd   ! Auxiliary variables
      !!----------------------------------------------------------------------      
      !
      zfwd = 1.0_wp
      IF( PRESENT(fwd) .AND. ( .NOT. fwd ) ) zfwd = -1.0_wp
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         ztmp      = pu(ji,jj)
         pu(ji,jj) = pu(ji,jj) * scos_wind(ji,jj) + zfwd * pv(ji,jj) * ssin_wind(ji,jj)
         pv(ji,jj) = pv(ji,jj) * scos_wind(ji,jj) - zfwd * ztmp      * ssin_wind(ji,jj)
      END_2D
      !
   END SUBROUTINE zdf_osm_velocity_rotation_2d

   SUBROUTINE zdf_osm_velocity_rotation_3d( pu, pv, fwd, ktop, knlev )
      !!---------------------------------------------------------------------
      !!            ***  ROUTINE zdf_velocity_rotation_3d  ***
      !!
      !! ** Purpose : Rotates frame of reference of velocity components pu and
      !!              pv (3d)
      !!
      !! ** Method : The velocity components are rotated into (fwd=.TRUE.) or
      !!             from (fwd=.FALSE.) the frame specified by scos_wind and
      !!             ssin_wind; optionally, the rotation can be restricted at
      !!             each water column to span from the a minimum index ktop to
      !!             the depth index specified in array knlev
      !!
      !!----------------------------------------------------------------------      
      REAL(wp),           INTENT(inout), DIMENSION(jpi,jpj,jpk)   ::   pu, pv   ! Components of current
      LOGICAL,  OPTIONAL, INTENT(in   )                           ::   fwd      ! Forward (default) or reverse rotation
      INTEGER,  OPTIONAL, INTENT(in   )                           ::   ktop     ! Minimum depth index
      INTEGER,  OPTIONAL, INTENT(in   ), DIMENSION(T2D(nn_hls-1)) ::   knlev    ! Array of maximum depth indices
Guillaume Samson's avatar
Guillaume Samson committed
      !!
      INTEGER  ::   ji, jj, jk, jktop, jkmax   ! Loop indices
      REAL(wp) ::   ztmp, zfwd                 ! Auxiliary variables
      LOGICAL  ::   llkbot                     ! Auxiliary variable
      !!----------------------------------------------------------------------      
      !
      zfwd = 1.0_wp
      IF( PRESENT(fwd) .AND. ( .NOT. fwd ) ) zfwd = -1.0_wp
      jktop = 1
      IF( PRESENT(ktop) ) jktop = ktop
      IF( PRESENT(knlev) ) THEN
         jkmax = 0
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            IF ( knlev(ji,jj) > jkmax ) jkmax = knlev(ji,jj)
         END_2D
         llkbot = .FALSE.
      ELSE
         jkmax = jpk
         llkbot = .TRUE.
      END IF
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, jktop, jkmax )
         IF ( llkbot .OR. knlev(ji,jj) >= jk ) THEN
            ztmp         = pu(ji,jj,jk)
            pu(ji,jj,jk) = pu(ji,jj,jk) * scos_wind(ji,jj) + zfwd * pv(ji,jj,jk) * ssin_wind(ji,jj)
            pv(ji,jj,jk) = pv(ji,jj,jk) * scos_wind(ji,jj) - zfwd * ztmp         * ssin_wind(ji,jj)
         END IF
      END_3D
      !
   END SUBROUTINE zdf_osm_velocity_rotation_3d

   SUBROUTINE zdf_osm_osbl_state( Kmm, pwb_ent, pwb_min, pshear, phbl,   &
      &                           phml, pdh )
      !!---------------------------------------------------------------------
      !!                 ***  ROUTINE zdf_osm_osbl_state  ***
      !!
      !! ** Purpose : Determines the state of the OSBL, stable/unstable,
      !!              shear/ noshear. Also determines shear production,
      !!              entrainment buoyancy flux and interfacial Richardson
      !!              number
      !!
      !! ** Method  :
      !!
      !!----------------------------------------------------------------------
      INTEGER,                            INTENT(in   ) ::   Kmm       ! Ocean time-level index
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(  out) ::   pwb_ent   ! Buoyancy fluxes at base
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(  out) ::   pwb_min   !    of well-mixed layer
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(  out) ::   pshear    ! Production of TKE due to shear across the pycnocline
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   phbl      ! BL depth
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   phml      ! ML depth
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   pdh       ! Pycnocline depth
Guillaume Samson's avatar
Guillaume Samson committed
      !!
      INTEGER :: jj, ji   ! Loop indices
      !!
      REAL(wp), DIMENSION(T2D(nn_hls-1)) ::   zekman
      REAL(wp), DIMENSION(T2D(nn_hls-1)) ::   zri_p, zri_b   ! Richardson numbers
Guillaume Samson's avatar
Guillaume Samson committed
      REAL(wp)                           ::   zshear_u, zshear_v, zwb_shr
      REAL(wp)                           ::   zwcor, zrf_conv, zrf_shear, zrf_langmuir, zr_stokes
      !!
      REAL(wp), PARAMETER ::   pp_a_shr         = 0.4_wp,  pp_b_shr    = 6.5_wp,  pp_a_wb_s = 0.8_wp
      REAL(wp), PARAMETER ::   pp_alpha_c       = 0.2_wp,  pp_alpha_lc = 0.03_wp
      REAL(wp), PARAMETER ::   pp_alpha_ls      = 0.06_wp, pp_alpha_s  = 0.15_wp
      REAL(wp), PARAMETER ::   pp_ri_p_thresh   = 27.0_wp
      REAL(wp), PARAMETER ::   pp_ri_c          = 0.25_wp
      REAL(wp), PARAMETER ::   pp_ek            = 4.0_wp
      REAL(wp), PARAMETER ::   pp_large         = -1e10_wp
      !!----------------------------------------------------------------------
      !
      ! Initialise arrays
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         l_conv(ji,jj)  = .FALSE.
         l_shear(ji,jj) = .FALSE.
         n_ddh(ji,jj)   = 1
      END_2D
      ! Initialise INTENT(  out) arrays
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pwb_ent(ji,jj) = pp_large
         pwb_min(ji,jj) = pp_large
      END_2D
      !
      ! Determins stability and set flag l_conv
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( shol(ji,jj) < 0.0_wp ) THEN
            l_conv(ji,jj) = .TRUE.
         ELSE
            l_conv(ji,jj) = .FALSE.
         ENDIF
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pshear(ji,jj) = 0.0_wp
      END_2D
      zekman(:,:) = EXP( -1.0_wp * pp_ek * ABS( ff_t(T2D(nn_hls-1)) ) * phbl(T2D(nn_hls-1)) /   &
         &               MAX( sustar(T2D(nn_hls-1)), 1.e-8 ) )
Guillaume Samson's avatar
Guillaume Samson committed
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_conv(ji,jj) ) THEN
            IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
               zri_p(ji,jj) = MAX (  SQRT( av_db_bl(ji,jj) * pdh(ji,jj) / MAX( av_du_bl(ji,jj)**2 + av_dv_bl(ji,jj)**2,     &
                  &                                                          1e-8_wp ) ) * ( phbl(ji,jj) / pdh(ji,jj) ) *   &
                  &                  ( svstr(ji,jj) / MAX( sustar(ji,jj), 1e-6_wp ) )**2 /                                  &
                  &                  MAX( zekman(ji,jj), 1.0e-6_wp ), 5.0_wp )
               IF ( ff_t(ji,jj) >= 0.0_wp ) THEN   ! Northern hemisphere
                  zri_b(ji,jj) = av_db_ml(ji,jj) * pdh(ji,jj) / ( MAX( av_du_ml(ji,jj), 1e-5_wp )**2 +   &
                     &                                          MAX( -1.0_wp * av_dv_ml(ji,jj), 1e-5_wp)**2 )
               ELSE                                ! Southern hemisphere
                  zri_b(ji,jj) = av_db_ml(ji,jj) * pdh(ji,jj) / ( MAX( av_du_ml(ji,jj), 1e-5_wp )**2 +   &
                     &                                          MAX(           av_dv_ml(ji,jj), 1e-5_wp)**2 )
               END IF
               pshear(ji,jj) = pp_a_shr * zekman(ji,jj) *                                                   &
                  &            ( MAX( sustar(ji,jj)**2 * av_du_ml(ji,jj) / phbl(ji,jj), 0.0_wp ) +          &
                  &              pp_b_shr * MAX( -1.0_wp * ff_t(ji,jj) * sustke(ji,jj) * dstokes(ji,jj) *   &
                  &                            av_dv_ml(ji,jj) / phbl(ji,jj), 0.0_wp ) )
               ! Stability dependence
               pshear(ji,jj) = pshear(ji,jj) * EXP( -0.75_wp * MAX( 0.0_wp, ( zri_b(ji,jj) - pp_ri_c ) / pp_ri_c ) )
               !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
               ! Test ensures n_ddh=0 is not selected. Change to zri_p<27 when  !
               ! full code available                                          !
               !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
               IF ( pshear(ji,jj) > 1e-10 ) THEN
                  IF ( zri_p(ji,jj) < pp_ri_p_thresh .AND.   &
                     & MIN( hu(ji,jj,Kmm), hu(ji-1,jj,Kmm), hv(ji,jj,Kmm), hv(ji,jj-1,Kmm) ) > 100.0_wp ) THEN
                     ! Growing shear layer
                     n_ddh(ji,jj) = 0
                     l_shear(ji,jj) = .TRUE.
                  ELSE
                     n_ddh(ji,jj) = 1
                     !             IF ( zri_b <= 1.5 .and. pshear(ji,jj) > 0._wp ) THEN
                     ! Shear production large enough to determine layer charcteristics, but can't maintain a shear layer
                     l_shear(ji,jj) = .TRUE.
                     !             ELSE
                  END IF
               ELSE
                  n_ddh(ji,jj) = 2
                  l_shear(ji,jj) = .FALSE.
               END IF
               ! Shear production may not be zero, but is small and doesn't determine characteristics of pycnocline
               !               pshear(ji,jj) = 0.5 * pshear(ji,jj)
               !               l_shear(ji,jj) = .FALSE.
               !            ENDIF
            ELSE   ! av_db_bl test, note pshear set to zero
               n_ddh(ji,jj) = 2
               l_shear(ji,jj) = .FALSE.
            ENDIF
         ENDIF
      END_2D
      !
      ! Calculate entrainment buoyancy flux due to surface fluxes.
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_conv(ji,jj) ) THEN
            zwcor        = ABS( ff_t(ji,jj) ) * phbl(ji,jj) + epsln
            zrf_conv     = TANH( ( swstrc(ji,jj) / zwcor )**0.69_wp )
            zrf_shear    = TANH( ( sustar(ji,jj) / zwcor )**0.69_wp )
            zrf_langmuir = TANH( ( swstrl(ji,jj) / zwcor )**0.69_wp )
            IF ( nn_osm_SD_reduce > 0 ) THEN
               ! Effective Stokes drift already reduced from surface value
               zr_stokes = 1.0_wp
            ELSE
               ! Effective Stokes drift only reduced by factor rn_zdfodm_adjust_sd,
               ! requires further reduction where BL is deep
               zr_stokes = 1.0 - EXP( -25.0_wp * dstokes(ji,jj) / hbl(ji,jj) * ( 1.0_wp + 4.0_wp * dstokes(ji,jj) / hbl(ji,jj) ) )
            END IF
            pwb_ent(ji,jj) = -2.0_wp * pp_alpha_c * zrf_conv * swbav(ji,jj) -                                          &
               &             pp_alpha_s * zrf_shear * sustar(ji,jj)**3 / phml(ji,jj) +                                 &
               &             zr_stokes * ( pp_alpha_s * EXP( -1.5_wp * sla(ji,jj) ) * zrf_shear * sustar(ji,jj)**3 -   &
               &                           zrf_langmuir * pp_alpha_lc * swstrl(ji,jj)**3 ) / phml(ji,jj)
         ENDIF
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_shear(ji,jj) ) THEN
            IF ( l_conv(ji,jj) ) THEN
               ! Unstable OSBL
               zwb_shr = -1.0_wp * pp_a_wb_s * zri_b(ji,jj) * pshear(ji,jj)
               IF ( n_ddh(ji,jj) == 0 ) THEN
                  ! Developing shear layer, additional shear production possible.

                  !    pshear_u = MAX( zustar(ji,jj)**2 * MAX( av_du_ml(ji,jj), 0._wp ) /  phbl(ji,jj), 0._wp )
                  !    pshear(ji,jj) = pshear(ji,jj) + pshear_u * ( 1.0 - MIN( zri_p(ji,jj) / pp_ri_p_thresh, 1.d0 )**2 )
                  !    pshear(ji,jj) = MIN( pshear(ji,jj), pshear_u )

                  !    zwb_shr = zwb_shr - 0.25 * MAX ( pshear_u, 0._wp) * ( 1.0 - MIN( zri_p(ji,jj) / pp_ri_p_thresh, 1._wp )**2 )
                  !    zwb_shr = MAX( zwb_shr, -0.25 * pshear_u )
               ENDIF
               pwb_ent(ji,jj) = pwb_ent(ji,jj) + zwb_shr
               !           pwb_min(ji,jj) = pwb_ent(ji,jj) + pdh(ji,jj) / phbl(ji,jj) * zwb0(ji,jj)
            ELSE   ! IF ( l_conv ) THEN - ENDIF
               ! Stable OSBL  - shear production not coded for first attempt.
            ENDIF   ! l_conv
         END IF   ! l_shear
         IF ( l_conv(ji,jj) ) THEN
            ! Unstable OSBL
            pwb_min(ji,jj) = pwb_ent(ji,jj) + pdh(ji,jj) / phbl(ji,jj) * 2.0_wp * swbav(ji,jj)
         END IF  ! l_conv
      END_2D
      !
   END SUBROUTINE zdf_osm_osbl_state

   SUBROUTINE zdf_osm_external_gradients( Kmm, kbase, pdtdz, pdsdz, pdbdz )
      !!---------------------------------------------------------------------
      !!                   ***  ROUTINE zdf_osm_external_gradients  ***
      !!
      !! ** Purpose : Calculates the gradients below the OSBL
      !!
      !! ** Method  : Uses nbld and ibld_ext to determine levels to calculate the gradient.
      !!
      !!----------------------------------------------------------------------   
      INTEGER,                            INTENT(in   ) ::   Kmm            ! Ocean time-level index
      INTEGER,  DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   kbase          ! OSBL base layer index
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(  out) ::   pdtdz, pdsdz   ! External gradients of temperature, salinity
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(  out) ::   pdbdz          !    and buoyancy
Guillaume Samson's avatar
Guillaume Samson committed
      !!
      INTEGER  ::   ji, jj, jkb, jkb1
      REAL(wp) ::   zthermal, zbeta
      !!
      REAL(wp), PARAMETER ::   pp_large = -1e10_wp
      !!----------------------------------------------------------------------   
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pdtdz(ji,jj) = pp_large
         pdsdz(ji,jj) = pp_large
         pdbdz(ji,jj) = pp_large
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( kbase(ji,jj)+1 < mbkt(ji,jj) ) THEN
            zthermal = rab_n(ji,jj,1,jp_tem)   ! Ideally use nbld not 1??
            zbeta    = rab_n(ji,jj,1,jp_sal)
            jkb = kbase(ji,jj)
            jkb1 = MIN( jkb + 1, mbkt(ji,jj) )
            pdtdz(ji,jj) = -1.0_wp * ( ts(ji,jj,jkb1,jp_tem,Kmm) - ts(ji,jj,jkb,jp_tem,Kmm ) ) / e3w(ji,jj,jkb1,Kmm)
            pdsdz(ji,jj) = -1.0_wp * ( ts(ji,jj,jkb1,jp_sal,Kmm) - ts(ji,jj,jkb,jp_sal,Kmm ) ) / e3w(ji,jj,jkb1,Kmm)
            pdbdz(ji,jj) = grav * zthermal * pdtdz(ji,jj) - grav * zbeta * pdsdz(ji,jj)
         ELSE
            pdtdz(ji,jj) = 0.0_wp
            pdsdz(ji,jj) = 0.0_wp
            pdbdz(ji,jj) = 0.0_wp
         END IF
      END_2D
      !
   END SUBROUTINE zdf_osm_external_gradients

   SUBROUTINE zdf_osm_calculate_dhdt( pdhdt, phbl, pdh, pwb_ent, pwb_min,   &
      &                               pdbdz_bl_ext, pwb_fk_b, pwb_fk, pvel_mle )
      !!---------------------------------------------------------------------
      !!                   ***  ROUTINE zdf_osm_calculate_dhdt  ***
      !!
      !! ** Purpose : Calculates the rate at which hbl changes.
      !!
      !! ** Method  :
      !!
      !!----------------------------------------------------------------------
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(  out) ::   pdhdt          ! Rate of change of hbl
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   phbl           ! BL depth
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   pdh            ! Pycnocline depth
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   pwb_ent        ! Buoyancy entrainment flux
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   pwb_min
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   pdbdz_bl_ext   ! External buoyancy gradients
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(  out) ::   pwb_fk_b       ! MLE buoyancy flux averaged over OSBL
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   pwb_fk         ! Max MLE buoyancy flux
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   pvel_mle       ! Vvelocity scale for dhdt with stable ML and FK
Guillaume Samson's avatar
Guillaume Samson committed
      !!
      INTEGER  ::   jj, ji
      REAL(wp) ::   zgamma_b_nd, zgamma_dh_nd, zpert, zpsi, zari
      REAL(wp) ::   zvel_max, zddhdt
      !!
      REAL(wp), PARAMETER ::   pp_alpha_b = 0.3_wp
      REAL(wp), PARAMETER ::   pp_ddh     = 2.5_wp, pp_ddh_2 = 3.5_wp   ! Also in pycnocline_depth
      REAL(wp), PARAMETER ::   pp_large   = -1e10_wp
      !!----------------------------------------------------------------------
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pdhdt(ji,jj)    = pp_large
         pwb_fk_b(ji,jj) = pp_large
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         !
         IF ( l_shear(ji,jj) ) THEN
            !
            IF ( l_conv(ji,jj) ) THEN   ! Convective
               !
               IF ( ln_osm_mle ) THEN
                  IF ( hmle(ji,jj) > hbl(ji,jj) ) THEN   ! Fox-Kemper buoyancy flux average over OSBL
                     pwb_fk_b(ji,jj) = pwb_fk(ji,jj) * ( 1.0_wp + hmle(ji,jj) / ( 6.0_wp * hbl(ji,jj) ) *   &
                        &                                         ( -1.0_wp + ( 1.0_wp - 2.0_wp * hbl(ji,jj) / hmle(ji,jj) )**3 ) )
                  ELSE
                     pwb_fk_b(ji,jj) = 0.5_wp * pwb_fk(ji,jj) * hmle(ji,jj) / hbl(ji,jj)
                  ENDIF
                  zvel_max = ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**p2third / hbl(ji,jj)
                  IF ( ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) < 0.0_wp ) THEN   ! OSBL is deepening,
                     !                                                                 !    entrainment > restratification
                     IF ( av_db_bl(ji,jj) > 1e-15_wp ) THEN
                        zgamma_b_nd = MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) * pdh(ji,jj) /   &
                           &          ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                        zpsi = ( 1.0_wp - 0.5_wp * pdh(ji,jj) / phbl(ji,jj) ) *                                                &
                           &   ( swb0(ji,jj) - MIN( ( pwb_min(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ), 0.0_wp ) ) * pdh(ji,jj) /   &
                           &   phbl(ji,jj)
                        zpsi = zpsi + 1.75_wp * ( 1.0_wp - 0.5_wp * pdh(ji,jj) / phbl(ji,jj) ) *   &
                           &          ( pdh(ji,jj) / phbl(ji,jj) + zgamma_b_nd ) *   &
                           &          MIN( ( pwb_min(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ), 0.0_wp )
                        zpsi = pp_alpha_b * MAX( zpsi, 0.0_wp )
                        pdhdt(ji,jj) = -1.0_wp * ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) /      &
                           &                      ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) ) +   &
                           &            zpsi / ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                        IF ( n_ddh(ji,jj) == 1 ) THEN
                           IF ( ( swstrc(ji,jj) / svstr(ji,jj) )**3 <= 0.5_wp ) THEN
                              zari = MIN( 1.5_wp * av_db_bl(ji,jj) /                                                   &
                                 &        ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) +                       &
                                 &                               av_db_bl(ji,jj)**2 / MAX( 4.5_wp * svstr(ji,jj)**2,   &
                                 &                                                       1e-12_wp ) ) ), 0.2_wp )
                           ELSE
                              zari = MIN( 1.5_wp * av_db_bl(ji,jj) /                                                    &
                                 &        ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) +                        &
                                 &                               av_db_bl(ji,jj)**2 / MAX( 4.5_wp * swstrc(ji,jj)**2,   &
                                 &                                                       1e-12_wp ) ) ), 0.2_wp )
                           ENDIF
                           ! Relaxation to dh_ref = zari * hbl
                           zddhdt = -1.0_wp * pp_ddh_2 * ( 1.0_wp - pdh(ji,jj) / ( zari * phbl(ji,jj) ) ) * pwb_ent(ji,jj) /   &
                              &     ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                        ELSE IF ( n_ddh(ji,jj) == 0 ) THEN   ! Growing shear layer
                           zddhdt = -1.0_wp * pp_ddh * ( 1.0_wp - 1.6_wp * pdh(ji,jj) / phbl(ji,jj) ) * pwb_ent(ji,jj) /   &
                              &     ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                           zddhdt = EXP( -4.0_wp * ABS( ff_t(ji,jj) ) * phbl(ji,jj) / MAX( sustar(ji,jj), 1e-8_wp ) ) * zddhdt
                        ELSE
                           zddhdt = 0.0_wp
                        ENDIF   ! n_ddh
                        pdhdt(ji,jj) = pdhdt(ji,jj) + pp_alpha_b * ( 1.0_wp - 0.5_wp * pdh(ji,jj) / phbl(ji,jj) ) *   &
                           &                            av_db_ml(ji,jj) * MAX( zddhdt, 0.0_wp ) /   &
                           &                            ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                     ELSE   ! av_db_bl >0
                        pdhdt(ji,jj) = -1.0_wp * ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) /  MAX( zvel_max, 1e-15_wp )
                     ENDIF
                  ELSE   ! pwb_min + 2*pwb_fk_b < 0
                     ! OSBL shoaling due to restratification flux. This is the velocity defined in Fox-Kemper et al (2008)
                     pdhdt(ji,jj) = -1.0_wp * MIN( pvel_mle(ji,jj), hbl(ji,jj) / 10800.0_wp )
                  ENDIF
               ELSE   ! Fox-Kemper not used.
                  zvel_max = -1.0_wp * ( 1.0_wp + 1.0_wp * ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird *     &
                     &                                                         rn_Dt / hbl(ji,jj) ) * pwb_ent(ji,jj) /   &
                     &       MAX( ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird, epsln )
                  pdhdt(ji,jj) = -1.0_wp * pwb_ent(ji,jj) / ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                  ! added ajgn 23 July as temporay fix
               ENDIF   ! ln_osm_mle
               !
            ELSE   ! l_conv - Stable
               !
               pdhdt(ji,jj) = ( 0.06_wp + 0.52_wp * shol(ji,jj) / 2.0_wp ) * svstr(ji,jj)**3 / hbl(ji,jj) + swbav(ji,jj)
               IF ( pdhdt(ji,jj) < 0.0_wp ) THEN   ! For long timsteps factor in brackets slows the rapid collapse of the OSBL
                  zpert = 2.0_wp * ( 1.0_wp + 0.0_wp * 2.0_wp * svstr(ji,jj) * rn_Dt / hbl(ji,jj) ) * svstr(ji,jj)**2 / hbl(ji,jj)
               ELSE
                  zpert = MAX( svstr(ji,jj)**2 / hbl(ji,jj), av_db_bl(ji,jj) )
               ENDIF
               pdhdt(ji,jj) = 2.0_wp * pdhdt(ji,jj) / MAX( zpert, epsln )
               pdhdt(ji,jj) = MAX( pdhdt(ji,jj), -1.0_wp * hbl(ji,jj) / 5400.0_wp )
               !
            ENDIF   ! l_conv
            !
         ELSE   ! l_shear
            !
            IF ( l_conv(ji,jj) ) THEN   ! Convective
               !
               IF ( ln_osm_mle ) THEN
                  IF ( hmle(ji,jj) > hbl(ji,jj) ) THEN   ! Fox-Kemper buoyancy flux average over OSBL
                     pwb_fk_b(ji,jj) = pwb_fk(ji,jj) *                       &
                        ( 1.0_wp + hmle(ji,jj) / ( 6.0_wp * hbl(ji,jj) ) *   &
                        &          ( -1.0_wp + ( 1.0_wp - 2.0_wp * hbl(ji,jj) / hmle(ji,jj))**3) )
                  ELSE
                     pwb_fk_b(ji,jj) = 0.5_wp * pwb_fk(ji,jj) * hmle(ji,jj) / hbl(ji,jj)
                  ENDIF
                  zvel_max = ( swstrl(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**p2third / hbl(ji,jj)
                  IF ( ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) < 0.0_wp ) THEN   ! OSBL is deepening,
                     !                                                                 !    entrainment > restratification
                     IF ( av_db_bl(ji,jj) > 0.0_wp .AND. pdbdz_bl_ext(ji,jj) > 0.0_wp ) THEN
                        pdhdt(ji,jj) = -1.0_wp * ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) /   &
                           &            ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                     ELSE
                        pdhdt(ji,jj) = -1.0_wp * ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) / MAX( zvel_max, 1e-15_wp )
                     ENDIF
                  ELSE   ! OSBL shoaling due to restratification flux. This is the velocity defined in Fox-Kemper et al (2008)
                     pdhdt(ji,jj) = -1.0_wp * MIN( pvel_mle(ji,jj), hbl(ji,jj) / 10800.0_wp )
                  ENDIF
               ELSE   ! Fox-Kemper not used
                  zvel_max = -1.0_wp * pwb_ent(ji,jj) / MAX( ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird, epsln )
                  pdhdt(ji,jj) = -1.0_wp * pwb_ent(ji,jj) / ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                  ! added ajgn 23 July as temporay fix
               ENDIF  ! ln_osm_mle
               !
            ELSE                        ! Stable
               !
               pdhdt(ji,jj) = ( 0.06_wp + 0.52_wp * shol(ji,jj) / 2.0_wp ) * svstr(ji,jj)**3 / hbl(ji,jj) + swbav(ji,jj)
               IF ( pdhdt(ji,jj) < 0.0_wp ) THEN
                  ! For long timsteps factor in brackets slows the rapid collapse of the OSBL
                  zpert = 2.0_wp * svstr(ji,jj)**2 / hbl(ji,jj)
               ELSE
                  zpert = MAX( svstr(ji,jj)**2 / hbl(ji,jj), av_db_bl(ji,jj) )
               ENDIF
               pdhdt(ji,jj) = 2.0_wp * pdhdt(ji,jj) / MAX(zpert, epsln)
               pdhdt(ji,jj) = MAX( pdhdt(ji,jj), -1.0_wp * hbl(ji,jj) / 5400.0_wp )
               !
            ENDIF  ! l_conv
            !
         ENDIF ! l_shear
         !
      END_2D
      !
   END SUBROUTINE zdf_osm_calculate_dhdt

   SUBROUTINE zdf_osm_timestep_hbl( Kmm, pdhdt, phbl, phbl_t, pwb_ent,   &
      &                             pwb_fk_b )
      !!---------------------------------------------------------------------
      !!                ***  ROUTINE zdf_osm_timestep_hbl  ***
      !!
      !! ** Purpose : Increments hbl.
      !!
      !! ** Method  : If the change in hbl exceeds one model level the change is
      !!              is calculated by moving down the grid, changing the
      !!              buoyancy jump. This is to ensure that the change in hbl
      !!              does not overshoot a stable layer.
      !!
      !!----------------------------------------------------------------------
      INTEGER,                            INTENT(in   ) ::   Kmm        ! Ocean time-level index
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(inout) ::   pdhdt      ! Rates of change of hbl
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(inout) ::   phbl       ! BL depth
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   phbl_t     ! BL depth
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   pwb_ent    ! Buoyancy entrainment flux
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   pwb_fk_b   ! MLE buoyancy flux averaged over OSBL
Guillaume Samson's avatar
Guillaume Samson committed
      !!
      INTEGER  ::   jk, jj, ji, jm
      REAL(wp) ::   zhbl_s, zvel_max, zdb
      REAL(wp) ::   zthermal, zbeta
      !!----------------------------------------------------------------------
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( nbld(ji,jj) - nmld(ji,jj) > 1 ) THEN
            !
            ! If boundary layer changes by more than one level, need to check for stable layers between initial and final depths.
            !
            zhbl_s   = hbl(ji,jj)
            jm       = nmld(ji,jj)
            zthermal = rab_n(ji,jj,1,jp_tem)
            zbeta    = rab_n(ji,jj,1,jp_sal)
            !
            IF ( l_conv(ji,jj) ) THEN   ! Unstable
               !
               IF( ln_osm_mle ) THEN
                  zvel_max = ( swstrl(ji,jj)**3 + swstrc(ji,jj)**3 )**p2third / hbl(ji,jj)
               ELSE
                  zvel_max = -1.0_wp * ( 1.0_wp + 1.0_wp * ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird * rn_Dt /   &
                     &                                     hbl(ji,jj) ) * pwb_ent(ji,jj) /                                     &
                     &       ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird
               ENDIF
               DO jk = nmld(ji,jj), nbld(ji,jj)
                  zdb = MAX( grav * ( zthermal * ( av_t_bl(ji,jj) - ts(ji,jj,jm,jp_tem,Kmm) ) -   &
                     &                zbeta    * ( av_s_bl(ji,jj) - ts(ji,jj,jm,jp_sal,Kmm) ) ), 0.0_wp ) + zvel_max
                  !
                  IF ( ln_osm_mle ) THEN
                     zhbl_s = zhbl_s + MIN( rn_Dt * ( ( -1.0_wp * pwb_ent(ji,jj) - 2.0_wp * pwb_fk_b(ji,jj) ) / zdb ) /   &
                        &                   REAL( nbld(ji,jj) - nmld(ji,jj), KIND=wp ), e3w(ji,jj,jm,Kmm) )
                  ELSE
                     zhbl_s = zhbl_s + MIN( rn_Dt * ( -1.0_wp * pwb_ent(ji,jj) / zdb ) /   &
                        &                   REAL( nbld(ji,jj) - nmld(ji,jj), KIND=wp ), e3w(ji,jj,jm,Kmm) )
                  ENDIF
                  !                    zhbl_s = MIN(zhbl_s,  gdepw(ji,jj, mbkt(ji,jj) + 1,Kmm) - depth_tol)
                  IF ( zhbl_s >= gdepw(ji,jj,mbkt(ji,jj) + 1,Kmm) ) THEN
                     zhbl_s = MIN( zhbl_s, gdepw(ji,jj, mbkt(ji,jj) + 1, Kmm ) - depth_tol )
                     l_pyc(ji,jj) = .FALSE.
                  ENDIF
                  IF ( zhbl_s >= gdepw(ji,jj,jm+1,Kmm) ) jm = jm + 1
               END DO
               hbl(ji,jj)  = zhbl_s
               nbld(ji,jj) = jm
            ELSE   ! Stable
               DO jk = nmld(ji,jj), nbld(ji,jj)
                  zdb = MAX(  grav * ( zthermal * ( av_t_bl(ji,jj) - ts(ji,jj,jm,jp_tem,Kmm) ) -               &
                     &                 zbeta    * ( av_s_bl(ji,jj) - ts(ji,jj,jm,jp_sal,Kmm) ) ), 0.0_wp ) +   &
                     &  2.0_wp * svstr(ji,jj)**2 / zhbl_s
                  !
                  ! Alan is thuis right? I have simply changed hbli to hbl
                  shol(ji,jj)  = -1.0_wp * zhbl_s / ( ( svstr(ji,jj)**3 + epsln ) / swbav(ji,jj) )
                  pdhdt(ji,jj) = -1.0_wp * ( swbav(ji,jj) - 0.04_wp / 2.0_wp * swstrl(ji,jj)**3 / zhbl_s -   &
                     &                       0.15_wp / 2.0_wp * ( 1.0_wp - EXP( -1.5_wp * sla(ji,jj) ) ) *   &
                     &                                 sustar(ji,jj)**3 / zhbl_s ) *                         &
                     &           ( 0.725_wp + 0.225_wp * EXP( -7.5_wp * shol(ji,jj) ) )
                  pdhdt(ji,jj) = pdhdt(ji,jj) + swbav(ji,jj)
                  zhbl_s = zhbl_s + MIN( pdhdt(ji,jj) / zdb * rn_Dt / REAL( nbld(ji,jj) - nmld(ji,jj), KIND=wp ),   &
                     &                   e3w(ji,jj,jm,Kmm) )
                  
                  !                    zhbl_s = MIN(zhbl_s, gdepw(ji,jj, mbkt(ji,jj) + 1,Kmm) - depth_tol)
                  IF ( zhbl_s >= gdepw(ji,jj,mbkt(ji,jj) + 1,Kmm) ) THEN
Guillaume Samson's avatar
Guillaume Samson committed
                     zhbl_s      = MIN( zhbl_s,  gdepw(ji,jj,mbkt(ji,jj)+1,Kmm) - depth_tol )
                     l_pyc(ji,jj) = .FALSE.
                  ENDIF
                  IF ( zhbl_s >= gdepw(ji,jj,jm,Kmm) ) jm = jm + 1
               END DO
            ENDIF   ! IF ( l_conv )
            hbl(ji,jj)  = MAX( zhbl_s, gdepw(ji,jj,4,Kmm) )
            nbld(ji,jj) = MAX( jm, 4 )
         ELSE
            ! change zero or one model level.
            hbl(ji,jj) = MAX( phbl_t(ji,jj), gdepw(ji,jj,4,Kmm) )
         ENDIF
         phbl(ji,jj) = gdepw(ji,jj,nbld(ji,jj),Kmm)
      END_2D
      !
   END SUBROUTINE zdf_osm_timestep_hbl

   SUBROUTINE zdf_osm_pycnocline_thickness( Kmm, pdh, phml, pdhdt, phbl,   &
      &                                     pwb_ent, pdbdz_bl_ext, pwb_fk_b )
      !!---------------------------------------------------------------------
      !!            ***  ROUTINE zdf_osm_pycnocline_thickness  ***
      !!
      !! ** Purpose : Calculates thickness of the pycnocline
      !!
      !! ** Method  : The thickness is calculated from a prognostic equation
      !!              that relaxes the pycnocine thickness to a diagnostic
      !!              value. The time change is calculated assuming the
      !!              thickness relaxes exponentially. This is done to deal
      !!              with large timesteps.
      !!
      !!----------------------------------------------------------------------
      INTEGER,                            INTENT(in   ) ::   Kmm            ! Ocean time-level index
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(inout) ::   pdh            ! Pycnocline thickness
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(inout) ::   phml           ! ML depth
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   pdhdt          ! BL depth tendency
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   phbl           ! BL depth
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   pwb_ent        ! Buoyancy entrainment flux
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   pdbdz_bl_ext   ! External buoyancy gradients
      REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in   ) ::   pwb_fk_b       ! MLE buoyancy flux averaged over OSBL
Guillaume Samson's avatar
Guillaume Samson committed
      !!
      INTEGER  ::   jj, ji
      INTEGER  ::   inhml
      REAL(wp) ::   zari, ztau, zdh_ref, zddhdt, zvel_max
      REAL(wp) ::   ztmp   ! Auxiliary variable
      !!
      REAL, PARAMETER ::   pp_ddh = 2.5_wp, pp_ddh_2 = 3.5_wp   ! Also in pycnocline_depth
      !!----------------------------------------------------------------------
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         !
         IF ( l_shear(ji,jj) ) THEN
            !
            IF ( l_conv(ji,jj) ) THEN
               !
               IF ( av_db_bl(ji,jj) > 1e-15_wp ) THEN
                  IF ( n_ddh(ji,jj) == 0 ) THEN
                     zvel_max = ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**p2third / hbl(ji,jj)
                     ! ddhdt for pycnocline determined in osm_calculate_dhdt
                     zddhdt = -1.0_wp * pp_ddh * ( 1.0_wp - 1.6_wp * pdh(ji,jj) / phbl(ji,jj) ) * pwb_ent(ji,jj) /   &
                        &     ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15 ) )
                     zddhdt = EXP( -4.0_wp * ABS( ff_t(ji,jj) ) * phbl(ji,jj) / MAX( sustar(ji,jj), 1e-8 ) ) * zddhdt
                     ! Maximum limit for how thick the shear layer can grow relative to the thickness of the boundary layer
                     dh(ji,jj) = MIN( dh(ji,jj) + zddhdt * rn_Dt, 0.625_wp * hbl(ji,jj) )
                  ELSE   ! Need to recalculate because hbl has been updated
                     IF ( ( swstrc(ji,jj) / svstr(ji,jj) )**3 <= 0.5_wp ) THEN
                        ztmp = svstr(ji,jj)
                     ELSE
                        ztmp = swstrc(ji,jj)
                     END IF
                     zari = MIN( 1.5_wp * av_db_bl(ji,jj) / ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) +        &
                        &                                                   av_db_bl(ji,jj)**2 / MAX( 4.5_wp * ztmp**2,   &
                        &                                                                           1e-12_wp ) ) ), 0.2_wp )
                     ztau = MAX( av_db_bl(ji,jj) * ( zari * hbl(ji,jj) ) /   &
                        &        ( pp_ddh_2 * MAX( -1.0_wp * pwb_ent(ji,jj), 1e-12_wp ) ), 2.0_wp * rn_Dt )
                     dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) +   &
                        &        zari * phbl(ji,jj) * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
                     IF ( dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zari * phbl(ji,jj)
                  END IF
               ELSE
                  ztau = MAX( MAX( hbl(ji,jj) / ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird, epsln), 2.0_wp * rn_Dt )
                  dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) +   &
                     &        0.2_wp * phbl(ji,jj) * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
                  IF ( dh(ji,jj) > hbl(ji,jj) ) dh(ji,jj) = 0.2_wp * hbl(ji,jj)
               END IF
               !
            ELSE   ! l_conv
               ! Initially shear only for entraining OSBL. Stable code will be needed if extended to stable OSBL
               ztau = hbl(ji,jj) / MAX(svstr(ji,jj), epsln)
               IF ( pdhdt(ji,jj) >= 0.0_wp ) THEN   ! Probably shouldn't include wm here
                  ! Boundary layer deepening
                  IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
                     ! Pycnocline thickness set by stratification - use same relationship as for neutral conditions
                     zari    = MIN( 4.5_wp * ( svstr(ji,jj)**2 ) / MAX( av_db_bl(ji,jj) * phbl(ji,jj), epsln ) + 0.01_wp, 0.2_wp )
                     zdh_ref = MIN( zari, 0.2_wp ) * hbl(ji,jj)
                  ELSE
                     zdh_ref = 0.2_wp * hbl(ji,jj)
                  ENDIF
               ELSE   ! IF(dhdt < 0)
                  zdh_ref = 0.2_wp * hbl(ji,jj)
               ENDIF   ! IF (dhdt >= 0)
               dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) + zdh_ref * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
               IF ( pdhdt(ji,jj) < 0.0_wp .AND. dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zdh_ref   ! Can be a problem with dh>hbl for
               !                                                                                !    rapid collapse
            ENDIF
            !
         ELSE   ! l_shear = .FALSE., calculate ddhdt here
            !
            IF ( l_conv(ji,jj) ) THEN
               !
               IF( ln_osm_mle ) THEN
                  IF ( ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) < 0.0_wp ) THEN   ! OSBL is deepening. Note wb_fk_b is zero if
                     !                                                                 !    ln_osm_mle=F
                     IF ( av_db_bl(ji,jj) > 0.0_wp .AND. pdbdz_bl_ext(ji,jj) > 0.0_wp ) THEN
                        IF ( ( swstrc(ji,jj) / MAX( svstr(ji,jj), epsln) )**3 <= 0.5_wp ) THEN   ! Near neutral stability
                           ztmp = svstr(ji,jj)
                        ELSE   ! Unstable
                           ztmp = swstrc(ji,jj)
                        END IF
                        zari = MIN( 1.5_wp * av_db_bl(ji,jj) /                               &
                           &        ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) +   &
                           &                          av_db_bl(ji,jj)**2 / MAX( 4.5_wp * ztmp**2 , 1e-12_wp ) ) ), 0.2_wp )
                     ELSE
                        zari = 0.2_wp
                     END IF
                  ELSE
                     zari = 0.2_wp
                  END IF
                  ztau    = 0.2_wp * hbl(ji,jj) / MAX( epsln, ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird )
                  zdh_ref = zari * hbl(ji,jj)
               ELSE   ! ln_osm_mle
                  IF ( av_db_bl(ji,jj) > 0.0_wp .AND. pdbdz_bl_ext(ji,jj) > 0.0_wp ) THEN
                     IF ( ( swstrc(ji,jj) / MAX( svstr(ji,jj), epsln ) )**3 <= 0.5_wp ) THEN   ! Near neutral stability
                        ztmp = svstr(ji,jj)
                     ELSE   ! Unstable
                        ztmp = swstrc(ji,jj)
                     END IF
                     zari    = MIN( 1.5_wp * av_db_bl(ji,jj) /                               &
                        &           ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) +   &
                        &                             av_db_bl(ji,jj)**2 / MAX( 4.5_wp * ztmp**2 , 1e-12_wp ) ) ), 0.2_wp )
                  ELSE
                     zari    = 0.2_wp
                  END IF
                  ztau    = hbl(ji,jj) / MAX( epsln, ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird )
                  zdh_ref = zari * hbl(ji,jj)
               END IF   ! ln_osm_mle
               dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) + zdh_ref * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
               !               IF ( pdhdt(ji,jj) < 0._wp .and. dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zdh_ref
               IF ( dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zdh_ref
               ! Alan: this hml is never defined or used
            ELSE   ! IF (l_conv)
               !
               ztau = hbl(ji,jj) / MAX( svstr(ji,jj), epsln )
               IF ( pdhdt(ji,jj) >= 0.0_wp ) THEN   ! Probably shouldn't include wm here
                  ! Boundary layer deepening
                  IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
                     ! Pycnocline thickness set by stratification - use same relationship as for neutral conditions.
                     zari    = MIN( 4.5_wp * ( svstr(ji,jj)**2 ) / MAX( av_db_bl(ji,jj) * phbl(ji,jj), epsln ) + 0.01_wp , 0.2_wp )
                     zdh_ref = MIN( zari, 0.2_wp ) * hbl(ji,jj)
                  ELSE
                     zdh_ref = 0.2_wp * hbl(ji,jj)
                  END IF
               ELSE   ! IF(dhdt < 0)
                  zdh_ref = 0.2_wp * hbl(ji,jj)
               END IF   ! IF (dhdt >= 0)
               dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) + zdh_ref * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
               IF ( pdhdt(ji,jj) < 0.0_wp .AND. dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zdh_ref   ! Can be a problem with dh>hbl for
               !                                                                                !    rapid collapse
            END IF   ! IF (l_conv)
            !
         END IF   ! l_shear
         !
         hml(ji,jj)  = hbl(ji,jj) - dh(ji,jj)
         inhml       = MAX( INT( dh(ji,jj) / MAX( e3t(ji,jj,nbld(ji,jj)-1,Kmm), 1e-3_wp ) ), 1 )
         nmld(ji,jj) = MAX( nbld(ji,jj) - inhml, 3 )
         phml(ji,jj) = gdepw(ji,jj,nmld(ji,jj),Kmm)
         pdh(ji,jj)  = phbl(ji,jj) - phml(ji,jj)
         !
      END_2D
      !
   END SUBROUTINE zdf_osm_pycnocline_thickness

   SUBROUTINE zdf_osm_pycnocline_buoyancy_profiles( Kmm, kp_ext, pdbdz, palpha, pdh,   &
      &                                             phbl, pdbdz_bl_ext, phml, pdhdt )
      !!---------------------------------------------------------------------
      !!       ***  ROUTINE zdf_osm_pycnocline_buoyancy_profiles  ***
      !!
      !! ** Purpose : calculate pycnocline buoyancy profiles
      !!
      !! ** Method  : 
      !!
      !!----------------------------------------------------------------------
      INTEGER,                                 INTENT(in   ) ::   Kmm            ! Ocean time-level index
      INTEGER,  DIMENSION(T2D(nn_hls-1)),      INTENT(in   ) ::   kp_ext         ! External-level offsets
      REAL(wp), DIMENSION(T2D(nn_hls-1),jpk),  INTENT(  out) ::   pdbdz          ! Gradients in the pycnocline
      REAL(wp), DIMENSION(T2D(nn_hls-1)),      INTENT(  out) ::   palpha
      REAL(wp), DIMENSION(T2D(nn_hls-1)),      INTENT(in   ) ::   pdh            ! Pycnocline thickness
      REAL(wp), DIMENSION(T2D(nn_hls-1)),      INTENT(in   ) ::   phbl           ! BL depth
      REAL(wp), DIMENSION(T2D(nn_hls-1)),      INTENT(in   ) ::   pdbdz_bl_ext   ! External buoyancy gradients
      REAL(wp), DIMENSION(T2D(nn_hls-1)),      INTENT(in   ) ::   phml           ! ML depth
      REAL(wp), DIMENSION(T2D(nn_hls-1)),      INTENT(in   ) ::   pdhdt          ! Rates of change of hbl
Guillaume Samson's avatar
Guillaume Samson committed
      !!
      INTEGER  ::   jk, jj, ji
      REAL(wp) ::   zbgrad
      REAL(wp) ::   zgamma_b_nd, znd
      REAL(wp) ::   zzeta_m
      REAL(wp) ::   ztmp   ! Auxiliary variable
      !!
      REAL(wp), PARAMETER ::   pp_gamma_b = 2.25_wp
      REAL(wp), PARAMETER ::   pp_large   = -1e10_wp
      !!----------------------------------------------------------------------
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )      
         pdbdz(ji,jj,:) = pp_large
         palpha(ji,jj)  = pp_large
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         !
         IF ( nbld(ji,jj) + kp_ext(ji,jj) < mbkt(ji,jj) ) THEN
            !
            IF ( l_conv(ji,jj) ) THEN   ! Convective conditions
               !
               IF ( l_pyc(ji,jj) ) THEN
                  !
                  zzeta_m = 0.1_wp + 0.3_wp / ( 1.0_wp + EXP( -3.5_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )
                  palpha(ji,jj) = 2.0_wp * ( 1.0_wp - ( 0.80_wp * zzeta_m + 0.5_wp * SQRT( 3.14159_wp / pp_gamma_b ) ) *   &
                     &                                pdbdz_bl_ext(ji,jj) * pdh(ji,jj) / av_db_ml(ji,jj) ) /                &
                     &            ( 0.723_wp + SQRT( 3.14159_wp / pp_gamma_b ) )
                  palpha(ji,jj) = MAX( palpha(ji,jj), 0.0_wp )
                  ztmp = 1.0_wp / MAX( pdh(ji,jj), epsln )
                  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                  ! Commented lines in this section are not needed in new code, once tested !
                  ! can be removed                                                          !
                  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                  ! ztgrad = zalpha * av_dt_ml(ji,jj) * ztmp + zdtdz_bl_ext(ji,jj)
                  ! zsgrad = zalpha * av_ds_ml(ji,jj) * ztmp + zdsdz_bl_ext(ji,jj)
                  zbgrad = palpha(ji,jj) * av_db_ml(ji,jj) * ztmp + pdbdz_bl_ext(ji,jj)
                  zgamma_b_nd = pdbdz_bl_ext(ji,jj) * pdh(ji,jj) / MAX( av_db_ml(ji,jj), epsln )
                  DO jk = 2, nbld(ji,jj)
                     znd = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) * ztmp
                     IF ( znd <= zzeta_m ) THEN
                        ! zdtdz(ji,jj,jk) = zdtdz_bl_ext(ji,jj) + zalpha * av_dt_ml(ji,jj) * ztmp * &
                        ! &        EXP( -6.0 * ( znd -zzeta_m )**2 )
                        ! zdsdz(ji,jj,jk) = zdsdz_bl_ext(ji,jj) + zalpha * av_ds_ml(ji,jj) * ztmp * &
                        ! & EXP( -6.0 * ( znd -zzeta_m )**2 )
                        pdbdz(ji,jj,jk) = pdbdz_bl_ext(ji,jj) + palpha(ji,jj) * av_db_ml(ji,jj) * ztmp * &
                           & EXP( -6.0_wp * ( znd -zzeta_m )**2 )
                     ELSE
                        ! zdtdz(ji,jj,jk) =  ztgrad * EXP( -pp_gamma_b * ( znd - zzeta_m )**2 )
                        ! zdsdz(ji,jj,jk) =  zsgrad * EXP( -pp_gamma_b * ( znd - zzeta_m )**2 )
                        pdbdz(ji,jj,jk) =  zbgrad * EXP( -1.0_wp * pp_gamma_b * ( znd - zzeta_m )**2 )
                     END IF
                  END DO
               END IF   ! If no pycnocline pycnocline gradients set to zero
               !
            ELSE   ! Stable conditions
               ! If pycnocline profile only defined when depth steady of increasing.
               IF ( pdhdt(ji,jj) > 0.0_wp ) THEN   ! Depth increasing, or steady.
                  IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
                     IF ( shol(ji,jj) >= 0.5_wp ) THEN   ! Very stable - 'thick' pycnocline
                        ztmp = 1.0_wp / MAX( phbl(ji,jj), epsln )
                        zbgrad = av_db_bl(ji,jj) * ztmp
                        DO jk = 2, nbld(ji,jj)
                           znd = gdepw(ji,jj,jk,Kmm) * ztmp
                           pdbdz(ji,jj,jk) = zbgrad * EXP( -15.0_wp * ( znd - 0.9_wp )**2 )
                        END DO
                     ELSE   ! Slightly stable - 'thin' pycnoline - needed when stable layer begins to form.
                        ztmp = 1.0_wp / MAX( pdh(ji,jj), epsln )
                        zbgrad = av_db_bl(ji,jj) * ztmp
                        DO jk = 2, nbld(ji,jj)
                           znd = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phml(ji,jj) ) * ztmp
                           pdbdz(ji,jj,jk) = zbgrad * EXP( -1.75_wp * ( znd + 0.75_wp )**2 )
                        END DO
                     END IF   ! IF (shol >=0.5)
                  END IF      ! IF (av_db_bl> 0.)
               END IF         ! IF (pdhdt >= 0) pdhdt < 0 not considered since pycnocline profile is zero and profile arrays are
               !              !    intialized to zero
               !
            END IF            ! IF (l_conv)
            !
         END IF   ! IF ( nbld(ji,jj) < mbkt(ji,jj) )
         !
      END_2D
      !
      IF ( ln_dia_pyc_scl ) THEN   ! Output of pycnocline gradient profiles
         CALL zdf_osm_iomput( "zdbdz_pyc", wmask(T2D(0),:) * pdbdz(T2D(0),:) )
Guillaume Samson's avatar
Guillaume Samson committed
      END IF
      !
   END SUBROUTINE zdf_osm_pycnocline_buoyancy_profiles

   SUBROUTINE zdf_osm_diffusivity_viscosity( Kbb, Kmm, pdiffut, pviscos, phbl,   &
      &                                      phml, pdh, pdhdt, pshear,           &
      &                                      pwb_ent, pwb_min )
      !!---------------------------------------------------------------------
      !!           ***  ROUTINE zdf_osm_diffusivity_viscosity  ***
      !!
      !! ** Purpose : Determines the eddy diffusivity and eddy viscosity
      !!              profiles in the mixed layer and the pycnocline.
      !!
      !! ** Method  :
      !!
      !!----------------------------------------------------------------------
      INTEGER,                                 INTENT(in   ) ::   Kbb, Kmm       ! Ocean time-level indices
      REAL(wp), DIMENSION(T2D(nn_hls-1),jpk),  INTENT(inout) ::   pdiffut        ! t-diffusivity
      REAL(wp), DIMENSION(T2D(nn_hls-1),jpk),  INTENT(inout) ::   pviscos        ! Viscosity
      REAL(wp), DIMENSION(T2D(nn_hls-1)),      INTENT(in   ) ::   phbl           ! BL depth
      REAL(wp), DIMENSION(T2D(nn_hls-1)),      INTENT(in   ) ::   phml           ! ML depth
      REAL(wp), DIMENSION(T2D(nn_hls-1)),      INTENT(in   ) ::   pdh            ! Pycnocline depth
      REAL(wp), DIMENSION(T2D(nn_hls-1)),      INTENT(in   ) ::   pdhdt          ! BL depth tendency
      REAL(wp), DIMENSION(T2D(nn_hls-1)),      INTENT(in   ) ::   pshear         ! Shear production
      REAL(wp), DIMENSION(T2D(nn_hls-1)),      INTENT(in   ) ::   pwb_ent        ! Buoyancy entrainment flux
      REAL(wp), DIMENSION(T2D(nn_hls-1)),      INTENT(in   ) ::   pwb_min
Guillaume Samson's avatar
Guillaume Samson committed
      !!
      INTEGER ::   ji, jj, jk   ! Loop indices
      !! Scales used to calculate eddy diffusivity and viscosity profiles
      REAL(wp), DIMENSION(T2D(nn_hls-1)) ::   zdifml_sc,    zvisml_sc
      REAL(wp), DIMENSION(T2D(nn_hls-1)) ::   zdifpyc_n_sc, zdifpyc_s_sc
      REAL(wp), DIMENSION(T2D(nn_hls-1)) ::   zvispyc_n_sc, zvispyc_s_sc
      REAL(wp), DIMENSION(T2D(nn_hls-1)) ::   zbeta_d_sc,   zbeta_v_sc
      REAL(wp), DIMENSION(T2D(nn_hls-1)) ::   zb_coup,      zc_coup_vis,  zc_coup_dif
Guillaume Samson's avatar
Guillaume Samson committed
      !!
      REAL(wp) ::   zvel_sc_pyc, zvel_sc_ml, zstab_fac, zz_b
      REAL(wp) ::   za_cubic, zb_d_cubic, zc_d_cubic, zd_d_cubic,   &   ! Coefficients in cubic polynomial specifying diffusivity
         &                    zb_v_cubic, zc_v_cubic, zd_v_cubic        ! and viscosity in pycnocline
      REAL(wp) ::   zznd_ml, zznd_pyc, ztmp
      REAL(wp) ::   zmsku, zmskv
      !!
      REAL(wp), PARAMETER ::   pp_dif_ml     = 0.8_wp,  pp_vis_ml  = 0.375_wp
      REAL(wp), PARAMETER ::   pp_dif_pyc    = 0.15_wp, pp_vis_pyc = 0.142_wp
      REAL(wp), PARAMETER ::   pp_vispyc_shr = 0.15_wp