Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
!!----------------------------------------------------------------------
!
zb_coup(:,:) = 0.0_wp
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_conv(ji,jj) ) THEN
!
zvel_sc_pyc = ( 0.15_wp * svstr(ji,jj)**3 + swstrc(ji,jj)**3 + 4.25_wp * pshear(ji,jj) * phbl(ji,jj) )**pthird
zvel_sc_ml = ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird
zstab_fac = ( phml(ji,jj) / zvel_sc_ml * &
& ( 1.4_wp - 0.4_wp / ( 1.0_wp + EXP(-3.5_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )**1.25_wp ) )**2
!
zdifml_sc(ji,jj) = pp_dif_ml * phml(ji,jj) * zvel_sc_ml
zvisml_sc(ji,jj) = pp_vis_ml * zdifml_sc(ji,jj)
!
IF ( l_pyc(ji,jj) ) THEN
zdifpyc_n_sc(ji,jj) = pp_dif_pyc * zvel_sc_ml * pdh(ji,jj)
zvispyc_n_sc(ji,jj) = 0.09_wp * zvel_sc_pyc * ( 1.0_wp - phbl(ji,jj) / pdh(ji,jj) )**2 * &
& ( 0.005_wp * ( av_u_ml(ji,jj) - av_u_bl(ji,jj) )**2 + &
& 0.0075_wp * ( av_v_ml(ji,jj) - av_v_bl(ji,jj) )**2 ) / &
& pdh(ji,jj)
zvispyc_n_sc(ji,jj) = pp_vis_pyc * zvel_sc_ml * pdh(ji,jj) + zvispyc_n_sc(ji,jj) * zstab_fac
!
IF ( l_shear(ji,jj) .AND. n_ddh(ji,jj) /= 2 ) THEN
ztmp = pp_vispyc_shr * ( pshear(ji,jj) * phbl(ji,jj) )**pthird * phbl(ji,jj)
zdifpyc_n_sc(ji,jj) = zdifpyc_n_sc(ji,jj) + ztmp
zvispyc_n_sc(ji,jj) = zvispyc_n_sc(ji,jj) + ztmp
ENDIF
!
zdifpyc_s_sc(ji,jj) = pwb_ent(ji,jj) + 0.0025_wp * zvel_sc_pyc * ( phbl(ji,jj) / pdh(ji,jj) - 1.0_wp ) * &
& ( av_b_ml(ji,jj) - av_b_bl(ji,jj) )
zvispyc_s_sc(ji,jj) = 0.09_wp * ( pwb_min(ji,jj) + 0.0025_wp * zvel_sc_pyc * &
& ( phbl(ji,jj) / pdh(ji,jj) - 1.0_wp ) * &
& ( av_b_ml(ji,jj) - av_b_bl(ji,jj) ) )
zdifpyc_s_sc(ji,jj) = 0.09_wp * zdifpyc_s_sc(ji,jj) * zstab_fac
zvispyc_s_sc(ji,jj) = zvispyc_s_sc(ji,jj) * zstab_fac
!
zdifpyc_s_sc(ji,jj) = MAX( zdifpyc_s_sc(ji,jj), -0.5_wp * zdifpyc_n_sc(ji,jj) )
zvispyc_s_sc(ji,jj) = MAX( zvispyc_s_sc(ji,jj), -0.5_wp * zvispyc_n_sc(ji,jj) )
zbeta_d_sc(ji,jj) = 1.0_wp - ( ( zdifpyc_n_sc(ji,jj) + 1.4_wp * zdifpyc_s_sc(ji,jj) ) / &
& ( zdifml_sc(ji,jj) + epsln ) )**p2third
zbeta_v_sc(ji,jj) = 1.0_wp - 2.0_wp * ( zvispyc_n_sc(ji,jj) + zvispyc_s_sc(ji,jj) ) / ( zvisml_sc(ji,jj) + epsln )
ELSE
zdifpyc_n_sc(ji,jj) = pp_dif_pyc * zvel_sc_ml * pdh(ji,jj) ! ag 19/03
zdifpyc_s_sc(ji,jj) = 0.0_wp ! ag 19/03
zvispyc_n_sc(ji,jj) = pp_vis_pyc * zvel_sc_ml * pdh(ji,jj) ! ag 19/03
zvispyc_s_sc(ji,jj) = 0.0_wp ! ag 19/03
IF(l_coup(ji,jj) ) THEN ! ag 19/03
! code from SUBROUTINE tke_tke zdftke.F90; uses bottom drag velocity rCdU_bot(ji,jj) = -Cd|ub|
! already calculated at T-points in SUBROUTINE zdf_drg from zdfdrg.F90
! Gives friction velocity sqrt bottom drag/rho_0 i.e. u* = SQRT(rCdU_bot*ub)
! wet-cell averaging ..
zmsku = 0.5_wp * ( 2.0_wp - umask(ji-1,jj,mbkt(ji,jj)) * umask(ji,jj,mbkt(ji,jj)) )
zmskv = 0.5_wp * ( 2.0_wp - vmask(ji,jj-1,mbkt(ji,jj)) * vmask(ji,jj,mbkt(ji,jj)) )
zb_coup(ji,jj) = 0.4_wp * SQRT(-1.0_wp * rCdU_bot(ji,jj) * &
& SQRT( ( zmsku*( uu(ji,jj,mbkt(ji,jj),Kbb)+uu(ji-1,jj,mbkt(ji,jj),Kbb) ) )**2 &
& + ( zmskv*( vv(ji,jj,mbkt(ji,jj),Kbb)+vv(ji,jj-1,mbkt(ji,jj),Kbb) ) )**2 ) )
zz_b = -1.0_wp * gdepw(ji,jj,mbkt(ji,jj)+1,Kmm) ! ag 19/03
zc_coup_vis(ji,jj) = -0.5_wp * ( 0.5_wp * zvisml_sc(ji,jj) / phml(ji,jj) - zb_coup(ji,jj) ) / &
& ( phml(ji,jj) + zz_b ) ! ag 19/03
zz_b = -1.0_wp * phml(ji,jj) + gdepw(ji,jj,mbkt(ji,jj)+1,Kmm) ! ag 19/03
zbeta_v_sc(ji,jj) = 1.0_wp - 2.0_wp * ( zb_coup(ji,jj) * zz_b + zc_coup_vis(ji,jj) * zz_b**2 ) / &
& zvisml_sc(ji,jj) ! ag 19/03
zbeta_d_sc(ji,jj) = 1.0_wp - ( ( zb_coup(ji,jj) * zz_b + zc_coup_vis(ji,jj) * zz_b**2 ) / &
& zdifml_sc(ji,jj) )**p2third
zc_coup_dif(ji,jj) = 0.5_wp * ( -zdifml_sc(ji,jj) / phml(ji,jj) * ( 1.0_wp - zbeta_d_sc(ji,jj) )**1.5_wp + &
& 1.5_wp * ( zdifml_sc(ji,jj) / phml(ji,jj) ) * zbeta_d_sc(ji,jj) * &
& SQRT( 1.0_wp - zbeta_d_sc(ji,jj) ) - zb_coup(ji,jj) ) / zz_b ! ag 19/03
ELSE ! ag 19/03
zbeta_d_sc(ji,jj) = 1.0_wp - ( ( zdifpyc_n_sc(ji,jj) + 1.4_wp * zdifpyc_s_sc(ji,jj) ) / &
& ( zdifml_sc(ji,jj) + epsln ) )**p2third ! ag 19/03
zbeta_v_sc(ji,jj) = 1.0_wp - 2.0_wp * ( zvispyc_n_sc(ji,jj) + zvispyc_s_sc(ji,jj) ) / &
& ( zvisml_sc(ji,jj) + epsln ) ! ag 19/03
ENDIF ! ag 19/03
ENDIF ! ag 19/03
ELSE
zdifml_sc(ji,jj) = svstr(ji,jj) * phbl(ji,jj) * MAX( EXP ( -1.0_wp * ( shol(ji,jj) / 0.6_wp )**2 ), 0.2_wp)
zvisml_sc(ji,jj) = zdifml_sc(ji,jj)
END IF
END_2D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_conv(ji,jj) ) THEN
DO jk = 2, nmld(ji,jj) ! Mixed layer diffusivity
zznd_ml = gdepw(ji,jj,jk,Kmm) / phml(ji,jj)
pdiffut(ji,jj,jk) = zdifml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zbeta_d_sc(ji,jj) * zznd_ml )**1.5
pviscos(ji,jj,jk) = zvisml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zbeta_v_sc(ji,jj) * zznd_ml ) * &
& ( 1.0_wp - 0.5_wp * zznd_ml**2 )
END DO
!
! Coupling to bottom
!
IF ( l_coup(ji,jj) ) THEN ! ag 19/03
DO jk = mbkt(ji,jj), nmld(ji,jj), -1 ! ag 19/03
zz_b = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - gdepw(ji,jj,mbkt(ji,jj)+1,Kmm) ) ! ag 19/03
pviscos(ji,jj,jk) = zb_coup(ji,jj) * zz_b + zc_coup_vis(ji,jj) * zz_b**2 ! ag 19/03
pdiffut(ji,jj,jk) = zb_coup(ji,jj) * zz_b + zc_coup_dif(ji,jj) * zz_b**2 ! ag 19/03
END DO ! ag 19/03
ENDIF ! ag 19/03
! Pycnocline
IF ( l_pyc(ji,jj) ) THEN
! Diffusivity and viscosity profiles in the pycnocline given by
! cubic polynomial. Note, if l_pyc TRUE can't be coupled to seabed.
za_cubic = 0.5_wp
zb_d_cubic = -1.75_wp * zdifpyc_s_sc(ji,jj) / zdifpyc_n_sc(ji,jj)
zd_d_cubic = ( pdh(ji,jj) * zdifml_sc(ji,jj) / phml(ji,jj) * SQRT( 1.0_wp - zbeta_d_sc(ji,jj) ) * &
& ( 2.5_wp * zbeta_d_sc(ji,jj) - 1.0_wp ) - 0.85_wp * zdifpyc_s_sc(ji,jj) ) / &
& MAX( zdifpyc_n_sc(ji,jj), 1.0e-8_wp )
zd_d_cubic = zd_d_cubic - zb_d_cubic - 2.0_wp * ( 1.0_wp - za_cubic - zb_d_cubic )
zc_d_cubic = 1.0_wp - za_cubic - zb_d_cubic - zd_d_cubic
zb_v_cubic = -1.75_wp * zvispyc_s_sc(ji,jj) / zvispyc_n_sc(ji,jj)
zd_v_cubic = ( 0.5_wp * zvisml_sc(ji,jj) * pdh(ji,jj) / phml(ji,jj) - 0.85_wp * zvispyc_s_sc(ji,jj) ) / &
& MAX( zvispyc_n_sc(ji,jj), 1.0e-8_wp )
zd_v_cubic = zd_v_cubic - zb_v_cubic - 2.0_wp * ( 1.0_wp - za_cubic - zb_v_cubic )
zc_v_cubic = 1.0_wp - za_cubic - zb_v_cubic - zd_v_cubic
DO jk = nmld(ji,jj) , nbld(ji,jj)
zznd_pyc = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / MAX(pdh(ji,jj), 1.0e-6_wp )
ztmp = ( 1.75_wp * zznd_pyc - 0.15_wp * zznd_pyc**2 - 0.2_wp * zznd_pyc**3 )
!
pdiffut(ji,jj,jk) = zdifpyc_n_sc(ji,jj) * &
& ( za_cubic + zb_d_cubic * zznd_pyc + zc_d_cubic * zznd_pyc**2 + zd_d_cubic * zznd_pyc**3 )
!
pdiffut(ji,jj,jk) = pdiffut(ji,jj,jk) + zdifpyc_s_sc(ji,jj) * ztmp
pviscos(ji,jj,jk) = zvispyc_n_sc(ji,jj) * &
& ( za_cubic + zb_v_cubic * zznd_pyc + zc_v_cubic * zznd_pyc**2 + zd_v_cubic * zznd_pyc**3 )
pviscos(ji,jj,jk) = pviscos(ji,jj,jk) + zvispyc_s_sc(ji,jj) * ztmp
END DO
! IF ( pdhdt(ji,jj) > 0._wp ) THEN
! zdiffut(ji,jj,nbld(ji,jj)+1) = MAX( 0.5 * pdhdt(ji,jj) * e3w(ji,jj,nbld(ji,jj)+1,Kmm), 1.0e-6 )
! zviscos(ji,jj,nbld(ji,jj)+1) = MAX( 0.5 * pdhdt(ji,jj) * e3w(ji,jj,nbld(ji,jj)+1,Kmm), 1.0e-6 )
! ELSE
! zdiffut(ji,jj,nbld(ji,jj)) = 0._wp
! zviscos(ji,jj,nbld(ji,jj)) = 0._wp
! ENDIF
ENDIF
ELSE
! Stable conditions
DO jk = 2, nbld(ji,jj)
zznd_ml = gdepw(ji,jj,jk,Kmm) / phbl(ji,jj)
pdiffut(ji,jj,jk) = 0.75_wp * zdifml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zznd_ml )**1.5_wp
pviscos(ji,jj,jk) = 0.375_wp * zvisml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zznd_ml ) * ( 1.0_wp - zznd_ml**2 )
END DO
!
IF ( pdhdt(ji,jj) > 0.0_wp ) THEN
pdiffut(ji,jj,nbld(ji,jj)) = MAX( pdhdt(ji,jj), 1.0e-6_wp) * e3w(ji, jj, nbld(ji,jj), Kmm)
pviscos(ji,jj,nbld(ji,jj)) = pdiffut(ji,jj,nbld(ji,jj))
ENDIF
ENDIF ! End if ( l_conv )
!
END_2D
CALL zdf_osm_iomput( "pb_coup", tmask(T2D(0),1) * zb_coup(T2D(0)) ) ! BBL-coupling velocity scale
!
END SUBROUTINE zdf_osm_diffusivity_viscosity
SUBROUTINE zdf_osm_fgr_terms( Kmm, kp_ext, phbl, phml, pdh, &
& pdhdt, pshear, pdtdz_bl_ext, pdsdz_bl_ext, pdbdz_bl_ext, &
& pdiffut, pviscos )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_osm_fgr_terms ***
!!
!! ** Purpose : Compute non-gradient terms in flux-gradient relationship
!!
!! ** Method :
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Time-level index
INTEGER, DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: kp_ext ! Offset for external level
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: phbl ! BL depth
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: phml ! ML depth
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: pdh ! Pycnocline depth
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: pdhdt ! BL depth tendency
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: pshear ! Shear production
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: pdtdz_bl_ext ! External temperature gradients
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: pdsdz_bl_ext ! External salinity gradients
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: pdbdz_bl_ext ! External buoyancy gradients
REAL(wp), DIMENSION(T2D(nn_hls-1),jpk), INTENT(in ) :: pdiffut ! t-diffusivity
REAL(wp), DIMENSION(T2D(nn_hls-1),jpk), INTENT(in ) :: pviscos ! Viscosity
!!
REAL(wp), DIMENSION(T2D(nn_hls-1)) :: zalpha_pyc !
REAL(wp), DIMENSION(T2D(nn_hls-1),jpk) :: zdbdz_pyc ! Parametrised gradient of buoyancy in the pycnocline
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: z3ddz_pyc_1, z3ddz_pyc_2 ! Pycnocline gradient/shear profiles
!!
INTEGER :: ji, jj, jk, jkm_bld, jkf_mld, jkm_mld ! Loop indices
INTEGER :: istat ! Memory allocation status
REAL(wp) :: zznd_d, zznd_ml, zznd_pyc, znd ! Temporary non-dimensional depths
REAL(wp), DIMENSION(T2D(nn_hls-1)) :: zsc_wth_1,zsc_ws_1 ! Temporary scales
REAL(wp), DIMENSION(T2D(nn_hls-1)) :: zsc_uw_1, zsc_uw_2 ! Temporary scales
REAL(wp), DIMENSION(T2D(nn_hls-1)) :: zsc_vw_1, zsc_vw_2 ! Temporary scales
REAL(wp), DIMENSION(T2D(nn_hls-1)) :: ztau_sc_u ! Dissipation timescale at base of WML
REAL(wp) :: zbuoy_pyc_sc, zdelta_pyc !
REAL(wp) :: zl_c,zl_l,zl_eps ! Used to calculate turbulence length scale
REAL(wp), DIMENSION(T2D(nn_hls-1)) :: za_cubic, zb_cubic ! Coefficients in cubic polynomial specifying
REAL(wp), DIMENSION(T2D(nn_hls-1)) :: zc_cubic, zd_cubic ! diffusivity in pycnocline
REAL(wp), DIMENSION(T2D(nn_hls-1)) :: zwt_pyc_sc_1, zws_pyc_sc_1 !
REAL(wp), DIMENSION(T2D(nn_hls-1)) :: zzeta_pyc !
REAL(wp), DIMENSION(T2D(nn_hls-1)) :: zuw_bse,zvw_bse ! Momentum, heat, and salinity fluxes
REAL(wp), DIMENSION(T2D(nn_hls-1)) :: zwth_ent,zws_ent ! at the top of the pycnocline
REAL(wp), DIMENSION(T2D(nn_hls-1)) :: zsc_wth_pyc, zsc_ws_pyc ! Scales for pycnocline transport term
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
REAL(wp) :: ztmp !
REAL(wp) :: ztgrad, zsgrad, zbgrad ! Variables used to calculate pycnocline
!! ! gradients
REAL(wp) :: zugrad, zvgrad ! Variables for calculating pycnocline shear
REAL(wp) :: zdtdz_pyc ! Parametrized gradient of temperature in
!! ! pycnocline
REAL(wp) :: zdsdz_pyc ! Parametrised gradient of salinity in
!! ! pycnocline
REAL(wp) :: zdudz_pyc ! u-shear across the pycnocline
REAL(wp) :: zdvdz_pyc ! v-shear across the pycnocline
!!----------------------------------------------------------------------
!
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Pycnocline gradients for scalars and velocity
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
CALL zdf_osm_pycnocline_buoyancy_profiles( Kmm, kp_ext, zdbdz_pyc, zalpha_pyc, pdh, &
& phbl, pdbdz_bl_ext, phml, pdhdt )
!
! Auxiliary indices
! -----------------
jkm_bld = 0
jkf_mld = jpk
jkm_mld = 0
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( nbld(ji,jj) > jkm_bld ) jkm_bld = nbld(ji,jj)
IF ( nmld(ji,jj) < jkf_mld ) jkf_mld = nmld(ji,jj)
IF ( nmld(ji,jj) > jkm_mld ) jkm_mld = nmld(ji,jj)
END_2D
!
! Stokes term in scalar flux, flux-gradient relationship
! ------------------------------------------------------
WHERE ( l_conv(T2D(nn_hls-1)) )
zsc_wth_1(:,:) = swstrl(T2D(nn_hls-1))**3 * swth0(T2D(nn_hls-1)) / &
& ( svstr(T2D(nn_hls-1))**3 + 0.5_wp * swstrc(T2D(nn_hls-1))**3 + epsln )
zsc_ws_1(:,:) = swstrl(T2D(nn_hls-1))**3 * sws0(T2D(nn_hls-1)) / &
& ( svstr(T2D(nn_hls-1))**3 + 0.5_wp * swstrc(T2D(nn_hls-1))**3 + epsln )
zsc_wth_1(:,:) = 2.0_wp * swthav(T2D(nn_hls-1))
zsc_ws_1(:,:) = 2.0_wp * swsav(T2D(nn_hls-1))
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
ENDWHERE
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
IF ( l_conv(ji,jj) ) THEN
IF ( jk <= nmld(ji,jj) ) THEN
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 1.35_wp * EXP( -1.0_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -2.0_wp * zznd_d ) ) * zsc_wth_1(ji,jj)
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 1.35_wp * EXP( -1.0_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -2.0_wp * zznd_d ) ) * zsc_ws_1(ji,jj)
END IF
ELSE ! Stable conditions
IF ( jk <= nbld(ji,jj) ) THEN
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 2.15_wp * EXP( -0.85_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) * zsc_wth_1(ji,jj)
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 2.15_wp * EXP( -0.85_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) * zsc_ws_1(ji,jj)
END IF
END IF ! Check on l_conv
END_3D
!
IF ( ln_dia_osm ) THEN
CALL zdf_osm_iomput( "ghamu_00", wmask(T2D(0),:) * ghamu(T2D(0),:) )
CALL zdf_osm_iomput( "ghamv_00", wmask(T2D(0),:) * ghamv(T2D(0),:) )
END IF
!
! Stokes term in flux-gradient relationship (note in zsc_uw_n don't use
! svstr since term needs to go to zero as swstrl goes to zero)
! ---------------------------------------------------------------------
WHERE ( l_conv(T2D(nn_hls-1)) )
zsc_uw_1(:,:) = ( swstrl(T2D(nn_hls-1))**3 + &
& 0.5_wp * swstrc(T2D(nn_hls-1))**3 )**pthird * sustke(T2D(nn_hls-1)) / &
& MAX( ( 1.0_wp - 1.0_wp * 6.5_wp * sla(T2D(nn_hls-1))**( 8.0_wp / 3.0_wp ) ), 0.2_wp )
zsc_uw_2(:,:) = ( swstrl(T2D(nn_hls-1))**3 + &
& 0.5_wp * swstrc(T2D(nn_hls-1))**3 )**pthird * sustke(T2D(nn_hls-1)) / &
& MIN( sla(T2D(nn_hls-1))**( 8.0_wp / 3.0_wp ) + epsln, 0.12_wp )
zsc_vw_1(:,:) = ff_t(T2D(nn_hls-1)) * phml(T2D(nn_hls-1)) * sustke(T2D(nn_hls-1))**3 * &
& MIN( sla(T2D(nn_hls-1))**( 8.0_wp / 3.0_wp ), 0.12_wp ) / &
& ( ( svstr(T2D(nn_hls-1))**3 + 0.5_wp * swstrc(T2D(nn_hls-1))**3 )**( 2.0_wp / 3.0_wp ) + epsln )
zsc_uw_1(:,:) = sustar(T2D(nn_hls-1))**2
zsc_vw_1(:,:) = ff_t(T2D(nn_hls-1)) * phbl(T2D(nn_hls-1)) * sustke(T2D(nn_hls-1))**3 * &
& MIN( sla(T2D(nn_hls-1))**( 8.0_wp / 3.0_wp ), 0.12_wp ) / ( svstr(T2D(nn_hls-1))**2 + epsln )
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
ENDWHERE
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
IF ( l_conv(ji,jj) ) THEN
IF ( jk <= nmld(ji,jj) ) THEN
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + ( -0.05_wp * EXP( -0.4_wp * zznd_d ) * zsc_uw_1(ji,jj) + &
& 0.00125_wp * EXP( -1.0_wp * zznd_d ) * zsc_uw_2(ji,jj) ) * &
& ( 1.0_wp - EXP( -2.0_wp * zznd_d ) )
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) - 0.65_wp * 0.15_wp * EXP( -1.0_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -2.0_wp * zznd_d ) ) * zsc_vw_1(ji,jj)
END IF
ELSE ! Stable conditions
IF ( jk <= nbld(ji,jj) ) THEN ! Corrected to nbld
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) - 0.75_wp * 1.3_wp * EXP( -0.5_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) * zsc_uw_1(ji,jj)
END IF
END IF
END_3D
!
! Buoyancy term in flux-gradient relationship [note : includes ROI ratio
! (X0.3) and pressure (X0.5)]
! ----------------------------------------------------------------------
WHERE ( l_conv(T2D(nn_hls-1)) )
zsc_wth_1(:,:) = swbav(T2D(nn_hls-1)) * swth0(T2D(nn_hls-1)) * ( 1.0_wp + EXP( 0.2_wp * shol(T2D(nn_hls-1)) ) ) * &
& phml(T2D(nn_hls-1)) / ( svstr(T2D(nn_hls-1))**3 + 0.5_wp * swstrc(T2D(nn_hls-1))**3 + epsln )
zsc_ws_1(:,:) = swbav(T2D(nn_hls-1)) * sws0(T2D(nn_hls-1)) * ( 1.0_wp + EXP( 0.2_wp * shol(T2D(nn_hls-1)) ) ) * &
& phml(T2D(nn_hls-1)) / ( svstr(T2D(nn_hls-1))**3 + 0.5_wp * swstrc(T2D(nn_hls-1))**3 + epsln )
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
ELSEWHERE
zsc_wth_1(:,:) = 0.0_wp
zsc_ws_1(:,:) = 0.0_wp
ENDWHERE
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
IF ( l_conv(ji,jj) ) THEN
IF ( jk <= nmld(ji,jj) ) THEN
zznd_ml = gdepw(ji,jj,jk,Kmm) / phml(ji,jj)
! Calculate turbulent time scale
zl_c = 0.9_wp * ( 1.0_wp - EXP( -5.0_wp * ( zznd_ml + zznd_ml**3 / 3.0_wp ) ) ) * &
& ( 1.0_wp - EXP( -15.0_wp * ( 1.2_wp - zznd_ml ) ) )
zl_l = 2.0_wp * ( 1.0_wp - EXP( -2.0_wp * ( zznd_ml + zznd_ml**3 / 3.0_wp ) ) ) * &
& ( 1.0_wp - EXP( -8.0_wp * ( 1.15_wp - zznd_ml ) ) ) * ( 1.0_wp + dstokes(ji,jj) / phml (ji,jj) )
zl_eps = zl_l + ( zl_c - zl_l ) / ( 1.0_wp + EXP( -3.0_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )**( 3.0_wp / 2.0_wp )
! Non-gradient buoyancy terms
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 0.3_wp * 0.4_wp * zsc_wth_1(ji,jj) * zl_eps / ( 0.15_wp + zznd_ml )
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 0.3_wp * 0.4_wp * zsc_ws_1(ji,jj) * zl_eps / ( 0.15_wp + zznd_ml )
END IF
ELSE ! Stable conditions
IF ( jk <= nbld(ji,jj) ) THEN
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + zsc_wth_1(ji,jj)
ghams(ji,jj,jk) = ghams(ji,jj,jk) + zsc_ws_1(ji,jj)
END IF
END IF
END_3D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_conv(ji,jj) .AND. l_pyc(ji,jj) ) THEN
ztau_sc_u(ji,jj) = phml(ji,jj) / ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird * &
& ( 1.4_wp - 0.4_wp / ( 1.0_wp + EXP( -3.5_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )**1.5_wp )
zwth_ent(ji,jj) = -0.003_wp * ( 0.15_wp * svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird * &
& ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_dt_ml(ji,jj)
zws_ent(ji,jj) = -0.003_wp * ( 0.15_wp * svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird * &
& ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_ds_ml(ji,jj)
IF ( dh(ji,jj) < 0.2_wp * hbl(ji,jj) ) THEN
zbuoy_pyc_sc = 2.0_wp * MAX( av_db_ml(ji,jj), 0.0_wp ) / pdh(ji,jj)
zdelta_pyc = ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird / &
& SQRT( MAX( zbuoy_pyc_sc, ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**p2third / pdh(ji,jj)**2 ) )
zwt_pyc_sc_1(ji,jj) = 0.325_wp * ( zalpha_pyc(ji,jj) * av_dt_ml(ji,jj) / pdh(ji,jj) + pdtdz_bl_ext(ji,jj) ) * &
& zdelta_pyc**2 / pdh(ji,jj)
zws_pyc_sc_1(ji,jj) = 0.325_wp * ( zalpha_pyc(ji,jj) * av_ds_ml(ji,jj) / pdh(ji,jj) + pdsdz_bl_ext(ji,jj) ) * &
& zdelta_pyc**2 / pdh(ji,jj)
zzeta_pyc(ji,jj) = 0.15_wp - 0.175_wp / ( 1.0_wp + EXP( -3.5_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )
END IF
END IF
END_2D
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkm_bld )
IF ( l_conv(ji,jj) .AND. l_pyc(ji,jj) .AND. ( jk <= nbld(ji,jj) ) ) THEN
zznd_pyc = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / pdh(ji,jj)
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) - &
& 0.045_wp * ( ( zwth_ent(ji,jj) * zdbdz_pyc(ji,jj,jk) ) * ztau_sc_u(ji,jj)**2 ) * &
& MAX( ( 1.75_wp * zznd_pyc -0.15_wp * zznd_pyc**2 - 0.2_wp * zznd_pyc**3 ), 0.0_wp )
ghams(ji,jj,jk) = ghams(ji,jj,jk) - &
& 0.045_wp * ( ( zws_ent(ji,jj) * zdbdz_pyc(ji,jj,jk) ) * ztau_sc_u(ji,jj)**2 ) * &
& MAX( ( 1.75_wp * zznd_pyc -0.15_wp * zznd_pyc**2 - 0.2_wp * zznd_pyc**3 ), 0.0_wp )
IF ( dh(ji,jj) < 0.2_wp * hbl(ji,jj) .AND. nbld(ji,jj) - nmld(ji,jj) > 3 ) THEN
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 0.05_wp * zwt_pyc_sc_1(ji,jj) * &
& EXP( -0.25_wp * ( zznd_pyc / zzeta_pyc(ji,jj) )**2 ) * &
& pdh(ji,jj) / ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 0.05_wp * zws_pyc_sc_1(ji,jj) * &
& EXP( -0.25_wp * ( zznd_pyc / zzeta_pyc(ji,jj) )**2 ) * &
& pdh(ji,jj) / ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird
END IF
END IF ! End of pycnocline
END_3D
!
IF ( ln_dia_osm ) THEN
CALL zdf_osm_iomput( "zwth_ent", tmask(T2D(0),1) * zwth_ent(T2D(0)) ) ! Upward turb. temperature entrainment flux
CALL zdf_osm_iomput( "zws_ent", tmask(T2D(0),1) * zws_ent(T2D(0)) ) ! Upward turb. salinity entrainment flux
WHERE ( l_conv(T2D(nn_hls-1)) )
zsc_uw_1(:,:) = -1.0_wp * swb0(T2D(nn_hls-1)) * sustar(T2D(nn_hls-1))**2 * phml(T2D(nn_hls-1)) / &
& ( svstr(T2D(nn_hls-1))**3 + 0.5_wp * swstrc(T2D(nn_hls-1))**3 + epsln )
zsc_uw_2(:,:) = swb0(T2D(nn_hls-1)) * sustke(T2D(nn_hls-1)) * phml(T2D(nn_hls-1)) / &
& ( svstr(T2D(nn_hls-1))**3 + 0.5_wp * swstrc(T2D(nn_hls-1))**3 + epsln )**( 2.0_wp / 3.0_wp )
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
ELSEWHERE
zsc_uw_1(:,:) = 0.0_wp
ENDWHERE
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
IF ( l_conv(ji,jj) ) THEN
IF ( jk <= nmld(ji,jj) ) THEN
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + 0.3_wp * 0.5_wp * &
& ( zsc_uw_1(ji,jj) + 0.125_wp * EXP( -0.5_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -0.5_wp * zznd_d ) ) * zsc_uw_2(ji,jj) )
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + zsc_vw_1(ji,jj)
END IF
ELSE ! Stable conditions
IF ( jk <= nbld(ji,jj) ) THEN
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + zsc_uw_1(ji,jj)
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + zsc_vw_1(ji,jj)
END IF
ENDIF
END_3D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_conv(ji,jj) .AND. l_pyc(ji,jj) ) THEN
IF ( n_ddh(ji,jj) == 0 ) THEN
! Place holding code. Parametrization needs checking for these conditions.
zomega = ( 0.15_wp * swstrl(ji,jj)**3 + swstrc(ji,jj)**3 + 4.75_wp * ( pshear(ji,jj) * phbl(ji,jj) ) )**pthird
zuw_bse(ji,jj) = -0.0035_wp * zomega * ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_du_ml(ji,jj)
zvw_bse(ji,jj) = -0.0075_wp * zomega * ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_dv_ml(ji,jj)
ELSE
zomega = ( 0.15_wp * swstrl(ji,jj)**3 + swstrc(ji,jj)**3 + 4.75_wp * ( pshear(ji,jj) * phbl(ji,jj) ) )**pthird
zuw_bse(ji,jj) = -0.0035_wp * zomega * ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_du_ml(ji,jj)
zvw_bse(ji,jj) = -0.0075_wp * zomega * ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_dv_ml(ji,jj)
ENDIF
zb_cubic(ji,jj) = pdh(ji,jj) / phbl(ji,jj) * suw0(ji,jj) - ( 2.0_wp + pdh(ji,jj) / phml(ji,jj) ) * zuw_bse(ji,jj)
za_cubic(ji,jj) = zuw_bse(ji,jj) - zb_cubic(ji,jj)
zvw_max = 0.7_wp * ff_t(ji,jj) * ( sustke(ji,jj) * dstokes(ji,jj) + 0.7_wp * sustar(ji,jj) * phml(ji,jj) )
zd_cubic(ji,jj) = zvw_max * pdh(ji,jj) / phml(ji,jj) - ( 2.0_wp + pdh(ji,jj) / phml(ji,jj) ) * zvw_bse(ji,jj)
zc_cubic(ji,jj) = zvw_bse(ji,jj) - zd_cubic(ji,jj)
END IF
END_2D
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, jkf_mld, jkm_bld ) ! Need ztau_sc_u to be available. Change to array.
IF ( l_conv(ji,jj) .AND. l_pyc(ji,jj) .AND. ( jk >= nmld(ji,jj) ) .AND. ( jk <= nbld(ji,jj) ) ) THEN
zznd_pyc = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / pdh(ji,jj)
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) - 0.045_wp * ( ztau_sc_u(ji,jj)**2 ) * zuw_bse(ji,jj) * &
& ( za_cubic(ji,jj) * zznd_pyc**2 + zb_cubic(ji,jj) * zznd_pyc**3 ) * &
& ( 0.75_wp + 0.25_wp * zznd_pyc )**2 * zdbdz_pyc(ji,jj,jk)
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) - 0.045_wp * ( ztau_sc_u(ji,jj)**2 ) * zvw_bse(ji,jj) * &
& ( zc_cubic(ji,jj) * zznd_pyc**2 + zd_cubic(ji,jj) * zznd_pyc**3 ) * &
& ( 0.75_wp + 0.25_wp * zznd_pyc )**2 * zdbdz_pyc(ji,jj,jk)
END IF ! l_conv .AND. l_pyc
END_3D
!
IF ( ln_dia_osm ) THEN
CALL zdf_osm_iomput( "ghamu_0", wmask(T2D(0),:) * ghamu(T2D(0),:) )
CALL zdf_osm_iomput( "zsc_uw_1_0", tmask(T2D(0),1) * zsc_uw_1(T2D(0)) )
END IF
!
! Transport term in flux-gradient relationship [note : includes ROI ratio
! (X0.3) ]
! -----------------------------------------------------------------------
WHERE ( l_conv(T2D(nn_hls-1)) )
zsc_wth_1(:,:) = swth0(T2D(nn_hls-1)) / ( 1.0_wp - 0.56_wp * EXP( shol(T2D(nn_hls-1)) ) )
zsc_ws_1(:,:) = sws0(T2D(nn_hls-1)) / ( 1.0_wp - 0.56_wp * EXP( shol(T2D(nn_hls-1)) ) )
WHERE ( l_pyc(T2D(nn_hls-1)) ) ! Pycnocline scales
zsc_wth_pyc(:,:) = -0.003_wp * swstrc(T2D(nn_hls-1)) * ( 1.0_wp - pdh(T2D(nn_hls-1)) / phbl(T2D(nn_hls-1)) ) * &
& av_dt_ml(T2D(nn_hls-1))
zsc_ws_pyc(:,:) = -0.003_wp * swstrc(T2D(nn_hls-1)) * ( 1.0_wp - pdh(T2D(nn_hls-1)) / phbl(T2D(nn_hls-1)) ) * &
& av_ds_ml(T2D(nn_hls-1))
zsc_wth_1(:,:) = 2.0_wp * swthav(T2D(nn_hls-1))
zsc_ws_1(:,:) = sws0(T2D(nn_hls-1))
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
END WHERE
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, MAX( jkm_mld, jkm_bld ) )
IF ( l_conv(ji,jj) ) THEN
IF ( ( jk > 1 ) .AND. ( jk <= nmld(ji,jj) ) ) THEN
zznd_ml = gdepw(ji,jj,jk,Kmm) / phml(ji,jj)
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 0.3_wp * zsc_wth_1(ji,jj) * &
& ( -2.0_wp + 2.75_wp * ( ( 1.0_wp + 0.6_wp * zznd_ml**4 ) - &
& EXP( -6.0_wp * zznd_ml ) ) ) * &
& ( 1.0_wp - EXP( -15.0_wp * ( 1.0_wp - zznd_ml ) ) )
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 0.3_wp * zsc_ws_1(ji,jj) * &
& ( -2.0_wp + 2.75_wp * ( ( 1.0_wp + 0.6_wp * zznd_ml**4 ) - &
& EXP( -6.0_wp * zznd_ml ) ) ) * ( 1.0_wp - EXP( -15.0_wp * ( 1.0_wp - zznd_ml ) ) )
END IF
!
! may need to comment out lpyc block
IF ( l_pyc(ji,jj) .AND. ( jk >= nmld(ji,jj) ) .AND. ( jk <= nbld(ji,jj) ) ) THEN ! Pycnocline
zznd_pyc = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / pdh(ji,jj)
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 4.0_wp * zsc_wth_pyc(ji,jj) * &
& ( 0.48_wp - EXP( -1.5_wp * ( zznd_pyc - 0.3_wp )**2 ) )
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 4.0_wp * zsc_ws_pyc(ji,jj) * &
& ( 0.48_wp - EXP( -1.5_wp * ( zznd_pyc - 0.3_wp )**2 ) )
END IF
ELSE
IF( pdhdt(ji,jj) > 0. ) THEN
IF ( ( jk > 1 ) .AND. ( jk <= nbld(ji,jj) ) ) THEN
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
znd = gdepw(ji,jj,jk,Kmm) / phbl(ji,jj)
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 0.3_wp * ( -4.06_wp * EXP( -2.0_wp * zznd_d ) * ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) + &
7.5_wp * EXP ( -10.0_wp * ( 0.95_wp - znd )**2 ) * ( 1.0_wp - znd ) ) * zsc_wth_1(ji,jj)
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 0.3_wp * ( -4.06_wp * EXP( -2.0_wp * zznd_d ) * ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) + &
7.5_wp * EXP ( -10.0_wp * ( 0.95_wp - znd )**2 ) * ( 1.0_wp - znd ) ) * zsc_ws_1(ji,jj)
END IF
ENDIF
ENDIF
END_3D
!
WHERE ( l_conv(T2D(nn_hls-1)) )
zsc_uw_1(:,:) = sustar(T2D(nn_hls-1))**2
zsc_vw_1(:,:) = ff_t(T2D(nn_hls-1)) * sustke(T2D(nn_hls-1)) * phml(T2D(nn_hls-1))
zsc_uw_2(:,:) = ( 2.25_wp - 3.0_wp * ( 1.0_wp - EXP( -1.25_wp * 2.0_wp ) ) ) * ( 1.0_wp - EXP( -4.0_wp * 2.0_wp ) ) * &
& zsc_uw_1(:,:)
zsc_vw_1(:,:) = ff_t(T2D(nn_hls-1)) * sustke(T2D(nn_hls-1)) * phbl(T2D(nn_hls-1))
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
zsc_vw_2(:,:) = -0.11_wp * SIN( 3.14159_wp * ( 2.0_wp + 0.4_wp ) ) * EXP( -1.0_wp * ( 1.5_wp + 2.0_wp )**2 ) * &
& zsc_vw_1(:,:)
ENDWHERE
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
IF ( l_conv(ji,jj) ) THEN
IF ( jk <= nmld(ji,jj) ) THEN
zznd_ml = gdepw(ji,jj,jk,Kmm) / phml(ji,jj)
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + &
& 0.3_wp * ( -2.0_wp + 2.5_wp * ( 1.0_wp + 0.1_wp * zznd_ml**4 ) - EXP( -8.0_wp * zznd_ml ) ) * &
& zsc_uw_1(ji,jj)
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + &
& 0.3_wp * 0.1_wp * ( EXP( -1.0_wp * zznd_d ) + EXP( -5.0_wp * ( 1.0_wp - zznd_ml ) ) ) * &
& zsc_vw_1(ji,jj)
END IF
ELSE
IF ( jk <= nbld(ji,jj) ) THEN
znd = gdepw(ji,jj,jk,Kmm) / phbl(ji,jj)
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
IF ( zznd_d <= 2.0_wp ) THEN
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + 0.5_wp * 0.3_wp * &
& ( 2.25_wp - 3.0_wp * ( 1.0_wp - EXP( -1.25_wp * zznd_d ) ) * &
& ( 1.0_wp - EXP( -2.0_wp * zznd_d ) ) ) * zsc_uw_1(ji,jj)
ELSE
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + 0.5_wp * 0.3_wp * &
& ( 1.0_wp - EXP( -5.0_wp * ( 1.0_wp - znd ) ) ) * zsc_uw_2(ji,jj)
ENDIF
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + 0.3_wp * 0.15_wp * SIN( 3.14159_wp * ( 0.65_wp * zznd_d ) ) * &
& EXP( -0.25_wp * zznd_d**2 ) * zsc_vw_1(ji,jj)
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + 0.3_wp * 0.15_wp * EXP( -5.0 * ( 1.0 - znd ) ) * &
& ( 1.0 - EXP( -20.0 * ( 1.0 - znd ) ) ) * zsc_vw_2(ji,jj)
END IF
END IF
END_3D
!
IF ( ln_dia_osm ) THEN
CALL zdf_osm_iomput( "ghamu_f", wmask(T2D(0),:) * ghamu(T2D(0),:) )
CALL zdf_osm_iomput( "ghamv_f", wmask(T2D(0),:) * ghamv(T2D(0),:) )
CALL zdf_osm_iomput( "zsc_uw_1_f", tmask(T2D(0),1) * zsc_uw_1(T2D(0)) )
CALL zdf_osm_iomput( "zsc_vw_1_f", tmask(T2D(0),1) * zsc_vw_1(T2D(0)) )
CALL zdf_osm_iomput( "zsc_uw_2_f", tmask(T2D(0),1) * zsc_uw_2(T2D(0)) )
CALL zdf_osm_iomput( "zsc_vw_2_f", tmask(T2D(0),1) * zsc_vw_2(T2D(0)) )
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
END IF
!
! Make surface forced velocity non-gradient terms go to zero at the base
! of the mixed layer.
!
! Make surface forced velocity non-gradient terms go to zero at the base
! of the boundary layer.
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkm_bld )
IF ( ( .NOT. l_conv(ji,jj) ) .AND. ( jk <= nbld(ji,jj) ) ) THEN
znd = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / phbl(ji,jj) ! ALMG to think about
IF ( znd >= 0.0_wp ) THEN
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) * ( 1.0_wp - EXP( -10.0_wp * znd**2 ) )
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) * ( 1.0_wp - EXP( -10.0_wp * znd**2 ) )
ELSE
ghamu(ji,jj,jk) = 0.0_wp
ghamv(ji,jj,jk) = 0.0_wp
ENDIF
END IF
END_3D
!
! Pynocline contributions
!
IF ( ln_dia_pyc_scl .OR. ln_dia_pyc_shr ) THEN ! Allocate arrays for output of pycnocline gradient/shear profiles
ALLOCATE( z3ddz_pyc_1(T2D(nn_hls),jpk), z3ddz_pyc_2(T2D(nn_hls),jpk), STAT=istat )
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
IF ( istat /= 0 ) CALL ctl_stop( 'zdf_osm: failed to allocate temporary arrays' )
z3ddz_pyc_1(:,:,:) = 0.0_wp
z3ddz_pyc_2(:,:,:) = 0.0_wp
END IF
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkm_bld )
IF ( l_conv (ji,jj) ) THEN
! Unstable conditions. Shouldn;t be needed with no pycnocline code.
! zugrad = 0.7 * av_du_ml(ji,jj) / zdh(ji,jj) + 0.3 * zustar(ji,jj)*zustar(ji,jj) / &
! & ( ( ( zvstr(ji,jj)**3 + 0.5 * zwstrc(ji,jj)**3 )**pthird * zhml(ji,jj) ) * &
! & MIN(zla(ji,jj)**(8.0/3.0) + epsln, 0.12 ))
!Alan is this right?
! zvgrad = ( 0.7 * av_dv_ml(ji,jj) + &
! & 2.0 * ff_t(ji,jj) * zustke(ji,jj) * dstokes(ji,jj) / &
! & ( ( zvstr(ji,jj)**3 + 0.5 * zwstrc(ji,jj)**3 )**pthird + epsln ) &
! & )/ (zdh(ji,jj) + epsln )
! DO jk = 2, nbld(ji,jj) - 1 + ibld_ext
! znd = -( gdepw(ji,jj,jk,Kmm) - zhbl(ji,jj) ) / (zdh(ji,jj) + epsln ) - zzeta_v
! IF ( znd <= 0.0 ) THEN
! zdudz(ji,jj,jk) = 1.25 * zugrad * EXP( 3.0 * znd )
! zdvdz(ji,jj,jk) = 1.25 * zvgrad * EXP( 3.0 * znd )
! ELSE
! zdudz(ji,jj,jk) = 1.25 * zugrad * EXP( -2.0 * znd )
! zdvdz(ji,jj,jk) = 1.25 * zvgrad * EXP( -2.0 * znd )
! ENDIF
! END DO
ELSE ! Stable conditions
IF ( nbld(ji,jj) + kp_ext(ji,jj) < mbkt(ji,jj) ) THEN
! Pycnocline profile only defined when depth steady of increasing.
IF ( pdhdt(ji,jj) > 0.0_wp ) THEN ! Depth increasing, or steady.
IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
IF ( shol(ji,jj) >= 0.5_wp ) THEN ! Very stable - 'thick' pycnocline
ztmp = 1.0_wp / MAX( phbl(ji,jj), epsln )
ztgrad = av_dt_bl(ji,jj) * ztmp
zsgrad = av_ds_bl(ji,jj) * ztmp
zbgrad = av_db_bl(ji,jj) * ztmp
IF ( jk <= nbld(ji,jj) ) THEN
znd = gdepw(ji,jj,jk,Kmm) * ztmp
zdtdz_pyc = ztgrad * EXP( -15.0_wp * ( znd - 0.9_wp )**2 )
zdsdz_pyc = zsgrad * EXP( -15.0_wp * ( znd - 0.9_wp )**2 )
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + pdiffut(ji,jj,jk) * zdtdz_pyc
ghams(ji,jj,jk) = ghams(ji,jj,jk) + pdiffut(ji,jj,jk) * zdsdz_pyc
IF ( ln_dia_pyc_scl ) THEN
z3ddz_pyc_1(ji,jj,jk) = zdtdz_pyc
z3ddz_pyc_2(ji,jj,jk) = zdsdz_pyc
END IF
END IF
ELSE ! Slightly stable - 'thin' pycnoline - needed when stable layer begins to form.
ztmp = 1.0_wp / MAX( pdh(ji,jj), epsln )
ztgrad = av_dt_bl(ji,jj) * ztmp
zsgrad = av_ds_bl(ji,jj) * ztmp
zbgrad = av_db_bl(ji,jj) * ztmp
IF ( jk <= nbld(ji,jj) ) THEN
znd = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phml(ji,jj) ) * ztmp
zdtdz_pyc = ztgrad * EXP( -1.75_wp * ( znd + 0.75_wp )**2 )
zdsdz_pyc = zsgrad * EXP( -1.75_wp * ( znd + 0.75_wp )**2 )
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + pdiffut(ji,jj,jk) * zdtdz_pyc
ghams(ji,jj,jk) = ghams(ji,jj,jk) + pdiffut(ji,jj,jk) * zdsdz_pyc
IF ( ln_dia_pyc_scl ) THEN
z3ddz_pyc_1(ji,jj,jk) = zdtdz_pyc
z3ddz_pyc_2(ji,jj,jk) = zdsdz_pyc
END IF
END IF
ENDIF ! IF (shol >=0.5)
ENDIF ! IF (av_db_bl> 0.)
ENDIF ! IF (zdhdt >= 0) zdhdt < 0 not considered since pycnocline profile is zero and profile arrays are
! ! intialized to zero
END IF
END IF
END_3D
IF ( ln_dia_pyc_scl ) THEN ! Output of pycnocline gradient profiles
CALL zdf_osm_iomput( "zdtdz_pyc", wmask(T2D(0),:) * z3ddz_pyc_1(T2D(0),:) )
CALL zdf_osm_iomput( "zdsdz_pyc", wmask(T2D(0),:) * z3ddz_pyc_2(T2D(0),:) )
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
END IF
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkm_bld )
IF ( .NOT. l_conv (ji,jj) ) THEN
IF ( nbld(ji,jj) + kp_ext(ji,jj) < mbkt(ji,jj) ) THEN
zugrad = 3.25_wp * av_du_bl(ji,jj) / phbl(ji,jj)
zvgrad = 2.75_wp * av_dv_bl(ji,jj) / phbl(ji,jj)
IF ( jk <= nbld(ji,jj) ) THEN
znd = gdepw(ji,jj,jk,Kmm) / phbl(ji,jj)
IF ( znd < 1.0 ) THEN
zdudz_pyc = zugrad * EXP( -40.0_wp * ( znd - 1.0_wp )**2 )
ELSE
zdudz_pyc = zugrad * EXP( -20.0_wp * ( znd - 1.0_wp )**2 )
ENDIF
zdvdz_pyc = zvgrad * EXP( -20.0_wp * ( znd - 0.85_wp )**2 )
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + pviscos(ji,jj,jk) * zdudz_pyc
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + pviscos(ji,jj,jk) * zdvdz_pyc
IF ( ln_dia_pyc_shr ) THEN
z3ddz_pyc_1(ji,jj,jk) = zdudz_pyc
z3ddz_pyc_2(ji,jj,jk) = zdvdz_pyc
END IF
END IF
END IF
END IF
END_3D
IF ( ln_dia_pyc_shr ) THEN ! Output of pycnocline shear profiles
CALL zdf_osm_iomput( "zdudz_pyc", wmask(T2D(0),:) * z3ddz_pyc_1(T2D(0),:) )
CALL zdf_osm_iomput( "zdvdz_pyc", wmask(T2D(0),:) * z3ddz_pyc_2(T2D(0),:) )
CALL zdf_osm_iomput( "ghamu_b", wmask(T2D(0),:) * ghamu(T2D(0),:) )
CALL zdf_osm_iomput( "ghamv_b", wmask(T2D(0),:) * ghamv(T2D(0),:) )
END IF
IF ( ln_dia_pyc_scl .OR. ln_dia_pyc_shr ) THEN ! Deallocate arrays used for output of pycnocline gradient/shear profiles
DEALLOCATE( z3ddz_pyc_1, z3ddz_pyc_2 )
END IF
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
ghamt(ji,jj,nbld(ji,jj)) = 0.0_wp
ghams(ji,jj,nbld(ji,jj)) = 0.0_wp
ghamu(ji,jj,nbld(ji,jj)) = 0.0_wp
ghamv(ji,jj,nbld(ji,jj)) = 0.0_wp
END_2D
!
IF ( ln_dia_osm ) THEN
CALL zdf_osm_iomput( "ghamu_1", wmask(T2D(0),:) * ghamu(T2D(0),:) )
CALL zdf_osm_iomput( "ghamv_1", wmask(T2D(0),:) * ghamv(T2D(0),:) )
CALL zdf_osm_iomput( "zviscos", wmask(T2D(0),:) * pviscos(T2D(0),:) )
END IF
!
END SUBROUTINE zdf_osm_fgr_terms
SUBROUTINE zdf_osm_zmld_horizontal_gradients( Kmm, pmld, pdtdx, pdtdy, pdsdx, &
& pdsdy, pdbds_mle )
!!----------------------------------------------------------------------
!! *** ROUTINE zdf_osm_zmld_horizontal_gradients ***
!!
!! ** Purpose : Calculates horizontal gradients of buoyancy for use with
!! Fox-Kemper parametrization
!!
!! ** Method :
!!
!! References: Fox-Kemper et al., JPO, 38, 1145-1165, 2008
!! Fox-Kemper and Ferrari, JPO, 38, 1166-1179, 2008
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Time-level index
REAL(wp), DIMENSION(T2D(nn_hls)), INTENT( out) :: pmld ! == Estimated FK BLD used for MLE horizontal gradients == !
REAL(wp), DIMENSION(T2D(nn_hls)), INTENT(inout) :: pdtdx ! Horizontal gradient for Fox-Kemper parametrization
REAL(wp), DIMENSION(T2D(nn_hls)), INTENT(inout) :: pdtdy ! Horizontal gradient for Fox-Kemper parametrization
REAL(wp), DIMENSION(T2D(nn_hls)), INTENT(inout) :: pdsdx ! Horizontal gradient for Fox-Kemper parametrization
REAL(wp), DIMENSION(T2D(nn_hls)), INTENT(inout) :: pdsdy ! Horizontal gradient for Fox-Kemper parametrization
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(inout) :: pdbds_mle ! Magnitude of horizontal buoyancy gradient
INTEGER, DIMENSION(T2D(nn_hls)) :: jk_mld_prof ! Base level of MLE layer
INTEGER :: ikt, ikmax ! Local integers
REAL(wp) :: zc
REAL(wp) :: zN2_c ! Local buoyancy difference from 10m value
REAL(wp), DIMENSION(T2D(nn_hls)) :: ztm
REAL(wp), DIMENSION(T2D(nn_hls)) :: zsm
REAL(wp), DIMENSION(T2D(nn_hls),jpts) :: ztsm_midu
REAL(wp), DIMENSION(T2D(nn_hls),jpts) :: ztsm_midv
REAL(wp), DIMENSION(T2D(nn_hls),jpts) :: zabu
REAL(wp), DIMENSION(T2D(nn_hls),jpts) :: zabv
REAL(wp), DIMENSION(T2D(nn_hls)) :: zmld_midu
REAL(wp), DIMENSION(T2D(nn_hls)) :: zmld_midv
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
!!----------------------------------------------------------------------
!
! == MLD used for MLE ==!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
jk_mld_prof(ji,jj) = nlb10 ! Initialization to the number of w ocean point
pmld(ji,jj) = 0.0_wp ! Here hmlp used as a dummy variable, integrating vertically N^2
END_2D
zN2_c = grav * rn_osm_mle_rho_c * r1_rho0 ! Convert density criteria into N^2 criteria
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, nlb10, jpkm1 )
ikt = mbkt(ji,jj)
pmld(ji,jj) = pmld(ji,jj) + MAX( rn2b(ji,jj,jk), 0.0_wp ) * e3w(ji,jj,jk,Kmm)
IF( pmld(ji,jj) < zN2_c ) jk_mld_prof(ji,jj) = MIN( jk , ikt ) + 1 ! Mixed layer level
END_3D
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
jk_mld_prof(ji,jj) = MAX( jk_mld_prof(ji,jj), nbld(ji,jj) ) ! Ensure jk_mld_prof .ge. nbld
pmld(ji,jj) = gdepw(ji,jj,jk_mld_prof(ji,jj),Kmm)
END_2D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
mld_prof(ji,jj) = jk_mld_prof(ji,jj)
END_2D
!
ikmax = MIN( MAXVAL( jk_mld_prof(T2D(nn_hls)) ), jpkm1 ) ! Max level of the computation
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
ztm(:,:) = 0.0_wp
zsm(:,:) = 0.0_wp
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, ikmax )
zc = e3t(ji,jj,jk,Kmm) * REAL( MIN( MAX( 0, jk_mld_prof(ji,jj) - jk ), 1 ), KIND=wp ) ! zc being 0 outside the ML
! ! t-points
ztm(ji,jj) = ztm(ji,jj) + zc * ts(ji,jj,jk,jp_tem,Kmm)
zsm(ji,jj) = zsm(ji,jj) + zc * ts(ji,jj,jk,jp_sal,Kmm)
END_3D
! Average temperature and salinity
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
ztm(ji,jj) = ztm(ji,jj) / MAX( e3t(ji,jj,1,Kmm), pmld(ji,jj) )
zsm(ji,jj) = zsm(ji,jj) / MAX( e3t(ji,jj,1,Kmm), pmld(ji,jj) )
END_2D
! Calculate horizontal gradients at u & v points
zmld_midu(:,:) = 0.0_wp
ztsm_midu(:,:,:) = 10.0_wp
DO_2D( nn_hls, nn_hls-1, nn_hls-1, nn_hls-1 )
pdtdx(ji,jj) = ( ztm(ji+1,jj) - ztm(ji,jj) ) * umask(ji,jj,1) / e1u(ji,jj)
pdsdx(ji,jj) = ( zsm(ji+1,jj) - zsm(ji,jj) ) * umask(ji,jj,1) / e1u(ji,jj)
zmld_midu(ji,jj) = 0.25_wp * ( pmld(ji+1,jj) + pmld(ji,jj))
ztsm_midu(ji,jj,jp_tem) = 0.5_wp * ( ztm( ji+1,jj) + ztm( ji,jj) )
ztsm_midu(ji,jj,jp_sal) = 0.5_wp * ( zsm( ji+1,jj) + zsm( ji,jj) )
END_2D
zmld_midv(:,:) = 0.0_wp
ztsm_midv(:,:,:) = 10.0_wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls, nn_hls-1 )
pdtdy(ji,jj) = ( ztm(ji,jj+1) - ztm(ji,jj) ) * vmask(ji,jj,1) / e1v(ji,jj)
pdsdy(ji,jj) = ( zsm(ji,jj+1) - zsm(ji,jj) ) * vmask(ji,jj,1) / e1v(ji,jj)
zmld_midv(ji,jj) = 0.25_wp * ( pmld(ji,jj+1) + pmld( ji,jj) )
ztsm_midv(ji,jj,jp_tem) = 0.5_wp * ( ztm( ji,jj+1) + ztm( ji,jj) )
ztsm_midv(ji,jj,jp_sal) = 0.5_wp * ( zsm( ji,jj+1) + zsm( ji,jj) )
END_2D
CALL eos_rab( ztsm_midu, zmld_midu, zabu, Kmm )
CALL eos_rab( ztsm_midv, zmld_midv, zabv, Kmm )
DO_2D_OVR( nn_hls, nn_hls-1, nn_hls-1, nn_hls-1 )
dbdx_mle(ji,jj) = grav * ( pdtdx(ji,jj) * zabu(ji,jj,jp_tem) - pdsdx(ji,jj) * zabu(ji,jj,jp_sal) )
END_2D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls, nn_hls-1 )
dbdy_mle(ji,jj) = grav * ( pdtdy(ji,jj) * zabv(ji,jj,jp_tem) - pdsdy(ji,jj) * zabv(ji,jj,jp_sal) )
END_2D
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
pdbds_mle(ji,jj) = SQRT( 0.5_wp * ( dbdx_mle(ji, jj) * dbdx_mle(ji, jj) + dbdy_mle(ji,jj ) * dbdy_mle(ji,jj ) + &
& dbdx_mle(ji-1,jj) * dbdx_mle(ji-1,jj) + dbdy_mle(ji,jj-1) * dbdy_mle(ji,jj-1) ) )
END_2D
!
END SUBROUTINE zdf_osm_zmld_horizontal_gradients
SUBROUTINE zdf_osm_osbl_state_fk( Kmm, pwb_fk, phbl, phmle, pwb_ent, &
& pdbds_mle )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_osm_osbl_state_fk ***
!!
!! ** Purpose : Determines the state of the OSBL and MLE layer. Info is
!! returned in the logicals l_pyc, l_flux and ldmle. Used
!! with Fox-Kemper scheme.
!! l_pyc :: determines whether pycnocline flux-grad
!! relationship needs to be determined
!! l_flux :: determines whether effects of surface flux
!! extend below the base of the OSBL
!! ldmle :: determines whether the layer with MLE is
!! increasing with time or if base is relaxing
!! towards hbl
!!
!! ** Method :
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Time-level index
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(inout) :: pwb_fk
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: phbl ! BL depth
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: phmle ! MLE depth
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: pwb_ent ! Buoyancy entrainment flux
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: pdbds_mle ! Magnitude of horizontal buoyancy gradient
REAL(wp), DIMENSION(T2D(nn_hls-1)) :: znd_param
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
REAL(wp) :: zthermal, zbeta
REAL(wp) :: zbuoy
REAL(wp) :: ztmp
REAL(wp) :: zpe_mle_layer
REAL(wp) :: zpe_mle_ref
REAL(wp) :: zdbdz_mle_int
!!----------------------------------------------------------------------
!
znd_param(:,:) = 0.0_wp
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
ztmp = r1_ft(ji,jj) * MIN( 111.e3_wp , e1u(ji,jj) ) / rn_osm_mle_lf
pwb_fk(ji,jj) = rn_osm_mle_ce * hmle(ji,jj) * hmle(ji,jj) * ztmp * pdbds_mle(ji,jj) * pdbds_mle(ji,jj)
END_2D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
!
IF ( l_conv(ji,jj) ) THEN
IF ( phmle(ji,jj) > 1.2_wp * phbl(ji,jj) ) THEN
av_t_mle(ji,jj) = ( av_t_mle(ji,jj) * phmle(ji,jj) - av_t_bl(ji,jj) * phbl(ji,jj) ) / ( phmle(ji,jj) - phbl(ji,jj) )
av_s_mle(ji,jj) = ( av_s_mle(ji,jj) * phmle(ji,jj) - av_s_bl(ji,jj) * phbl(ji,jj) ) / ( phmle(ji,jj) - phbl(ji,jj) )
av_b_mle(ji,jj) = ( av_b_mle(ji,jj) * phmle(ji,jj) - av_b_bl(ji,jj) * phbl(ji,jj) ) / ( phmle(ji,jj) - phbl(ji,jj) )
zdbdz_mle_int = ( av_b_bl(ji,jj) - ( 2.0_wp * av_b_mle(ji,jj) - av_b_bl(ji,jj) ) ) / ( phmle(ji,jj) - phbl(ji,jj) )
! Calculate potential energies of actual profile and reference profile
zpe_mle_layer = 0.0_wp
zpe_mle_ref = 0.0_wp
zthermal = rab_n(ji,jj,1,jp_tem)
zbeta = rab_n(ji,jj,1,jp_sal)
DO jk = nbld(ji,jj), mld_prof(ji,jj)
zbuoy = grav * ( zthermal * ts(ji,jj,jk,jp_tem,Kmm) - zbeta * ts(ji,jj,jk,jp_sal,Kmm) )
zpe_mle_layer = zpe_mle_layer + zbuoy * gdepw(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm)
zpe_mle_ref = zpe_mle_ref + ( av_b_bl(ji,jj) - zdbdz_mle_int * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) ) * &
& gdepw(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm)
END DO
! Non-dimensional parameter to diagnose the presence of thermocline
znd_param(ji,jj) = ( zpe_mle_layer - zpe_mle_ref ) * ABS( ff_t(ji,jj) ) / &
& ( MAX( pwb_fk(ji,jj), 1e-10 ) * phmle(ji,jj) )
END IF
END IF
!
END_2D
!
! Diagnosis
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
!
IF ( l_conv(ji,jj) ) THEN
IF ( -2.0_wp * pwb_fk(ji,jj) / pwb_ent(ji,jj) > 0.5_wp ) THEN
IF ( phmle(ji,jj) > 1.2_wp * phbl(ji,jj) ) THEN ! MLE layer growing
IF ( znd_param (ji,jj) > 100.0_wp ) THEN ! Thermocline present
l_flux(ji,jj) = .FALSE.
l_mle(ji,jj) = .FALSE.
ELSE ! Thermocline not present
l_flux(ji,jj) = .TRUE.
l_mle(ji,jj) = .TRUE.
ENDIF ! znd_param > 100
!
IF ( av_db_bl(ji,jj) < rn_osm_bl_thresh ) THEN
l_pyc(ji,jj) = .FALSE.
ELSE
l_pyc(ji,jj) = .TRUE.
ENDIF
ELSE ! MLE layer restricted to OSBL or just below
IF ( av_db_bl(ji,jj) < rn_osm_bl_thresh ) THEN ! Weak stratification MLE layer can grow
l_pyc(ji,jj) = .FALSE.
l_flux(ji,jj) = .TRUE.
l_mle(ji,jj) = .TRUE.
ELSE ! Strong stratification
l_pyc(ji,jj) = .TRUE.
l_flux(ji,jj) = .FALSE.
l_mle(ji,jj) = .FALSE.
END IF ! av_db_bl < rn_mle_thresh_bl and
END IF ! phmle > 1.2 phbl
ELSE
l_pyc(ji,jj) = .TRUE.
l_flux(ji,jj) = .FALSE.
l_mle(ji,jj) = .FALSE.
IF ( av_db_bl(ji,jj) < rn_osm_bl_thresh ) l_pyc(ji,jj) = .FALSE.
END IF ! -2.0 * pwb_fk(ji,jj) / pwb_ent > 0.5
ELSE ! Stable Boundary Layer
l_pyc(ji,jj) = .FALSE.
l_flux(ji,jj) = .FALSE.
l_mle(ji,jj) = .FALSE.
END IF ! l_conv
!
END_2D
!
END SUBROUTINE zdf_osm_osbl_state_fk
SUBROUTINE zdf_osm_mle_parameters( Kmm, pmld, phmle, pvel_mle, pdiff_mle, &
& pdbds_mle, phbl, pwb0tot )
!!----------------------------------------------------------------------
!! *** ROUTINE zdf_osm_mle_parameters ***
!!
!! ** Purpose : Timesteps the mixed layer eddy depth, hmle and calculates
!! the mixed layer eddy fluxes for buoyancy, heat and
!! salinity.
!!
!! ** Method :
!!
!! References: Fox-Kemper et al., JPO, 38, 1145-1165, 2008
!! Fox-Kemper and Ferrari, JPO, 38, 1166-1179, 2008
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Time-level index
REAL(wp), DIMENSION(T2D(nn_hls)), INTENT(in ) :: pmld ! == Estimated FK BLD used for MLE horiz gradients == !
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(inout) :: phmle ! MLE depth
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(inout) :: pvel_mle ! Velocity scale for dhdt with stable ML and FK
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(inout) :: pdiff_mle ! Extra MLE vertical diff
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: pdbds_mle ! Magnitude of horizontal buoyancy gradient
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: phbl ! BL depth
REAL(wp), DIMENSION(T2D(nn_hls-1)), INTENT(in ) :: pwb0tot ! Total surface buoyancy flux including insolation
!!
INTEGER :: ji, jj, jk ! Dummy loop indices
REAL(wp) :: ztmp
REAL(wp) :: zdbdz
REAL(wp) :: zdtdz
REAL(wp) :: zdsdz
REAL(wp) :: zthermal
REAL(wp) :: zbeta
REAL(wp) :: zbuoy
REAL(wp) :: zdb_mle
!!----------------------------------------------------------------------
!
! Calculate vertical buoyancy, heat and salinity fluxes due to MLE
! BUG: [zdfosm_avt_diag] lbc_lnk changes the value of avt on the northfold (see zdfphy.F90 comment). It seems to stem from here- if ztmp is converted to an array, calling lbc_lnk on this array has the same effect as calling lbc_lnk on avt. I think it could be related to l_conv.
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_conv(ji,jj) ) THEN
ztmp = r1_ft(ji,jj) * MIN( 111e3_wp, e1u(ji,jj) ) / rn_osm_mle_lf
! This velocity scale, defined in Fox-Kemper et al (2008), is needed for calculating dhdt
pvel_mle(ji,jj) = pdbds_mle(ji,jj) * ztmp * hmle(ji,jj) * tmask(ji,jj,1)
pdiff_mle(ji,jj) = 5e-4_wp * rn_osm_mle_ce * ztmp * pdbds_mle(ji,jj) * phmle(ji,jj)**2
END IF
END_2D
! Timestep mixed layer eddy depth
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_mle(ji,jj) ) THEN ! MLE layer growing
! Buoyancy gradient at base of MLE layer
zthermal = rab_n(ji,jj,1,jp_tem)
zbeta = rab_n(ji,jj,1,jp_sal)
zbuoy = grav * ( zthermal * ts(ji,jj,mld_prof(ji,jj)+2,jp_tem,Kmm) - &
& zbeta * ts(ji,jj,mld_prof(ji,jj)+2,jp_sal,Kmm) )
zdb_mle = av_b_bl(ji,jj) - zbuoy
! Timestep hmle
hmle(ji,jj) = hmle(ji,jj) + pwb0tot(ji,jj) * rn_Dt / zdb_mle
ELSE
IF ( phmle(ji,jj) > phbl(ji,jj) ) THEN
hmle(ji,jj) = hmle(ji,jj) - ( hmle(ji,jj) - hbl(ji,jj) ) * rn_Dt / rn_osm_mle_tau
ELSE
hmle(ji,jj) = hmle(ji,jj) - 10.0_wp * ( hmle(ji,jj) - hbl(ji,jj) ) * rn_Dt / rn_osm_mle_tau
END IF
END IF
hmle(ji,jj) = MAX( MIN( hmle(ji,jj), ht(ji,jj,Kmm) ), gdepw(ji,jj,4,Kmm) )
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
IF ( ln_osm_hmle_limit ) hmle(ji,jj) = MIN( hmle(ji,jj), rn_osm_hmle_limit*hbl(ji,jj) )
hmle(ji,jj) = pmld(ji,jj) ! For now try just set hmle to pmld
END_2D
!
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 5, jpkm1 )
IF ( hmle(ji,jj) >= gdepw(ji,jj,jk,Kmm) ) mld_prof(ji,jj) = MIN( mbkt(ji,jj), jk )
END_3D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
phmle(ji,jj) = gdepw(ji,jj,mld_prof(ji,jj),Kmm)
END_2D
!
END SUBROUTINE zdf_osm_mle_parameters
SUBROUTINE zdf_osm_init( Kmm )
!!----------------------------------------------------------------------
!! *** ROUTINE zdf_osm_init ***
!!
!! ** Purpose : Initialization of the vertical eddy diffivity and
!! viscosity when using a osm turbulent closure scheme
!!
!! ** Method : Read the namosm namelist and check the parameters
!! called at the first timestep (nit000)
!!
!! ** input : Namlists namzdf_osm and namosm_mle
!!