Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
MODULE eosbn2
!!==============================================================================
!! *** MODULE eosbn2 ***
!! Equation Of Seawater : in situ density - Brunt-Vaisala frequency
!!==============================================================================
!! History : OPA ! 1989-03 (O. Marti) Original code
!! 6.0 ! 1994-07 (G. Madec, M. Imbard) add bn2
!! 6.0 ! 1994-08 (G. Madec) Add Jackett & McDougall eos
!! 7.0 ! 1996-01 (G. Madec) statement function for e3
!! 8.1 ! 1997-07 (G. Madec) density instead of volumic mass
!! - ! 1999-02 (G. Madec, N. Grima) semi-implicit pressure gradient
!! 8.2 ! 2001-09 (M. Ben Jelloul) bugfix on linear eos
!! NEMO 1.0 ! 2002-10 (G. Madec) add eos_init
!! - ! 2002-11 (G. Madec, A. Bozec) partial step, eos_insitu_2d
!! - ! 2003-08 (G. Madec) F90, free form
!! 3.0 ! 2006-08 (G. Madec) add tfreez function (now eos_fzp function)
!! 3.3 ! 2010-05 (C. Ethe, G. Madec) merge TRC-TRA
!! - ! 2010-10 (G. Nurser, G. Madec) add alpha/beta used in ldfslp
!! 3.7 ! 2012-03 (F. Roquet, G. Madec) add primitive of alpha and beta used in PE computation
!! - ! 2012-05 (F. Roquet) add Vallis and original JM95 equation of state
!! - ! 2013-04 (F. Roquet, G. Madec) add eos_rab, change bn2 computation and reorganize the module
!! - ! 2014-09 (F. Roquet) add TEOS-10, S-EOS, and modify EOS-80
!! - ! 2015-06 (P.A. Bouttier) eos_fzp functions changed to subroutines for AGRIF
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! eos : generic interface of the equation of state
!! eos_insitu : Compute the in situ density
!! eos_insitu_pot: Compute the insitu and surface referenced potential volumic mass
!! eos_insitu_2d : Compute the in situ density for 2d fields
!! bn2 : compute the Brunt-Vaisala frequency
!! eos_pt_from_ct: compute the potential temperature from the Conservative Temperature
!! eos_rab : generic interface of in situ thermal/haline expansion ratio
!! eos_rab_3d : compute in situ thermal/haline expansion ratio
!! eos_rab_2d : compute in situ thermal/haline expansion ratio for 2d fields
!! eos_fzp_2d : freezing temperature for 2d fields
!! eos_fzp_0d : freezing temperature for scalar
!! eos_init : set eos parameters (namelist)
!!----------------------------------------------------------------------
USE dom_oce ! ocean space and time domain
USE domutl, ONLY : is_tile
USE phycst ! physical constants
USE stopar ! Stochastic T/S fluctuations
USE stopts ! Stochastic T/S fluctuations
!
USE in_out_manager ! I/O manager
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
USE prtctl ! Print control
USE timing ! Timing
IMPLICIT NONE
PRIVATE
! !! * Interface
INTERFACE eos
MODULE PROCEDURE eos_insitu, eos_insitu_pot, eos_insitu_2d, eos_insitu_pot_2d
END INTERFACE
!
INTERFACE eos_rab
MODULE PROCEDURE rab_3d, rab_2d, rab_0d
END INTERFACE
!
INTERFACE eos_fzp
MODULE PROCEDURE eos_fzp_2d, eos_fzp_0d
END INTERFACE
!
PUBLIC eos ! called by step, istate, tranpc and zpsgrd modules
PUBLIC bn2 ! called by step module
PUBLIC eos_rab ! called by ldfslp, zdfddm, trabbl
PUBLIC eos_pt_from_ct ! called by sbcssm
PUBLIC eos_fzp ! called by traadv_cen2 and sbcice_... modules
PUBLIC eos_pen ! used for pe diagnostics in trdpen module
PUBLIC eos_init ! called by istate module
! !!** Namelist nameos **
LOGICAL , PUBLIC :: ln_TEOS10
LOGICAL , PUBLIC :: ln_EOS80
LOGICAL , PUBLIC :: ln_SEOS
! Parameters
LOGICAL , PUBLIC :: l_useCT ! =T in ln_TEOS10=T (i.e. use eos_pt_from_ct to compute sst_m), =F otherwise
INTEGER , PUBLIC :: neos ! Identifier for equation of state used
INTEGER , PARAMETER :: np_teos10 = -1 ! parameter for using TEOS10
INTEGER , PARAMETER :: np_eos80 = 0 ! parameter for using EOS80
INTEGER , PARAMETER :: np_seos = 1 ! parameter for using Simplified Equation of state
! !!! simplified eos coefficients (default value: Vallis 2006)
REAL(wp), PUBLIC :: rn_a0 = 1.6550e-1_wp ! thermal expansion coeff.
REAL(wp), PUBLIC :: rn_b0 = 7.6554e-1_wp ! saline expansion coeff.
REAL(wp) :: rn_lambda1 = 5.9520e-2_wp ! cabbeling coeff. in T^2
REAL(wp) :: rn_lambda2 = 5.4914e-4_wp ! cabbeling coeff. in S^2
REAL(wp) :: rn_mu1 = 1.4970e-4_wp ! thermobaric coeff. in T
REAL(wp) :: rn_mu2 = 1.1090e-5_wp ! thermobaric coeff. in S
REAL(wp) :: rn_nu = 2.4341e-3_wp ! cabbeling coeff. in theta*salt
! TEOS10/EOS80 parameters
REAL(wp) :: r1_S0, r1_T0, r1_Z0, rdeltaS
! EOS parameters
REAL(wp) :: EOS000 , EOS100 , EOS200 , EOS300 , EOS400 , EOS500 , EOS600
REAL(wp) :: EOS010 , EOS110 , EOS210 , EOS310 , EOS410 , EOS510
REAL(wp) :: EOS020 , EOS120 , EOS220 , EOS320 , EOS420
REAL(wp) :: EOS030 , EOS130 , EOS230 , EOS330
REAL(wp) :: EOS040 , EOS140 , EOS240
REAL(wp) :: EOS050 , EOS150
REAL(wp) :: EOS060
REAL(wp) :: EOS001 , EOS101 , EOS201 , EOS301 , EOS401
REAL(wp) :: EOS011 , EOS111 , EOS211 , EOS311
REAL(wp) :: EOS021 , EOS121 , EOS221
REAL(wp) :: EOS031 , EOS131
REAL(wp) :: EOS041
REAL(wp) :: EOS002 , EOS102 , EOS202
REAL(wp) :: EOS012 , EOS112
REAL(wp) :: EOS022
REAL(wp) :: EOS003 , EOS103
REAL(wp) :: EOS013
! ALPHA parameters
REAL(wp) :: ALP000 , ALP100 , ALP200 , ALP300 , ALP400 , ALP500
REAL(wp) :: ALP010 , ALP110 , ALP210 , ALP310 , ALP410
REAL(wp) :: ALP020 , ALP120 , ALP220 , ALP320
REAL(wp) :: ALP030 , ALP130 , ALP230
REAL(wp) :: ALP040 , ALP140
REAL(wp) :: ALP050
REAL(wp) :: ALP001 , ALP101 , ALP201 , ALP301
REAL(wp) :: ALP011 , ALP111 , ALP211
REAL(wp) :: ALP021 , ALP121
REAL(wp) :: ALP031
REAL(wp) :: ALP002 , ALP102
REAL(wp) :: ALP012
REAL(wp) :: ALP003
! BETA parameters
REAL(wp) :: BET000 , BET100 , BET200 , BET300 , BET400 , BET500
REAL(wp) :: BET010 , BET110 , BET210 , BET310 , BET410
REAL(wp) :: BET020 , BET120 , BET220 , BET320
REAL(wp) :: BET030 , BET130 , BET230
REAL(wp) :: BET040 , BET140
REAL(wp) :: BET050
REAL(wp) :: BET001 , BET101 , BET201 , BET301
REAL(wp) :: BET011 , BET111 , BET211
REAL(wp) :: BET021 , BET121
REAL(wp) :: BET031
REAL(wp) :: BET002 , BET102
REAL(wp) :: BET012
REAL(wp) :: BET003
! PEN parameters
REAL(wp) :: PEN000 , PEN100 , PEN200 , PEN300 , PEN400
REAL(wp) :: PEN010 , PEN110 , PEN210 , PEN310
REAL(wp) :: PEN020 , PEN120 , PEN220
REAL(wp) :: PEN030 , PEN130
REAL(wp) :: PEN040
REAL(wp) :: PEN001 , PEN101 , PEN201
REAL(wp) :: PEN011 , PEN111
REAL(wp) :: PEN021
REAL(wp) :: PEN002 , PEN102
REAL(wp) :: PEN012
! ALPHA_PEN parameters
REAL(wp) :: APE000 , APE100 , APE200 , APE300
REAL(wp) :: APE010 , APE110 , APE210
REAL(wp) :: APE020 , APE120
REAL(wp) :: APE030
REAL(wp) :: APE001 , APE101
REAL(wp) :: APE011
REAL(wp) :: APE002
! BETA_PEN parameters
REAL(wp) :: BPE000 , BPE100 , BPE200 , BPE300
REAL(wp) :: BPE010 , BPE110 , BPE210
REAL(wp) :: BPE020 , BPE120
REAL(wp) :: BPE030
REAL(wp) :: BPE001 , BPE101
REAL(wp) :: BPE011
REAL(wp) :: BPE002
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: eosbn2.F90 15136 2021-07-23 10:07:28Z smasson $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE eos_insitu( pts, prd, pdep )
!!
REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pts ! 1 : potential temperature [Celsius]
! ! 2 : salinity [psu]
REAL(wp), DIMENSION(:,:,:) , INTENT( out) :: prd ! in situ density [-]
REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: pdep ! depth [m]
!!
CALL eos_insitu_t( pts, is_tile(pts), prd, is_tile(prd), pdep, is_tile(pdep) )
END SUBROUTINE eos_insitu
SUBROUTINE eos_insitu_t( pts, ktts, prd, ktrd, pdep, ktdep )
!!----------------------------------------------------------------------
!! *** ROUTINE eos_insitu ***
!!
!! ** Purpose : Compute the in situ density (ratio rho/rho0) from
!! potential temperature and salinity using an equation of state
!! selected in the nameos namelist
!!
!! ** Method : prd(t,s,z) = ( rho(t,s,z) - rho0 ) / rho0
!! with prd in situ density anomaly no units
!! t TEOS10: CT or EOS80: PT Celsius
!! s TEOS10: SA or EOS80: SP TEOS10: g/kg or EOS80: psu
!! z depth meters
!! rho in situ density kg/m^3
!! rho0 reference density kg/m^3
!!
!! ln_teos10 : polynomial TEOS-10 equation of state is used for rho(t,s,z).
!! Check value: rho = 1028.21993233072 kg/m^3 for z=3000 dbar, ct=3 Celsius, sa=35.5 g/kg
!!
!! ln_eos80 : polynomial EOS-80 equation of state is used for rho(t,s,z).
!! Check value: rho = 1028.35011066567 kg/m^3 for z=3000 dbar, pt=3 Celsius, sp=35.5 psu
!!
!! ln_seos : simplified equation of state
!! prd(t,s,z) = ( -a0*(1+lambda/2*(T-T0)+mu*z+nu*(S-S0))*(T-T0) + b0*(S-S0) ) / rho0
!! linear case function of T only: rn_alpha<>0, other coefficients = 0
!! linear eos function of T and S: rn_alpha and rn_beta<>0, other coefficients=0
!! Vallis like equation: use default values of coefficients
!!
!! ** Action : compute prd , the in situ density (no units)
!!
!! References : Roquet et al, Ocean Modelling, in preparation (2014)
!! Vallis, Atmospheric and Oceanic Fluid Dynamics, 2006
!! TEOS-10 Manual, 2010
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: ktts, ktrd, ktdep
REAL(wp), DIMENSION(A2D_T(ktts) ,JPK,JPTS), INTENT(in ) :: pts ! 1 : potential temperature [Celsius]
! ! 2 : salinity [psu]
REAL(wp), DIMENSION(A2D_T(ktrd) ,JPK ), INTENT( out) :: prd ! in situ density [-]
REAL(wp), DIMENSION(A2D_T(ktdep),JPK ), INTENT(in ) :: pdep ! depth [m]
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zt , zh , zs , ztm ! local scalars
REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - -
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('eos-insitu')
!
SELECT CASE( neos )
!
CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==!
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
!
zh = pdep(ji,jj,jk) * r1_Z0 ! depth
zt = pts (ji,jj,jk,jp_tem) * r1_T0 ! temperature
zs = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
ztm = tmask(ji,jj,jk) ! tmask
!
zn3 = EOS013*zt &
& + EOS103*zs+EOS003
!
zn2 = (EOS022*zt &
& + EOS112*zs+EOS012)*zt &
& + (EOS202*zs+EOS102)*zs+EOS002
!
zn1 = (((EOS041*zt &
& + EOS131*zs+EOS031)*zt &
& + (EOS221*zs+EOS121)*zs+EOS021)*zt &
& + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt &
& + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001
!
zn0 = (((((EOS060*zt &
& + EOS150*zs+EOS050)*zt &
& + (EOS240*zs+EOS140)*zs+EOS040)*zt &
& + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt &
& + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt &
& + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt &
& + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
!
zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
!
prd(ji,jj,jk) = ( zn * r1_rho0 - 1._wp ) * ztm ! density anomaly (masked)
!
END_3D
!
CASE( np_seos ) !== simplified EOS ==!
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
zt = pts (ji,jj,jk,jp_tem) - 10._wp
zs = pts (ji,jj,jk,jp_sal) - 35._wp
zh = pdep (ji,jj,jk)
ztm = tmask(ji,jj,jk)
!
zn = - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt + rn_mu1*zh ) * zt &
& + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs - rn_mu2*zh ) * zs &
& - rn_nu * zt * zs
!
prd(ji,jj,jk) = zn * r1_rho0 * ztm ! density anomaly (masked)
END_3D
!
END SELECT
!
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=prd, clinfo1=' eos-insitu : ' )
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
!
IF( ln_timing ) CALL timing_stop('eos-insitu')
!
END SUBROUTINE eos_insitu_t
SUBROUTINE eos_insitu_pot( pts, prd, prhop, pdep )
!!
REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pts ! 1 : potential temperature [Celsius]
! ! 2 : salinity [psu]
REAL(wp), DIMENSION(:,:,:) , INTENT( out) :: prd ! in situ density [-]
REAL(wp), DIMENSION(:,:,:) , INTENT( out) :: prhop ! potential density (surface referenced)
REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: pdep ! depth [m]
!!
CALL eos_insitu_pot_t( pts, is_tile(pts), prd, is_tile(prd), prhop, is_tile(prhop), pdep, is_tile(pdep) )
END SUBROUTINE eos_insitu_pot
SUBROUTINE eos_insitu_pot_t( pts, ktts, prd, ktrd, prhop, ktrhop, pdep, ktdep )
!!----------------------------------------------------------------------
!! *** ROUTINE eos_insitu_pot ***
!!
!! ** Purpose : Compute the in situ density (ratio rho/rho0) and the
!! potential volumic mass (Kg/m3) from potential temperature and
!! salinity fields using an equation of state selected in the
!! namelist.
!!
!! ** Action : - prd , the in situ density (no units)
!! - prhop, the potential volumic mass (Kg/m3)
!!
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: ktts, ktrd, ktrhop, ktdep
REAL(wp), DIMENSION(A2D_T(ktts) ,JPK,JPTS), INTENT(in ) :: pts ! 1 : potential temperature [Celsius]
! ! 2 : salinity [psu]
REAL(wp), DIMENSION(A2D_T(ktrd) ,JPK ), INTENT( out) :: prd ! in situ density [-]
REAL(wp), DIMENSION(A2D_T(ktrhop),JPK ), INTENT( out) :: prhop ! potential density (surface referenced)
REAL(wp), DIMENSION(A2D_T(ktdep) ,JPK ), INTENT(in ) :: pdep ! depth [m]
!
INTEGER :: ji, jj, jk, jsmp ! dummy loop indices
INTEGER :: jdof
REAL(wp) :: zt , zh , zstemp, zs , ztm ! local scalars
REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - -
REAL(wp), DIMENSION(:), ALLOCATABLE :: zn0_sto, zn_sto, zsign ! local vectors
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('eos-pot')
!
SELECT CASE ( neos )
!
CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==!
!
! Stochastic equation of state
IF ( ln_sto_eos ) THEN
ALLOCATE(zn0_sto(1:2*nn_sto_eos))
ALLOCATE(zn_sto(1:2*nn_sto_eos))
ALLOCATE(zsign(1:2*nn_sto_eos))
DO jsmp = 1, 2*nn_sto_eos, 2
zsign(jsmp) = 1._wp
zsign(jsmp+1) = -1._wp
END DO
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
!
! compute density (2*nn_sto_eos) times:
! (1) for t+dt, s+ds (with the random TS fluctutation computed in sto_pts)
! (2) for t-dt, s-ds (with the opposite fluctuation)
DO jsmp = 1, nn_sto_eos*2
jdof = (jsmp + 1) / 2
zh = pdep(ji,jj,jk) * r1_Z0 ! depth
zt = (pts (ji,jj,jk,jp_tem) + pts_ran(ji,jj,jk,jp_tem,jdof) * zsign(jsmp)) * r1_T0 ! temperature
zstemp = pts (ji,jj,jk,jp_sal) + pts_ran(ji,jj,jk,jp_sal,jdof) * zsign(jsmp)
zs = SQRT( ABS( zstemp + rdeltaS ) * r1_S0 ) ! square root salinity
ztm = tmask(ji,jj,jk) ! tmask
!
zn3 = EOS013*zt &
& + EOS103*zs+EOS003
!
zn2 = (EOS022*zt &
& + EOS112*zs+EOS012)*zt &
& + (EOS202*zs+EOS102)*zs+EOS002
!
zn1 = (((EOS041*zt &
& + EOS131*zs+EOS031)*zt &
& + (EOS221*zs+EOS121)*zs+EOS021)*zt &
& + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt &
& + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001
!
zn0_sto(jsmp) = (((((EOS060*zt &
& + EOS150*zs+EOS050)*zt &
& + (EOS240*zs+EOS140)*zs+EOS040)*zt &
& + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt &
& + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt &
& + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt &
& + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
!
zn_sto(jsmp) = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0_sto(jsmp)
END DO
!
! compute stochastic density as the mean of the (2*nn_sto_eos) densities
prhop(ji,jj,jk) = 0._wp ; prd(ji,jj,jk) = 0._wp
DO jsmp = 1, nn_sto_eos*2
prhop(ji,jj,jk) = prhop(ji,jj,jk) + zn0_sto(jsmp) ! potential density referenced at the surface
!
prd(ji,jj,jk) = prd(ji,jj,jk) + ( zn_sto(jsmp) * r1_rho0 - 1._wp ) ! density anomaly (masked)
END DO
prhop(ji,jj,jk) = 0.5_wp * prhop(ji,jj,jk) * ztm / nn_sto_eos
prd (ji,jj,jk) = 0.5_wp * prd (ji,jj,jk) * ztm / nn_sto_eos
END_3D
DEALLOCATE(zn0_sto,zn_sto,zsign)
! Non-stochastic equation of state
ELSE
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
!
zh = pdep(ji,jj,jk) * r1_Z0 ! depth
zt = pts (ji,jj,jk,jp_tem) * r1_T0 ! temperature
zs = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
ztm = tmask(ji,jj,jk) ! tmask
!
zn3 = EOS013*zt &
& + EOS103*zs+EOS003
!
zn2 = (EOS022*zt &
& + EOS112*zs+EOS012)*zt &
& + (EOS202*zs+EOS102)*zs+EOS002
!
zn1 = (((EOS041*zt &
& + EOS131*zs+EOS031)*zt &
& + (EOS221*zs+EOS121)*zs+EOS021)*zt &
& + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt &
& + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001
!
zn0 = (((((EOS060*zt &
& + EOS150*zs+EOS050)*zt &
& + (EOS240*zs+EOS140)*zs+EOS040)*zt &
& + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt &
& + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt &
& + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt &
& + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
!
zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
!
prhop(ji,jj,jk) = zn0 * ztm ! potential density referenced at the surface
!
prd(ji,jj,jk) = ( zn * r1_rho0 - 1._wp ) * ztm ! density anomaly (masked)
END_3D
ENDIF
CASE( np_seos ) !== simplified EOS ==!
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
zt = pts (ji,jj,jk,jp_tem) - 10._wp
zs = pts (ji,jj,jk,jp_sal) - 35._wp
zh = pdep (ji,jj,jk)
ztm = tmask(ji,jj,jk)
! ! potential density referenced at the surface
zn = - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt ) * zt &
& + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs ) * zs &
& - rn_nu * zt * zs
prhop(ji,jj,jk) = ( rho0 + zn ) * ztm
! ! density anomaly (masked)
zn = zn - ( rn_a0 * rn_mu1 * zt + rn_b0 * rn_mu2 * zs ) * zh
prd(ji,jj,jk) = zn * r1_rho0 * ztm
!
END_3D
!
END SELECT
!
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=prd, clinfo1=' eos-pot: ', tab3d_2=prhop, clinfo2=' pot : ' )
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
!
IF( ln_timing ) CALL timing_stop('eos-pot')
!
END SUBROUTINE eos_insitu_pot_t
SUBROUTINE eos_insitu_2d( pts, pdep, prd )
!!
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: pts ! 1 : potential temperature [Celsius]
! ! 2 : salinity [psu]
REAL(wp), DIMENSION(:,:) , INTENT(in ) :: pdep ! depth [m]
REAL(wp), DIMENSION(:,:) , INTENT( out) :: prd ! in situ density
!!
CALL eos_insitu_2d_t( pts, is_tile(pts), pdep, is_tile(pdep), prd, is_tile(prd) )
END SUBROUTINE eos_insitu_2d
SUBROUTINE eos_insitu_2d_t( pts, ktts, pdep, ktdep, prd, ktrd )
!!----------------------------------------------------------------------
!! *** ROUTINE eos_insitu_2d ***
!!
!! ** Purpose : Compute the in situ density (ratio rho/rho0) from
!! potential temperature and salinity using an equation of state
!! selected in the nameos namelist. * 2D field case
!!
!! ** Action : - prd , the in situ density (no units) (unmasked)
!!
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: ktts, ktdep, ktrd
REAL(wp), DIMENSION(A2D_T(ktts),JPTS), INTENT(in ) :: pts ! 1 : potential temperature [Celsius]
! ! 2 : salinity [psu]
REAL(wp), DIMENSION(A2D_T(ktdep) ), INTENT(in ) :: pdep ! depth [m]
REAL(wp), DIMENSION(A2D_T(ktrd) ), INTENT( out) :: prd ! in situ density
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zt , zh , zs ! local scalars
REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - -
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('eos2d')
!
prd(:,:) = 0._wp
!
SELECT CASE( neos )
!
CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==!
!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
!
zh = pdep(ji,jj) * r1_Z0 ! depth
zt = pts (ji,jj,jp_tem) * r1_T0 ! temperature
zs = SQRT( ABS( pts(ji,jj,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
!
zn3 = EOS013*zt &
& + EOS103*zs+EOS003
!
zn2 = (EOS022*zt &
& + EOS112*zs+EOS012)*zt &
& + (EOS202*zs+EOS102)*zs+EOS002
!
zn1 = (((EOS041*zt &
& + EOS131*zs+EOS031)*zt &
& + (EOS221*zs+EOS121)*zs+EOS021)*zt &
& + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt &
& + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001
!
zn0 = (((((EOS060*zt &
& + EOS150*zs+EOS050)*zt &
& + (EOS240*zs+EOS140)*zs+EOS040)*zt &
& + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt &
& + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt &
& + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt &
& + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
!
zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
!
prd(ji,jj) = zn * r1_rho0 - 1._wp ! unmasked in situ density anomaly
!
END_2D
!
CASE( np_seos ) !== simplified EOS ==!
!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
!
zt = pts (ji,jj,jp_tem) - 10._wp
zs = pts (ji,jj,jp_sal) - 35._wp
zh = pdep (ji,jj) ! depth at the partial step level
!
zn = - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt + rn_mu1*zh ) * zt &
& + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs - rn_mu2*zh ) * zs &
& - rn_nu * zt * zs
!
prd(ji,jj) = zn * r1_rho0 ! unmasked in situ density anomaly
!
END_2D
!
END SELECT
!
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab2d_1=prd, clinfo1=' eos2d: ' )
!
IF( ln_timing ) CALL timing_stop('eos2d')
!
END SUBROUTINE eos_insitu_2d_t
SUBROUTINE eos_insitu_pot_2d( pts, prhop )
!!
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: pts ! 1 : potential temperature [Celsius]
! ! 2 : salinity [psu]
REAL(wp), DIMENSION(:,:) , INTENT( out) :: prhop ! potential density (surface referenced)
!!
CALL eos_insitu_pot_2d_t( pts, is_tile(pts), prhop, is_tile(prhop) )
END SUBROUTINE eos_insitu_pot_2d
SUBROUTINE eos_insitu_pot_2d_t( pts, ktts, prhop, ktrhop )
!!----------------------------------------------------------------------
!! *** ROUTINE eos_insitu_pot ***
!!
!! ** Purpose : Compute the in situ density (ratio rho/rho0) and the
!! potential volumic mass (Kg/m3) from potential temperature and
!! salinity fields using an equation of state selected in the
!! namelist.
!!
!! ** Action :
!! - prhop, the potential volumic mass (Kg/m3)
!!
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: ktts, ktrhop
REAL(wp), DIMENSION(A2D_T(ktts),JPTS), INTENT(in ) :: pts ! 1 : potential temperature [Celsius]
! ! 2 : salinity [psu]
REAL(wp), DIMENSION(A2D_T(ktrhop) ), INTENT( out) :: prhop ! potential density (surface referenced)
!
INTEGER :: ji, jj, jk, jsmp ! dummy loop indices
INTEGER :: jdof
REAL(wp) :: zt , zh , zstemp, zs , ztm ! local scalars
REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - -
REAL(wp), DIMENSION(:), ALLOCATABLE :: zn0_sto, zn_sto, zsign ! local vectors
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('eos-pot')
!
SELECT CASE ( neos )
!
CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==!
!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
!
zt = pts (ji,jj,jp_tem) * r1_T0 ! temperature
zs = SQRT( ABS( pts(ji,jj,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
ztm = tmask(ji,jj,1) ! tmask
!
zn0 = (((((EOS060*zt &
& + EOS150*zs+EOS050)*zt &
& + (EOS240*zs+EOS140)*zs+EOS040)*zt &
& + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt &
& + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt &
& + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt &
& + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
!
!
prhop(ji,jj) = zn0 * ztm ! potential density referenced at the surface
!
END_2D
CASE( np_seos ) !== simplified EOS ==!
!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zt = pts (ji,jj,jp_tem) - 10._wp
zs = pts (ji,jj,jp_sal) - 35._wp
ztm = tmask(ji,jj,1)
! ! potential density referenced at the surface
zn = - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt ) * zt &
& + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs ) * zs &
& - rn_nu * zt * zs
prhop(ji,jj) = ( rho0 + zn ) * ztm
!
END_2D
!
END SELECT
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab2d_1=prhop, clinfo1=' pot: ', kdim=1 )
!
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab2d_1=prhop, clinfo1=' eos-pot: ' )
!
IF( ln_timing ) CALL timing_stop('eos-pot')
!
END SUBROUTINE eos_insitu_pot_2d_t
SUBROUTINE rab_3d( pts, pab, Kmm )
!!
INTEGER , INTENT(in ) :: Kmm ! time level index
REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pts ! pot. temperature & salinity
REAL(wp), DIMENSION(:,:,:,:), INTENT( out) :: pab ! thermal/haline expansion ratio
!!
CALL rab_3d_t( pts, is_tile(pts), pab, is_tile(pab), Kmm )
END SUBROUTINE rab_3d
SUBROUTINE rab_3d_t( pts, ktts, pab, ktab, Kmm )
!!----------------------------------------------------------------------
!! *** ROUTINE rab_3d ***
!!
!! ** Purpose : Calculates thermal/haline expansion ratio at T-points
!!
!! ** Method : calculates alpha / beta at T-points
!!
!! ** Action : - pab : thermal/haline expansion ratio at T-points
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: Kmm ! time level index
INTEGER , INTENT(in ) :: ktts, ktab
REAL(wp), DIMENSION(A2D_T(ktts),JPK,JPTS), INTENT(in ) :: pts ! pot. temperature & salinity
REAL(wp), DIMENSION(A2D_T(ktab),JPK,JPTS), INTENT( out) :: pab ! thermal/haline expansion ratio
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zt , zh , zs , ztm ! local scalars
REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - -
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('rab_3d')
!
SELECT CASE ( neos )
!
CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==!
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
!
zh = gdept(ji,jj,jk,Kmm) * r1_Z0 ! depth
zt = pts (ji,jj,jk,jp_tem) * r1_T0 ! temperature
zs = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
ztm = tmask(ji,jj,jk) ! tmask
!
! alpha
zn3 = ALP003
!
zn2 = ALP012*zt + ALP102*zs+ALP002
!
zn1 = ((ALP031*zt &
& + ALP121*zs+ALP021)*zt &
& + (ALP211*zs+ALP111)*zs+ALP011)*zt &
& + ((ALP301*zs+ALP201)*zs+ALP101)*zs+ALP001
!
zn0 = ((((ALP050*zt &
& + ALP140*zs+ALP040)*zt &
& + (ALP230*zs+ALP130)*zs+ALP030)*zt &
& + ((ALP320*zs+ALP220)*zs+ALP120)*zs+ALP020)*zt &
& + (((ALP410*zs+ALP310)*zs+ALP210)*zs+ALP110)*zs+ALP010)*zt &
& + ((((ALP500*zs+ALP400)*zs+ALP300)*zs+ALP200)*zs+ALP100)*zs+ALP000
!
zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
!
pab(ji,jj,jk,jp_tem) = zn * r1_rho0 * ztm
!
! beta
zn3 = BET003
!
zn2 = BET012*zt + BET102*zs+BET002
!
zn1 = ((BET031*zt &
& + BET121*zs+BET021)*zt &
& + (BET211*zs+BET111)*zs+BET011)*zt &
& + ((BET301*zs+BET201)*zs+BET101)*zs+BET001
!
zn0 = ((((BET050*zt &
& + BET140*zs+BET040)*zt &
& + (BET230*zs+BET130)*zs+BET030)*zt &
& + ((BET320*zs+BET220)*zs+BET120)*zs+BET020)*zt &
& + (((BET410*zs+BET310)*zs+BET210)*zs+BET110)*zs+BET010)*zt &
& + ((((BET500*zs+BET400)*zs+BET300)*zs+BET200)*zs+BET100)*zs+BET000
!
zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
!
pab(ji,jj,jk,jp_sal) = zn / zs * r1_rho0 * ztm
!
END_3D
!
CASE( np_seos ) !== simplified EOS ==!
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
zt = pts (ji,jj,jk,jp_tem) - 10._wp ! pot. temperature anomaly (t-T0)
zs = pts (ji,jj,jk,jp_sal) - 35._wp ! abs. salinity anomaly (s-S0)
zh = gdept(ji,jj,jk,Kmm) ! depth in meters at t-point
ztm = tmask(ji,jj,jk) ! land/sea bottom mask = surf. mask
!
zn = rn_a0 * ( 1._wp + rn_lambda1*zt + rn_mu1*zh ) + rn_nu*zs
pab(ji,jj,jk,jp_tem) = zn * r1_rho0 * ztm ! alpha
!
zn = rn_b0 * ( 1._wp - rn_lambda2*zs - rn_mu2*zh ) - rn_nu*zt
pab(ji,jj,jk,jp_sal) = zn * r1_rho0 * ztm ! beta
!
END_3D
!
CASE DEFAULT
WRITE(ctmp1,*) ' bad flag value for neos = ', neos
CALL ctl_stop( 'rab_3d:', ctmp1 )
!
END SELECT
!
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=pab(:,:,:,jp_tem), clinfo1=' rab_3d_t: ', &
& tab3d_2=pab(:,:,:,jp_sal), clinfo2=' rab_3d_s : ' )
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!
IF( ln_timing ) CALL timing_stop('rab_3d')
!
END SUBROUTINE rab_3d_t
SUBROUTINE rab_2d( pts, pdep, pab, Kmm )
!!
INTEGER , INTENT(in ) :: Kmm ! time level index
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: pts ! pot. temperature & salinity
REAL(wp), DIMENSION(:,:) , INTENT(in ) :: pdep ! depth [m]
REAL(wp), DIMENSION(:,:,:), INTENT( out) :: pab ! thermal/haline expansion ratio
!!
CALL rab_2d_t(pts, is_tile(pts), pdep, is_tile(pdep), pab, is_tile(pab), Kmm)
END SUBROUTINE rab_2d
SUBROUTINE rab_2d_t( pts, ktts, pdep, ktdep, pab, ktab, Kmm )
!!----------------------------------------------------------------------
!! *** ROUTINE rab_2d ***
!!
!! ** Purpose : Calculates thermal/haline expansion ratio for a 2d field (unmasked)
!!
!! ** Action : - pab : thermal/haline expansion ratio at T-points
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: Kmm ! time level index
INTEGER , INTENT(in ) :: ktts, ktdep, ktab
REAL(wp), DIMENSION(A2D_T(ktts),JPTS), INTENT(in ) :: pts ! pot. temperature & salinity
REAL(wp), DIMENSION(A2D_T(ktdep) ), INTENT(in ) :: pdep ! depth [m]
REAL(wp), DIMENSION(A2D_T(ktab),JPTS), INTENT( out) :: pab ! thermal/haline expansion ratio
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zt , zh , zs ! local scalars
REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - -
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('rab_2d')
!
pab(:,:,:) = 0._wp
!
SELECT CASE ( neos )
!
CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==!
!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
!
zh = pdep(ji,jj) * r1_Z0 ! depth
zt = pts (ji,jj,jp_tem) * r1_T0 ! temperature
zs = SQRT( ABS( pts(ji,jj,jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
!
! alpha
zn3 = ALP003
!
zn2 = ALP012*zt + ALP102*zs+ALP002
!
zn1 = ((ALP031*zt &
& + ALP121*zs+ALP021)*zt &
& + (ALP211*zs+ALP111)*zs+ALP011)*zt &
& + ((ALP301*zs+ALP201)*zs+ALP101)*zs+ALP001
!
zn0 = ((((ALP050*zt &
& + ALP140*zs+ALP040)*zt &
& + (ALP230*zs+ALP130)*zs+ALP030)*zt &
& + ((ALP320*zs+ALP220)*zs+ALP120)*zs+ALP020)*zt &
& + (((ALP410*zs+ALP310)*zs+ALP210)*zs+ALP110)*zs+ALP010)*zt &
& + ((((ALP500*zs+ALP400)*zs+ALP300)*zs+ALP200)*zs+ALP100)*zs+ALP000
!
zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
!
pab(ji,jj,jp_tem) = zn * r1_rho0
!
! beta
zn3 = BET003
!
zn2 = BET012*zt + BET102*zs+BET002
!
zn1 = ((BET031*zt &
& + BET121*zs+BET021)*zt &
& + (BET211*zs+BET111)*zs+BET011)*zt &
& + ((BET301*zs+BET201)*zs+BET101)*zs+BET001
!
zn0 = ((((BET050*zt &
& + BET140*zs+BET040)*zt &
& + (BET230*zs+BET130)*zs+BET030)*zt &
& + ((BET320*zs+BET220)*zs+BET120)*zs+BET020)*zt &
& + (((BET410*zs+BET310)*zs+BET210)*zs+BET110)*zs+BET010)*zt &
& + ((((BET500*zs+BET400)*zs+BET300)*zs+BET200)*zs+BET100)*zs+BET000
!
zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
!
pab(ji,jj,jp_sal) = zn / zs * r1_rho0
!
!
END_2D
!
CASE( np_seos ) !== simplified EOS ==!
!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
!
zt = pts (ji,jj,jp_tem) - 10._wp ! pot. temperature anomaly (t-T0)
zs = pts (ji,jj,jp_sal) - 35._wp ! abs. salinity anomaly (s-S0)
zh = pdep (ji,jj) ! depth at the partial step level
!
zn = rn_a0 * ( 1._wp + rn_lambda1*zt + rn_mu1*zh ) + rn_nu*zs
pab(ji,jj,jp_tem) = zn * r1_rho0 ! alpha
!
zn = rn_b0 * ( 1._wp - rn_lambda2*zs - rn_mu2*zh ) - rn_nu*zt
pab(ji,jj,jp_sal) = zn * r1_rho0 ! beta
!
END_2D
!
CASE DEFAULT
WRITE(ctmp1,*) ' bad flag value for neos = ', neos
CALL ctl_stop( 'rab_2d:', ctmp1 )
!
END SELECT
!
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab2d_1=pab(:,:,jp_tem), clinfo1=' rab_2d_t: ', &
& tab2d_2=pab(:,:,jp_sal), clinfo2=' rab_2d_s : ' )
!
IF( ln_timing ) CALL timing_stop('rab_2d')
!
END SUBROUTINE rab_2d_t
SUBROUTINE rab_0d( pts, pdep, pab, Kmm )
!!----------------------------------------------------------------------
!! *** ROUTINE rab_0d ***
!!
!! ** Purpose : Calculates thermal/haline expansion ratio for a 2d field (unmasked)
!!
!! ** Action : - pab : thermal/haline expansion ratio at T-points
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: Kmm ! time level index
REAL(wp), DIMENSION(jpts) , INTENT(in ) :: pts ! pot. temperature & salinity
REAL(wp), INTENT(in ) :: pdep ! depth [m]
REAL(wp), DIMENSION(jpts) , INTENT( out) :: pab ! thermal/haline expansion ratio
!
REAL(wp) :: zt , zh , zs ! local scalars
REAL(wp) :: zn , zn0, zn1, zn2, zn3 ! - -
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('rab_0d')
!
pab(:) = 0._wp
!
SELECT CASE ( neos )
!
CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==!
!
!
zh = pdep * r1_Z0 ! depth
zt = pts (jp_tem) * r1_T0 ! temperature
zs = SQRT( ABS( pts(jp_sal) + rdeltaS ) * r1_S0 ) ! square root salinity
!
! alpha
zn3 = ALP003
!
zn2 = ALP012*zt + ALP102*zs+ALP002
!
zn1 = ((ALP031*zt &
& + ALP121*zs+ALP021)*zt &
& + (ALP211*zs+ALP111)*zs+ALP011)*zt &
& + ((ALP301*zs+ALP201)*zs+ALP101)*zs+ALP001
!
zn0 = ((((ALP050*zt &
& + ALP140*zs+ALP040)*zt &
& + (ALP230*zs+ALP130)*zs+ALP030)*zt &
& + ((ALP320*zs+ALP220)*zs+ALP120)*zs+ALP020)*zt &
& + (((ALP410*zs+ALP310)*zs+ALP210)*zs+ALP110)*zs+ALP010)*zt &
& + ((((ALP500*zs+ALP400)*zs+ALP300)*zs+ALP200)*zs+ALP100)*zs+ALP000
!
zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
!
pab(jp_tem) = zn * r1_rho0
!
! beta
zn3 = BET003
!
zn2 = BET012*zt + BET102*zs+BET002
!
zn1 = ((BET031*zt &
& + BET121*zs+BET021)*zt &
& + (BET211*zs+BET111)*zs+BET011)*zt &
& + ((BET301*zs+BET201)*zs+BET101)*zs+BET001
!
zn0 = ((((BET050*zt &
& + BET140*zs+BET040)*zt &
& + (BET230*zs+BET130)*zs+BET030)*zt &
& + ((BET320*zs+BET220)*zs+BET120)*zs+BET020)*zt &
& + (((BET410*zs+BET310)*zs+BET210)*zs+BET110)*zs+BET010)*zt &
& + ((((BET500*zs+BET400)*zs+BET300)*zs+BET200)*zs+BET100)*zs+BET000
!
zn = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
!
pab(jp_sal) = zn / zs * r1_rho0
!
!
!
CASE( np_seos ) !== simplified EOS ==!
!
zt = pts(jp_tem) - 10._wp ! pot. temperature anomaly (t-T0)
zs = pts(jp_sal) - 35._wp ! abs. salinity anomaly (s-S0)
zh = pdep ! depth at the partial step level
!
zn = rn_a0 * ( 1._wp + rn_lambda1*zt + rn_mu1*zh ) + rn_nu*zs
pab(jp_tem) = zn * r1_rho0 ! alpha
!
zn = rn_b0 * ( 1._wp - rn_lambda2*zs - rn_mu2*zh ) - rn_nu*zt
pab(jp_sal) = zn * r1_rho0 ! beta
!
CASE DEFAULT
WRITE(ctmp1,*) ' bad flag value for neos = ', neos
CALL ctl_stop( 'rab_0d:', ctmp1 )
!
END SELECT
!
IF( ln_timing ) CALL timing_stop('rab_0d')
!
END SUBROUTINE rab_0d
SUBROUTINE bn2( pts, pab, pn2, Kmm )
!!
INTEGER , INTENT(in ) :: Kmm ! time level index
REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! pot. temperature and salinity [Celsius,psu]
REAL(wp), DIMENSION(:,:,:,:) , INTENT(in ) :: pab ! thermal/haline expansion coef. [Celsius-1,psu-1]
REAL(wp), DIMENSION(:,:,:) , INTENT( out) :: pn2 ! Brunt-Vaisala frequency squared [1/s^2]
!!
CALL bn2_t( pts, pab, is_tile(pab), pn2, is_tile(pn2), Kmm )
END SUBROUTINE bn2