Skip to content
Snippets Groups Projects
dynhpg.F90 75.8 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
MODULE dynhpg
   !!======================================================================
   !!                       ***  MODULE  dynhpg  ***
   !! Ocean dynamics:  hydrostatic pressure gradient trend
   !!======================================================================
   !! History :  OPA  !  1987-09  (P. Andrich, M.-A. Foujols)  hpg_zco: Original code
   !!            5.0  !  1991-11  (G. Madec)
   !!            7.0  !  1996-01  (G. Madec)  hpg_sco: Original code for s-coordinates
   !!            8.0  !  1997-05  (G. Madec)  split dynber into dynkeg and dynhpg
   !!            8.5  !  2002-07  (G. Madec)  F90: Free form and module
   !!            8.5  !  2002-08  (A. Bozec)  hpg_zps: Original code
   !!   NEMO     1.0  !  2005-10  (A. Beckmann, B.W. An)  various s-coordinate options
   !!                 !         Original code for hpg_ctl, hpg_hel hpg_wdj, hpg_djc, hpg_rot
   !!             -   !  2005-11  (G. Madec) style & small optimisation
   !!            3.3  !  2010-10  (C. Ethe, G. Madec) reorganisation of initialisation phase
   !!            3.4  !  2011-11  (H. Liu) hpg_prj: Original code for s-coordinates
   !!                 !           (A. Coward) suppression of hel, wdj and rot options
   !!            3.6  !  2014-11  (P. Mathiot) hpg_isf: original code for ice shelf cavity
   !!            4.2  !  2020-12  (M. Bell, A. Young) hpg_djc: revised djc scheme
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   dyn_hpg      : update the momentum trend with the now horizontal
   !!                  gradient of the hydrostatic pressure
   !!   dyn_hpg_init : initialisation and control of options
   !!       hpg_zco  : z-coordinate scheme
   !!       hpg_zps  : z-coordinate plus partial steps (interpolation)
   !!       hpg_sco  : s-coordinate (standard jacobian formulation)
   !!       hpg_isf  : s-coordinate (sco formulation) adapted to ice shelf
   !!       hpg_djc  : s-coordinate (Density Jacobian with Cubic polynomial)
   !!       hpg_prj  : s-coordinate (Pressure Jacobian with Cubic polynomial)
   !!----------------------------------------------------------------------
   USE oce             ! ocean dynamics and tracers
   USE isf_oce , ONLY : risfload  ! ice shelf  (risfload variable)
   USE isfload , ONLY : isf_load  ! ice shelf  (isf_load routine )
   USE sbc_oce         ! surface variable (only for the flag with ice shelf)
   USE dom_oce         ! ocean space and time domain
   USE wet_dry         ! wetting and drying
   USE phycst          ! physical constants
   USE trd_oce         ! trends: ocean variables
   USE trddyn          ! trend manager: dynamics
   USE zpshde          ! partial step: hor. derivative     (zps_hde routine)
   !
   USE in_out_manager  ! I/O manager
   USE prtctl          ! Print control
   USE lbclnk          ! lateral boundary condition 
   USE lib_mpp         ! MPP library
   USE eosbn2          ! compute density
   USE timing          ! Timing
   USE iom

   IMPLICIT NONE
   PRIVATE

   PUBLIC   dyn_hpg        ! routine called by step module
   PUBLIC   dyn_hpg_init   ! routine called by opa module

   !                                !!* Namelist namdyn_hpg : hydrostatic pressure gradient
   LOGICAL, PUBLIC ::   ln_hpg_zco   !: z-coordinate - full steps
   LOGICAL, PUBLIC ::   ln_hpg_zps   !: z-coordinate - partial steps (interpolation)
   LOGICAL, PUBLIC ::   ln_hpg_sco   !: s-coordinate (standard jacobian formulation)
   LOGICAL, PUBLIC ::   ln_hpg_djc   !: s-coordinate (Density Jacobian with Cubic polynomial)
   LOGICAL, PUBLIC ::   ln_hpg_prj   !: s-coordinate (Pressure Jacobian scheme)
   LOGICAL, PUBLIC ::   ln_hpg_isf   !: s-coordinate similar to sco modify for isf

   !                                !! Flag to control the type of hydrostatic pressure gradient
   INTEGER, PARAMETER ::   np_ERROR  =-10   ! error in specification of lateral diffusion
   INTEGER, PARAMETER ::   np_zco    =  0   ! z-coordinate - full steps
   INTEGER, PARAMETER ::   np_zps    =  1   ! z-coordinate - partial steps (interpolation)
   INTEGER, PARAMETER ::   np_sco    =  2   ! s-coordinate (standard jacobian formulation)
   INTEGER, PARAMETER ::   np_djc    =  3   ! s-coordinate (Density Jacobian with Cubic polynomial)
   INTEGER, PARAMETER ::   np_prj    =  4   ! s-coordinate (Pressure Jacobian scheme)
   INTEGER, PARAMETER ::   np_isf    =  5   ! s-coordinate similar to sco modify for isf
   !
   INTEGER, PUBLIC  ::   nhpg         !: type of pressure gradient scheme used ! (deduced from ln_hpg_... flags) (PUBLIC for TAM)
   !
   LOGICAL          ::   ln_hpg_djc_vnh, ln_hpg_djc_vnv                 ! flag to specify hpg_djc boundary condition type
   REAL(wp), PUBLIC ::   aco_bc_hor, bco_bc_hor, aco_bc_vrt, bco_bc_vrt !: coefficients for hpg_djc hor and vert boundary conditions

   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"

   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: dynhpg.F90 15529 2021-11-23 15:00:19Z techene $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE dyn_hpg( kt, Kmm, puu, pvv, Krhs )
      !!---------------------------------------------------------------------
      !!                  ***  ROUTINE dyn_hpg  ***
      !!
      !! ** Method  :   Call the hydrostatic pressure gradient routine
      !!              using the scheme defined in the namelist
      !!
      !! ** Action : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now hydrastatic pressure trend
      !!             - send trends to trd_dyn for futher diagnostics (l_trddyn=T)
      !!----------------------------------------------------------------------
      INTEGER                             , INTENT( in )  ::  kt          ! ocean time-step index
      INTEGER                             , INTENT( in )  ::  Kmm, Krhs   ! ocean time level indices
      REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) ::  puu, pvv    ! ocean velocities and RHS of momentum equation
      !
      REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) ::   ztrdu, ztrdv
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('dyn_hpg')
      !
      IF( l_trddyn ) THEN                    ! Temporary saving of puu(:,:,:,Krhs) and pvv(:,:,:,Krhs) trends (l_trddyn)
         ALLOCATE( ztrdu(jpi,jpj,jpk) , ztrdv(jpi,jpj,jpk) )
         ztrdu(:,:,:) = puu(:,:,:,Krhs)
         ztrdv(:,:,:) = pvv(:,:,:,Krhs)
      ENDIF
      !
      SELECT CASE ( nhpg )      ! Hydrostatic pressure gradient computation
      CASE ( np_zco )   ;   CALL hpg_zco    ( kt, Kmm, puu, pvv, Krhs )  ! z-coordinate
      CASE ( np_zps )   ;   CALL hpg_zps    ( kt, Kmm, puu, pvv, Krhs )  ! z-coordinate plus partial steps (interpolation)
      CASE ( np_sco )   ;   CALL hpg_sco    ( kt, Kmm, puu, pvv, Krhs )  ! s-coordinate (standard jacobian formulation)
      CASE ( np_djc )   ;   CALL hpg_djc    ( kt, Kmm, puu, pvv, Krhs )  ! s-coordinate (Density Jacobian with Cubic polynomial)
      CASE ( np_prj )   ;   CALL hpg_prj    ( kt, Kmm, puu, pvv, Krhs )  ! s-coordinate (Pressure Jacobian scheme)
      CASE ( np_isf )   ;   CALL hpg_isf    ( kt, Kmm, puu, pvv, Krhs )  ! s-coordinate similar to sco modify for ice shelf
      END SELECT
      !
      IF( l_trddyn ) THEN      ! save the hydrostatic pressure gradient trends for momentum trend diagnostics
         ztrdu(:,:,:) = puu(:,:,:,Krhs) - ztrdu(:,:,:)
         ztrdv(:,:,:) = pvv(:,:,:,Krhs) - ztrdv(:,:,:)
         CALL trd_dyn( ztrdu, ztrdv, jpdyn_hpg, kt, Kmm )
         DEALLOCATE( ztrdu , ztrdv )
      ENDIF
      !
      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab3d_1=puu(:,:,:,Krhs), clinfo1=' hpg  - Ua: ', mask1=umask,   &
         &                                  tab3d_2=pvv(:,:,:,Krhs), clinfo2=       ' Va: ', mask2=vmask, clinfo3='dyn' )
      !
      IF( ln_timing )   CALL timing_stop('dyn_hpg')
      !
   END SUBROUTINE dyn_hpg


   SUBROUTINE dyn_hpg_init( Kmm )
      !!----------------------------------------------------------------------
      !!                 ***  ROUTINE dyn_hpg_init  ***
      !!
      !! ** Purpose :   initializations for the hydrostatic pressure gradient
      !!              computation and consistency control
      !!
      !! ** Action  :   Read the namelist namdyn_hpg and check the consistency
      !!      with the type of vertical coordinate used (zco, zps, sco)
      !!----------------------------------------------------------------------
      INTEGER, INTENT( in ) :: Kmm   ! ocean time level index
      !
      INTEGER ::   ioptio = 0      ! temporary integer
      INTEGER ::   ios             ! Local integer output status for namelist read
      !!
      INTEGER  ::   ji, jj, jk, ikt    ! dummy loop indices      ISF
      REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) ::  zts_top, zrhd   ! hypothesys on isf density
      REAL(wp), ALLOCATABLE, DIMENSION(:,:)   ::  zrhdtop_isf    ! density at bottom of ISF
      REAL(wp), ALLOCATABLE, DIMENSION(:,:)   ::  ziceload       ! density at bottom of ISF
      !!
      NAMELIST/namdyn_hpg/ ln_hpg_zco, ln_hpg_zps, ln_hpg_sco,     &
         &                 ln_hpg_djc, ln_hpg_prj, ln_hpg_isf,     &
         &                 ln_hpg_djc_vnh, ln_hpg_djc_vnv
      !!----------------------------------------------------------------------
      !
      READ  ( numnam_ref, namdyn_hpg, IOSTAT = ios, ERR = 901)
901   IF( ios /= 0 )   CALL ctl_nam ( ios , 'namdyn_hpg in reference namelist' )
      !
      READ  ( numnam_cfg, namdyn_hpg, IOSTAT = ios, ERR = 902 )
902   IF( ios >  0 )   CALL ctl_nam ( ios , 'namdyn_hpg in configuration namelist' )
      IF(lwm) WRITE ( numond, namdyn_hpg )
      !
      IF(lwp) THEN                   ! Control print
         WRITE(numout,*)
         WRITE(numout,*) 'dyn_hpg_init : hydrostatic pressure gradient initialisation'
         WRITE(numout,*) '~~~~~~~~~~~~'
         WRITE(numout,*) '   Namelist namdyn_hpg : choice of hpg scheme'
         WRITE(numout,*) '      z-coord. - full steps                             ln_hpg_zco    = ', ln_hpg_zco
         WRITE(numout,*) '      z-coord. - partial steps (interpolation)          ln_hpg_zps    = ', ln_hpg_zps
         WRITE(numout,*) '      s-coord. (standard jacobian formulation)          ln_hpg_sco    = ', ln_hpg_sco
         WRITE(numout,*) '      s-coord. (standard jacobian formulation) for isf  ln_hpg_isf    = ', ln_hpg_isf
         WRITE(numout,*) '      s-coord. (Density Jacobian: Cubic polynomial)     ln_hpg_djc    = ', ln_hpg_djc
         WRITE(numout,*) '      s-coord. (Pressure Jacobian: Cubic polynomial)    ln_hpg_prj    = ', ln_hpg_prj
      ENDIF
      !
      IF( .NOT.ln_linssh .AND. (ln_hpg_zco.OR.ln_hpg_zps) )   &
         &   CALL ctl_stop( 'dyn_hpg_init : non-linear free surface incompatible with hpg_zco or hpg_zps' )
      !
      IF( (.NOT.ln_hpg_isf .AND. ln_isfcav) .OR. (ln_hpg_isf .AND. .NOT.ln_isfcav) )                  &
         &   CALL ctl_stop( 'dyn_hpg_init : ln_hpg_isf=T requires ln_isfcav=T and vice versa' )  
      !
      !
      !                               ! Set nhpg from ln_hpg_... flags & consistency check
      nhpg   = np_ERROR
      ioptio = 0
      IF( ln_hpg_zco ) THEN   ;   nhpg = np_zco   ;   ioptio = ioptio +1   ;   ENDIF
      IF( ln_hpg_zps ) THEN   ;   nhpg = np_zps   ;   ioptio = ioptio +1   ;   ENDIF
      IF( ln_hpg_sco ) THEN   ;   nhpg = np_sco   ;   ioptio = ioptio +1   ;   ENDIF
      IF( ln_hpg_djc ) THEN   ;   nhpg = np_djc   ;   ioptio = ioptio +1   ;   ENDIF
      IF( ln_hpg_prj ) THEN   ;   nhpg = np_prj   ;   ioptio = ioptio +1   ;   ENDIF
      IF( ln_hpg_isf ) THEN   ;   nhpg = np_isf   ;   ioptio = ioptio +1   ;   ENDIF
      !
      IF( ioptio /= 1 )   CALL ctl_stop( 'NO or several hydrostatic pressure gradient options used' )
      ! 
      IF(lwp) THEN
         WRITE(numout,*)
         SELECT CASE( nhpg )
         CASE( np_zco )   ;   WRITE(numout,*) '   ==>>>   z-coord. - full steps '
         CASE( np_zps )   ;   WRITE(numout,*) '   ==>>>   z-coord. - partial steps (interpolation)'
         CASE( np_sco )   ;   WRITE(numout,*) '   ==>>>   s-coord. (standard jacobian formulation)'
         CASE( np_djc )   ;   WRITE(numout,*) '   ==>>>   s-coord. (Density Jacobian: Cubic polynomial)'
         CASE( np_prj )   ;   WRITE(numout,*) '   ==>>>   s-coord. (Pressure Jacobian: Cubic polynomial)'
         CASE( np_isf )   ;   WRITE(numout,*) '   ==>>>   s-coord. (standard jacobian formulation) for isf'
         END SELECT
         WRITE(numout,*)
      ENDIF
      !                          
      IF ( ln_hpg_djc ) THEN
         IF (ln_hpg_djc_vnh) THEN ! Von Neumann boundary condition
           IF(lwp) WRITE(numout,*) '           horizontal bc: von Neumann '
           aco_bc_hor = 6.0_wp/5.0_wp
           bco_bc_hor = 7.0_wp/15.0_wp
         ELSE ! Linear extrapolation
           IF(lwp) WRITE(numout,*) '           horizontal bc: linear extrapolation'
           aco_bc_hor = 3.0_wp/2.0_wp
           bco_bc_hor = 1.0_wp/2.0_wp
         END IF
         IF (ln_hpg_djc_vnv) THEN ! Von Neumann boundary condition
           IF(lwp) WRITE(numout,*) '           vertical bc: von Neumann '
           aco_bc_vrt = 6.0_wp/5.0_wp
           bco_bc_vrt = 7.0_wp/15.0_wp
         ELSE ! Linear extrapolation
           IF(lwp) WRITE(numout,*) '           vertical bc: linear extrapolation'
           aco_bc_vrt = 3.0_wp/2.0_wp
           bco_bc_vrt = 1.0_wp/2.0_wp
         END IF
      END IF
      !
   END SUBROUTINE dyn_hpg_init


   SUBROUTINE hpg_zco( kt, Kmm, puu, pvv, Krhs )
      !!---------------------------------------------------------------------
      !!                  ***  ROUTINE hpg_zco  ***
      !!
      !! ** Method  :   z-coordinate case, levels are horizontal surfaces.
      !!      The now hydrostatic pressure gradient at a given level, jk,
      !!      is computed by taking the vertical integral of the in-situ
      !!      density gradient along the model level from the suface to that
      !!      level:    zhpi = grav .....
      !!                zhpj = grav .....
      !!      add it to the general momentum trend (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)).
      !!            puu(:,:,:,Krhs) = puu(:,:,:,Krhs) - 1/e1u * zhpi
      !!            pvv(:,:,:,Krhs) = pvv(:,:,:,Krhs) - 1/e2v * zhpj
      !!
      !! ** Action : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now hydrastatic pressure trend
      !!----------------------------------------------------------------------
      INTEGER                             , INTENT( in )  ::  kt          ! ocean time-step index
      INTEGER                             , INTENT( in )  ::  Kmm, Krhs   ! ocean time level indices
      REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) ::  puu, pvv    ! ocean velocities and RHS of momentum equation
      !
      INTEGER  ::   ji, jj, jk       ! dummy loop indices
      REAL(wp) ::   zcoef0, zcoef1   ! temporary scalars
      REAL(wp), DIMENSION(A2D(nn_hls)) ::  zhpi, zhpj
      !!----------------------------------------------------------------------
      !
      IF( .NOT. l_istiled .OR. ntile == 1 )  THEN                       ! Do only on the first tile
         IF( kt == nit000 ) THEN
            IF(lwp) WRITE(numout,*)
            IF(lwp) WRITE(numout,*) 'dyn:hpg_zco : hydrostatic pressure gradient trend'
            IF(lwp) WRITE(numout,*) '~~~~~~~~~~~   z-coordinate case '
         ENDIF
      ENDIF
      !
      zcoef0 = - grav * 0.5_wp            ! Local constant initialization
      !
      DO_2D( 0, 0, 0, 0 )                 ! Surface value
         zcoef1 = zcoef0 * e3w(ji,jj,1,Kmm)
         !                                   ! hydrostatic pressure gradient
         zhpi(ji,jj) = zcoef1 * ( rhd(ji+1,jj,1) - rhd(ji,jj,1) ) * r1_e1u(ji,jj)
         zhpj(ji,jj) = zcoef1 * ( rhd(ji,jj+1,1) - rhd(ji,jj,1) ) * r1_e2v(ji,jj)
         !                                   ! add to the general momentum trend
         puu(ji,jj,1,Krhs) = puu(ji,jj,1,Krhs) + zhpi(ji,jj)
         pvv(ji,jj,1,Krhs) = pvv(ji,jj,1,Krhs) + zhpj(ji,jj)
      END_2D
      !
      DO_3D( 0, 0, 0, 0, 2, jpkm1 )        ! interior value (2=<jk=<jpkm1)
         zcoef1 = zcoef0 * e3w(ji,jj,jk,Kmm)
         !                                   ! hydrostatic pressure gradient
         zhpi(ji,jj) = zhpi(ji,jj) + zcoef1 * (  ( rhd(ji+1,jj,jk)+rhd(ji+1,jj,jk-1) )  &
            &                                  - ( rhd(ji  ,jj,jk)+rhd(ji  ,jj,jk-1) )  ) * r1_e1u(ji,jj)

         zhpj(ji,jj) = zhpj(ji,jj) + zcoef1 * (  ( rhd(ji,jj+1,jk)+rhd(ji,jj+1,jk-1) )  &
            &                                  - ( rhd(ji,jj,  jk)+rhd(ji,jj  ,jk-1) )  ) * r1_e2v(ji,jj)
         !                                   ! add to the general momentum trend
         puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) + zhpi(ji,jj)
         pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) + zhpj(ji,jj)
      END_3D
      !
   END SUBROUTINE hpg_zco


   SUBROUTINE hpg_zps( kt, Kmm, puu, pvv, Krhs )
      !!---------------------------------------------------------------------
      !!                 ***  ROUTINE hpg_zps  ***
      !!
      !! ** Method  :   z-coordinate plus partial steps case.  blahblah...
      !!
      !! ** Action  : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now hydrastatic pressure trend
      !!----------------------------------------------------------------------
      INTEGER                             , INTENT( in )  ::  kt          ! ocean time-step index
      INTEGER                             , INTENT( in )  ::  Kmm, Krhs   ! ocean time level indices
      REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) ::  puu, pvv    ! ocean velocities and RHS of momentum equation
      !!
      INTEGER  ::   ji, jj, jk                       ! dummy loop indices
      INTEGER  ::   iku, ikv                         ! temporary integers
      REAL(wp) ::   zcoef0, zcoef1, zcoef2, zcoef3   ! temporary scalars
      REAL(wp), DIMENSION(A2D(nn_hls),jpk ) :: zhpi, zhpj
      REAL(wp), DIMENSION(A2D(nn_hls),jpts) :: zgtsu, zgtsv
      REAL(wp), DIMENSION(A2D(nn_hls)     ) :: zgru, zgrv
      !!----------------------------------------------------------------------
      !
      IF( .NOT. l_istiled .OR. ntile == 1 )  THEN                       ! Do only on the first tile
         IF( kt == nit000 ) THEN
            IF(lwp) WRITE(numout,*)
            IF(lwp) WRITE(numout,*) 'dyn:hpg_zps : hydrostatic pressure gradient trend'
            IF(lwp) WRITE(numout,*) '~~~~~~~~~~~   z-coordinate with partial steps - vector optimization'
         ENDIF
      ENDIF

      ! Partial steps: Compute NOW horizontal gradient of t, s, rd at the last ocean level
      CALL zps_hde( kt, Kmm, jpts, ts(:,:,:,:,Kmm), zgtsu, zgtsv, rhd, zgru , zgrv )

      ! Local constant initialization
      zcoef0 = - grav * 0.5_wp

      !  Surface value (also valid in partial step case)
      DO_2D( 0, 0, 0, 0 )
         zcoef1 = zcoef0 * e3w(ji,jj,1,Kmm)
         ! hydrostatic pressure gradient
         zhpi(ji,jj,1) = zcoef1 * ( rhd(ji+1,jj  ,1) - rhd(ji,jj,1) ) * r1_e1u(ji,jj)
         zhpj(ji,jj,1) = zcoef1 * ( rhd(ji  ,jj+1,1) - rhd(ji,jj,1) ) * r1_e2v(ji,jj)
         ! add to the general momentum trend
         puu(ji,jj,1,Krhs) = puu(ji,jj,1,Krhs) + zhpi(ji,jj,1)
         pvv(ji,jj,1,Krhs) = pvv(ji,jj,1,Krhs) + zhpj(ji,jj,1)
      END_2D

      ! interior value (2=<jk=<jpkm1)
      DO_3D( 0, 0, 0, 0, 2, jpkm1 )
         zcoef1 = zcoef0 * e3w(ji,jj,jk,Kmm)
         ! hydrostatic pressure gradient
         zhpi(ji,jj,jk) = zhpi(ji,jj,jk-1)   &
            &           + zcoef1 * (  ( rhd(ji+1,jj,jk) + rhd(ji+1,jj,jk-1) )   &
            &                       - ( rhd(ji  ,jj,jk) + rhd(ji  ,jj,jk-1) )  ) * r1_e1u(ji,jj)

         zhpj(ji,jj,jk) = zhpj(ji,jj,jk-1)   &
            &           + zcoef1 * (  ( rhd(ji,jj+1,jk) + rhd(ji,jj+1,jk-1) )   &
            &                       - ( rhd(ji,jj,  jk) + rhd(ji,jj  ,jk-1) )  ) * r1_e2v(ji,jj)
         ! add to the general momentum trend
         puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) + zhpi(ji,jj,jk)
         pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) + zhpj(ji,jj,jk)
      END_3D

      ! partial steps correction at the last level  (use zgru & zgrv computed in zpshde.F90)
      DO_2D( 0, 0, 0, 0 )
         iku = mbku(ji,jj)
         ikv = mbkv(ji,jj)
         zcoef2 = zcoef0 * MIN( e3w(ji,jj,iku,Kmm), e3w(ji+1,jj  ,iku,Kmm) )
         zcoef3 = zcoef0 * MIN( e3w(ji,jj,ikv,Kmm), e3w(ji  ,jj+1,ikv,Kmm) )
         IF( iku > 1 ) THEN            ! on i-direction (level 2 or more)
            puu  (ji,jj,iku,Krhs) = puu(ji,jj,iku,Krhs) - zhpi(ji,jj,iku)         ! subtract old value
            zhpi(ji,jj,iku) = zhpi(ji,jj,iku-1)                   &   ! compute the new one
               &            + zcoef2 * ( rhd(ji+1,jj,iku-1) - rhd(ji,jj,iku-1) + zgru(ji,jj) ) * r1_e1u(ji,jj)
            puu  (ji,jj,iku,Krhs) = puu(ji,jj,iku,Krhs) + zhpi(ji,jj,iku)         ! add the new one to the general momentum trend
         ENDIF
         IF( ikv > 1 ) THEN            ! on j-direction (level 2 or more)
            pvv  (ji,jj,ikv,Krhs) = pvv(ji,jj,ikv,Krhs) - zhpj(ji,jj,ikv)         ! subtract old value
            zhpj(ji,jj,ikv) = zhpj(ji,jj,ikv-1)                   &   ! compute the new one
               &            + zcoef3 * ( rhd(ji,jj+1,ikv-1) - rhd(ji,jj,ikv-1) + zgrv(ji,jj) ) * r1_e2v(ji,jj)
            pvv  (ji,jj,ikv,Krhs) = pvv(ji,jj,ikv,Krhs) + zhpj(ji,jj,ikv)         ! add the new one to the general momentum trend
         ENDIF
      END_2D
      !
   END SUBROUTINE hpg_zps


   SUBROUTINE hpg_sco( kt, Kmm, puu, pvv, Krhs )
      !!---------------------------------------------------------------------
      !!                  ***  ROUTINE hpg_sco  ***
      !!
      !! ** Method  :   s-coordinate case. Jacobian scheme.
      !!      The now hydrostatic pressure gradient at a given level, jk,
      !!      is computed by taking the vertical integral of the in-situ
      !!      density gradient along the model level from the suface to that
      !!      level. s-coordinates (ln_sco): a corrective term is added
      !!      to the horizontal pressure gradient :
      !!         zhpi = grav .....  + 1/e1u mi(rhd) di[ grav dep3w ]
      !!         zhpj = grav .....  + 1/e2v mj(rhd) dj[ grav dep3w ]
      !!      add it to the general momentum trend (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)).
      !!         puu(:,:,:,Krhs) = puu(:,:,:,Krhs) - 1/e1u * zhpi
      !!         pvv(:,:,:,Krhs) = pvv(:,:,:,Krhs) - 1/e2v * zhpj
      !!
      !! ** Action : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now hydrastatic pressure trend
      !!----------------------------------------------------------------------
      INTEGER                             , INTENT( in )  ::  kt          ! ocean time-step index
      INTEGER                             , INTENT( in )  ::  Kmm, Krhs   ! ocean time level indices
      REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) ::  puu, pvv    ! ocean velocities and RHS of momentum equation
      !!
      INTEGER  ::   ji, jj, jk, jii, jjj           ! dummy loop indices
      REAL(wp) ::   zcoef0, zuap, zvap, ztmp       ! local scalars
      LOGICAL  ::   ll_tmp1, ll_tmp2               ! local logical variables
      REAL(wp), DIMENSION(A2D(nn_hls),jpk)  ::   zhpi, zhpj
      REAL(wp), DIMENSION(:,:), ALLOCATABLE ::   zcpx, zcpy   !W/D pressure filter
      !!----------------------------------------------------------------------
      !
      IF( ln_wd_il ) ALLOCATE(zcpx(A2D(nn_hls)), zcpy(A2D(nn_hls)))
      !
      IF( .NOT. l_istiled .OR. ntile == 1 )  THEN                       ! Do only on the first tile
         IF( kt == nit000 ) THEN
            IF(lwp) WRITE(numout,*)
            IF(lwp) WRITE(numout,*) 'dyn:hpg_sco : hydrostatic pressure gradient trend'
            IF(lwp) WRITE(numout,*) '~~~~~~~~~~~   s-coordinate case, OCE original scheme used'
         ENDIF
      ENDIF
      !
      zcoef0 = - grav * 0.5_wp
      !
      IF( ln_wd_il ) THEN
        DO_2D( 0, 0, 0, 0 )
          ll_tmp1 = MIN(  ssh(ji,jj,Kmm)               ,  ssh(ji+1,jj,Kmm) ) >                &
               &    MAX( -ht_0(ji,jj)               , -ht_0(ji+1,jj) ) .AND.            &
               &    MAX(  ssh(ji,jj,Kmm) +  ht_0(ji,jj),  ssh(ji+1,jj,Kmm) + ht_0(ji+1,jj) )  &
               &                                                       > rn_wdmin1 + rn_wdmin2
          ll_tmp2 = ( ABS( ssh(ji,jj,Kmm)              -  ssh(ji+1,jj,Kmm) ) > 1.E-12 ) .AND. (       &
               &    MAX(   ssh(ji,jj,Kmm)              ,  ssh(ji+1,jj,Kmm) ) >                &
               &    MAX(  -ht_0(ji,jj)              , -ht_0(ji+1,jj) ) + rn_wdmin1 + rn_wdmin2 )

          IF(ll_tmp1) THEN
            zcpx(ji,jj) = 1.0_wp
          ELSE IF(ll_tmp2) THEN
            ! no worries about  ssh(ji+1,jj,Kmm) -  ssh(ji  ,jj,Kmm) = 0, it won't happen ! here
            zcpx(ji,jj) = ABS( (ssh(ji+1,jj,Kmm) + ht_0(ji+1,jj) - ssh(ji,jj,Kmm) - ht_0(ji,jj)) &
                        &    / (ssh(ji+1,jj,Kmm) - ssh(ji  ,jj,Kmm)) )
          ELSE
            zcpx(ji,jj) = 0._wp
          END IF
   
          ll_tmp1 = MIN(  ssh(ji,jj,Kmm)              ,  ssh(ji,jj+1,Kmm) ) >                &
               &    MAX( -ht_0(ji,jj)              , -ht_0(ji,jj+1) ) .AND.            &
               &    MAX(  ssh(ji,jj,Kmm) + ht_0(ji,jj),  ssh(ji,jj+1,Kmm) + ht_0(ji,jj+1) )  &
               &                                                      > rn_wdmin1 + rn_wdmin2
          ll_tmp2 = ( ABS( ssh(ji,jj,Kmm)             -  ssh(ji,jj+1,Kmm) ) > 1.E-12 ) .AND. (        &
               &    MAX(   ssh(ji,jj,Kmm)             ,  ssh(ji,jj+1,Kmm) ) >                &
               &    MAX(  -ht_0(ji,jj)             , -ht_0(ji,jj+1) ) + rn_wdmin1 + rn_wdmin2 )

          IF(ll_tmp1) THEN
            zcpy(ji,jj) = 1.0_wp
          ELSE IF(ll_tmp2) THEN
            ! no worries about  ssh(ji,jj+1,Kmm) -  ssh(ji,jj  ,Kmm) = 0, it won't happen ! here
            zcpy(ji,jj) = ABS( (ssh(ji,jj+1,Kmm) + ht_0(ji,jj+1) - ssh(ji,jj,Kmm) - ht_0(ji,jj)) &
                        &    / (ssh(ji,jj+1,Kmm) - ssh(ji,jj  ,Kmm)) )
          ELSE
            zcpy(ji,jj) = 0._wp
          END IF
        END_2D
      END IF
      !
      DO_2D( 0, 0, 0, 0 )              ! Surface value
         !                                   ! hydrostatic pressure gradient along s-surfaces
         zhpi(ji,jj,1) = zcoef0 * r1_e1u(ji,jj)                      &
            &          * (  e3w(ji+1,jj  ,1,Kmm) * rhd(ji+1,jj  ,1)  &
            &             - e3w(ji  ,jj  ,1,Kmm) * rhd(ji  ,jj  ,1)  )
         zhpj(ji,jj,1) = zcoef0 * r1_e2v(ji,jj)                      &
            &          * (  e3w(ji  ,jj+1,1,Kmm) * rhd(ji  ,jj+1,1)  &
            &             - e3w(ji  ,jj  ,1,Kmm) * rhd(ji  ,jj  ,1)  )
         !                                   ! s-coordinate pressure gradient correction
         zuap = -zcoef0 * ( rhd    (ji+1,jj,1) + rhd    (ji,jj,1) )   &
            &           * ( gde3w(ji+1,jj,1) - gde3w(ji,jj,1) ) * r1_e1u(ji,jj)
         zvap = -zcoef0 * ( rhd    (ji,jj+1,1) + rhd    (ji,jj,1) )   &
            &           * ( gde3w(ji,jj+1,1) - gde3w(ji,jj,1) ) * r1_e2v(ji,jj)
         !
         IF( ln_wd_il ) THEN
            zhpi(ji,jj,1) = zhpi(ji,jj,1) * zcpx(ji,jj)
            zhpj(ji,jj,1) = zhpj(ji,jj,1) * zcpy(ji,jj) 
            zuap = zuap * zcpx(ji,jj)
            zvap = zvap * zcpy(ji,jj)
         ENDIF
         !                                   ! add to the general momentum trend
         puu(ji,jj,1,Krhs) = puu(ji,jj,1,Krhs) + zhpi(ji,jj,1) + zuap
         pvv(ji,jj,1,Krhs) = pvv(ji,jj,1,Krhs) + zhpj(ji,jj,1) + zvap
      END_2D
      !
      DO_3D( 0, 0, 0, 0, 2, jpkm1 )    ! interior value (2=<jk=<jpkm1)
         !                                   ! hydrostatic pressure gradient along s-surfaces
         zhpi(ji,jj,jk) = zhpi(ji,jj,jk-1) + zcoef0 * r1_e1u(ji,jj)                         &
            &           * (  e3w(ji+1,jj,jk,Kmm) * ( rhd(ji+1,jj,jk) + rhd(ji+1,jj,jk-1) )  &
            &              - e3w(ji  ,jj,jk,Kmm) * ( rhd(ji  ,jj,jk) + rhd(ji  ,jj,jk-1) )  )
         zhpj(ji,jj,jk) = zhpj(ji,jj,jk-1) + zcoef0 * r1_e2v(ji,jj)                         &
            &           * (  e3w(ji,jj+1,jk,Kmm) * ( rhd(ji,jj+1,jk) + rhd(ji,jj+1,jk-1) )  &
            &              - e3w(ji,jj  ,jk,Kmm) * ( rhd(ji,jj,  jk) + rhd(ji,jj  ,jk-1) )  )
         !                                   ! s-coordinate pressure gradient correction
         zuap = -zcoef0 * ( rhd  (ji+1,jj  ,jk) + rhd  (ji,jj,jk) ) &
            &           * ( gde3w(ji+1,jj  ,jk) - gde3w(ji,jj,jk) ) * r1_e1u(ji,jj)
         zvap = -zcoef0 * ( rhd  (ji  ,jj+1,jk) + rhd  (ji,jj,jk) ) &
            &           * ( gde3w(ji  ,jj+1,jk) - gde3w(ji,jj,jk) ) * r1_e2v(ji,jj)
         !
         IF( ln_wd_il ) THEN
            zhpi(ji,jj,jk) = zhpi(ji,jj,jk) * zcpx(ji,jj)
            zhpj(ji,jj,jk) = zhpj(ji,jj,jk) * zcpy(ji,jj) 
            zuap = zuap * zcpx(ji,jj)
            zvap = zvap * zcpy(ji,jj)
         ENDIF
         !
         ! add to the general momentum trend
         puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) + zhpi(ji,jj,jk) + zuap
         pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) + zhpj(ji,jj,jk) + zvap
      END_3D
      !
      IF( ln_wd_il )  DEALLOCATE( zcpx , zcpy )
      !
   END SUBROUTINE hpg_sco


   SUBROUTINE hpg_isf( kt, Kmm, puu, pvv, Krhs )
      !!---------------------------------------------------------------------
      !!                  ***  ROUTINE hpg_isf  ***
      !!
      !! ** Method  :   s-coordinate case. Jacobian scheme.
      !!      The now hydrostatic pressure gradient at a given level, jk,
      !!      is computed by taking the vertical integral of the in-situ
      !!      density gradient along the model level from the suface to that
      !!      level. s-coordinates (ln_sco): a corrective term is added
      !!      to the horizontal pressure gradient :
      !!         zhpi = grav .....  + 1/e1u mi(rhd) di[ grav dep3w ]
      !!         zhpj = grav .....  + 1/e2v mj(rhd) dj[ grav dep3w ]
      !!      add it to the general momentum trend (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)).
      !!         puu(:,:,:,Krhs) = puu(:,:,:,Krhs) - 1/e1u * zhpi
      !!         pvv(:,:,:,Krhs) = pvv(:,:,:,Krhs) - 1/e2v * zhpj
      !!      iceload is added
      !!      
      !! ** Action : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now hydrastatic pressure trend
      !!----------------------------------------------------------------------
      INTEGER                             , INTENT( in )  ::  kt          ! ocean time-step index
      INTEGER                             , INTENT( in )  ::  Kmm, Krhs   ! ocean time level indices
      REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) ::  puu, pvv    ! ocean velocities and RHS of momentum equation
      !!
      INTEGER  ::   ji, jj, jk             ! dummy loop indices
      INTEGER  ::   ikt ,  ikti1,  iktj1   ! local integer
      REAL(wp) ::   ze3w, ze3wi1, ze3wj1   ! local scalars
      REAL(wp) ::   zcoef0, zuap, zvap     !   -      -
      REAL(wp), DIMENSION(A2D(nn_hls),jpk ) ::  zhpi, zhpj
      REAL(wp), DIMENSION(A2D(nn_hls),jpts) ::  zts_top
      REAL(wp), DIMENSION(A2D(nn_hls))      ::  zrhd_top, zdep_top
      !!----------------------------------------------------------------------
      !
      zcoef0 = - grav * 0.5_wp   ! Local constant initialization
      !
      !                          ! iniitialised to 0. zhpi zhpi 
      zhpi(:,:,:) = 0._wp   ;   zhpj(:,:,:) = 0._wp

      ! compute rhd at the ice/oce interface (ocean side)
      ! usefull to reduce residual current in the test case ISOMIP with no melting
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         ikt = mikt(ji,jj)
         zts_top(ji,jj,1) = ts(ji,jj,ikt,1,Kmm)
         zts_top(ji,jj,2) = ts(ji,jj,ikt,2,Kmm)
         zdep_top(ji,jj)  = MAX( risfdep(ji,jj) , gdept(ji,jj,1,Kmm) )
      END_2D
      CALL eos( zts_top, zdep_top, zrhd_top )

      !                     !===========================!
      !                     !=====  surface value  =====!
      !                     !===========================!
      DO_2D( 0, 0, 0, 0 )
         ikt   = mikt(ji  ,jj  )   ;   ze3w   = e3w(ji  ,jj  ,ikt  ,Kmm)
         ikti1 = mikt(ji+1,jj  )   ;   ze3wi1 = e3w(ji+1,jj  ,ikti1,Kmm)
         iktj1 = mikt(ji  ,jj+1)   ;   ze3wj1 = e3w(ji  ,jj+1,iktj1,Kmm)
         !                          ! hydrostatic pressure gradient along s-surfaces and ice shelf pressure
         !                          ! we assume ISF is in isostatic equilibrium
         zhpi(ji,jj,1) = zcoef0 * r1_e1u(ji,jj) * (   risfload(ji+1,jj) - risfload(ji,jj)  &
            &                                       + 0.5_wp * ( ze3wi1 * ( rhd(ji+1,jj,ikti1) + zrhd_top(ji+1,jj) )     &
            &                                                  - ze3w   * ( rhd(ji  ,jj,ikt  ) + zrhd_top(ji  ,jj) ) )   )
         zhpj(ji,jj,1) = zcoef0 * r1_e2v(ji,jj) * (   risfload(ji,jj+1) - risfload(ji,jj)  &
            &                                       + 0.5_wp * ( ze3wj1 * ( rhd(ji,jj+1,iktj1) + zrhd_top(ji,jj+1) )      &
            &                                                  - ze3w   * ( rhd(ji,jj  ,ikt  ) + zrhd_top(ji,jj  ) ) )   )
         !                          ! s-coordinate pressure gradient correction (=0 if z coordinate)
         zuap = -zcoef0 * ( rhd    (ji+1,jj,1) + rhd    (ji,jj,1) )   &
            &           * ( gde3w(ji+1,jj,1) - gde3w(ji,jj,1) ) * r1_e1u(ji,jj)
         zvap = -zcoef0 * ( rhd    (ji,jj+1,1) + rhd    (ji,jj,1) )   &
            &           * ( gde3w(ji,jj+1,1) - gde3w(ji,jj,1) ) * r1_e2v(ji,jj)
         !                          ! add to the general momentum trend
         puu(ji,jj,1,Krhs) = puu(ji,jj,1,Krhs) + (zhpi(ji,jj,1) + zuap) * umask(ji,jj,1)
         pvv(ji,jj,1,Krhs) = pvv(ji,jj,1,Krhs) + (zhpj(ji,jj,1) + zvap) * vmask(ji,jj,1)
      END_2D
      !   
      !                     !=============================!
      !                     !=====  interior values  =====!
      !                     !=============================!
      DO_3D( 0, 0, 0, 0, 2, jpkm1 )
         ze3w   = e3w(ji  ,jj  ,jk,Kmm)
         ze3wi1 = e3w(ji+1,jj  ,jk,Kmm)
         ze3wj1 = e3w(ji  ,jj+1,jk,Kmm)
         !                          ! hydrostatic pressure gradient along s-surfaces
         zhpi(ji,jj,jk) = zhpi(ji,jj,jk-1) + zcoef0 / e1u(ji,jj)   &
            &           * (  ze3wi1 * ( rhd(ji+1,jj,jk) + rhd(ji+1,jj,jk-1) ) * wmask(ji+1,jj,jk)   &
            &              - ze3w   * ( rhd(ji  ,jj,jk) + rhd(ji  ,jj,jk-1) ) * wmask(ji  ,jj,jk)   )
         zhpj(ji,jj,jk) = zhpj(ji,jj,jk-1) + zcoef0 / e2v(ji,jj)   &
            &           * (  ze3wj1 * ( rhd(ji,jj+1,jk) + rhd(ji,jj+1,jk-1) ) * wmask(ji,jj+1,jk)   &
            &              - ze3w   * ( rhd(ji,jj,  jk) + rhd(ji,jj  ,jk-1) ) * wmask(ji,jj  ,jk)   )
         !                          ! s-coordinate pressure gradient correction
         zuap = -zcoef0 * ( rhd   (ji+1,jj  ,jk) + rhd   (ji,jj,jk) )   &
            &           * ( gde3w(ji+1,jj  ,jk) - gde3w(ji,jj,jk) ) / e1u(ji,jj)
         zvap = -zcoef0 * ( rhd   (ji  ,jj+1,jk) + rhd   (ji,jj,jk) )   &
            &           * ( gde3w(ji  ,jj+1,jk) - gde3w(ji,jj,jk) ) / e2v(ji,jj)
         !                          ! add to the general momentum trend
         puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) + (zhpi(ji,jj,jk) + zuap) * umask(ji,jj,jk)
         pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) + (zhpj(ji,jj,jk) + zvap) * vmask(ji,jj,jk)
      END_3D
      !
   END SUBROUTINE hpg_isf


   SUBROUTINE hpg_djc( kt, Kmm, puu, pvv, Krhs )
      !!---------------------------------------------------------------------
      !!                  ***  ROUTINE hpg_djc  ***
      !!
      !! ** Method  :   Density Jacobian with Cubic polynomial scheme
      !!
      !! Reference: Shchepetkin and McWilliams, J. Geophys. Res., 108(C3), 3090, 2003
      !!----------------------------------------------------------------------
      INTEGER                             , INTENT( in )  ::  kt          ! ocean time-step index
      INTEGER                             , INTENT( in )  ::  Kmm, Krhs   ! ocean time level indices
      REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) ::  puu, pvv    ! ocean velocities and RHS of momentum equation
      !!
      INTEGER  ::   ji, jj, jk          ! dummy loop indices
      INTEGER  ::   iktb, iktt          ! jk indices at tracer points for top and bottom points 
      REAL(wp) ::   zcoef0, zep, cffw   ! temporary scalars
      REAL(wp) ::   z_grav_10, z1_12, z1_cff
      REAL(wp) ::   cffu, cffx          !    "         "
      REAL(wp) ::   cffv, cffy          !    "         "
      LOGICAL  ::   ll_tmp1, ll_tmp2    ! local logical variables
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) ::   zhpi, zhpj

      REAL(wp), DIMENSION(A2D(nn_hls),jpk) ::   zdzx, zdzy, zdzz                          ! Primitive grid differences ('delta_xyz')
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) ::   zdz_i, zdz_j, zdz_k                       ! Harmonic average of primitive grid differences ('d_xyz')
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) ::   zdrhox, zdrhoy, zdrhoz                    ! Primitive rho differences ('delta_rho')
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) ::   zdrho_i, zdrho_j, zdrho_k                 ! Harmonic average of primitive rho differences ('d_rho')
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) ::   z_rho_i, z_rho_j, z_rho_k                 ! Face intergrals
      REAL(wp), DIMENSION(A2D(nn_hls))     ::   zz_dz_i, zz_dz_j, zz_drho_i, zz_drho_j    ! temporary arrays
      REAL(wp), DIMENSION(:,:), ALLOCATABLE ::   zcpx, zcpy   !W/D pressure filter
      !!----------------------------------------------------------------------
      !
      IF( ln_wd_il ) THEN
         ALLOCATE( zcpx(A2D(nn_hls)) , zcpy(A2D(nn_hls)) )
        DO_2D( 0, 0, 0, 0 )
          ll_tmp1 = MIN(  ssh(ji,jj,Kmm)              ,  ssh(ji+1,jj,Kmm) ) >                &
               &    MAX( -ht_0(ji,jj)              , -ht_0(ji+1,jj) ) .AND.            &
               &    MAX(  ssh(ji,jj,Kmm) + ht_0(ji,jj),  ssh(ji+1,jj,Kmm) + ht_0(ji+1,jj) )  &
               &                                                      > rn_wdmin1 + rn_wdmin2
          ll_tmp2 = ( ABS( ssh(ji,jj,Kmm)             -  ssh(ji+1,jj,Kmm) ) > 1.E-12 ) .AND. (        &
               &    MAX(   ssh(ji,jj,Kmm)             ,  ssh(ji+1,jj,Kmm) ) >                &
               &    MAX(  -ht_0(ji,jj)             , -ht_0(ji+1,jj) ) + rn_wdmin1 + rn_wdmin2 )
          IF(ll_tmp1) THEN
            zcpx(ji,jj) = 1.0_wp
          ELSE IF(ll_tmp2) THEN
            ! no worries about  ssh(ji+1,jj,Kmm) -  ssh(ji  ,jj,Kmm) = 0, it won't happen ! here
            zcpx(ji,jj) = ABS( (ssh(ji+1,jj,Kmm) + ht_0(ji+1,jj) - ssh(ji,jj,Kmm) - ht_0(ji,jj)) &
                        &    / (ssh(ji+1,jj,Kmm) - ssh(ji  ,jj,Kmm)) )
          ELSE
            zcpx(ji,jj) = 0._wp
          END IF
   
          ll_tmp1 = MIN(  ssh(ji,jj,Kmm)              ,  ssh(ji,jj+1,Kmm) ) >                &
               &    MAX( -ht_0(ji,jj)              , -ht_0(ji,jj+1) ) .AND.            &
               &    MAX(  ssh(ji,jj,Kmm) + ht_0(ji,jj),  ssh(ji,jj+1,Kmm) + ht_0(ji,jj+1) )  &
               &                                                      > rn_wdmin1 + rn_wdmin2
          ll_tmp2 = ( ABS( ssh(ji,jj,Kmm)             -  ssh(ji,jj+1,Kmm) ) > 1.E-12 ) .AND. (        &
               &    MAX(   ssh(ji,jj,Kmm)             ,  ssh(ji,jj+1,Kmm) ) >                &
               &    MAX(  -ht_0(ji,jj)             , -ht_0(ji,jj+1) ) + rn_wdmin1 + rn_wdmin2 )

          IF(ll_tmp1) THEN
            zcpy(ji,jj) = 1.0_wp
          ELSE IF(ll_tmp2) THEN
            ! no worries about  ssh(ji,jj+1,Kmm) -  ssh(ji,jj  ,Kmm) = 0, it won't happen ! here
            zcpy(ji,jj) = ABS( (ssh(ji,jj+1,Kmm) + ht_0(ji,jj+1) - ssh(ji,jj,Kmm) - ht_0(ji,jj)) &
                        &    / (ssh(ji,jj+1,Kmm) - ssh(ji,jj  ,Kmm)) )
          ELSE
            zcpy(ji,jj) = 0._wp
          END IF
        END_2D
      END IF

      IF( .NOT. l_istiled .OR. ntile == 1 )  THEN                       ! Do only on the first tile
         IF( kt == nit000 ) THEN
            IF(lwp) WRITE(numout,*)
            IF(lwp) WRITE(numout,*) 'dyn:hpg_djc : hydrostatic pressure gradient trend'
            IF(lwp) WRITE(numout,*) '~~~~~~~~~~~   s-coordinate case, density Jacobian with cubic polynomial scheme'
         ENDIF
      ENDIF

      ! Local constant initialization
      zcoef0 = - grav * 0.5_wp
      z_grav_10  = grav / 10._wp
      z1_12  = 1.0_wp / 12._wp

      !----------------------------------------------------------------------------------------
      !  1. compute and store elementary vertical differences in provisional arrays 
      !----------------------------------------------------------------------------------------

!!bug gm   Not a true bug, but... zdzz=e3w  for zdzx, zdzy verify what it is really

      DO_3D( 1, 1, 1, 1, 2, jpkm1 )  
         zdrhoz(ji,jj,jk) =   rhd    (ji  ,jj  ,jk) - rhd    (ji,jj,jk-1)
         zdzz  (ji,jj,jk) = - gde3w(ji  ,jj  ,jk) + gde3w(ji,jj,jk-1)
      END_3D

      !-------------------------------------------------------------------------
      ! 2. compute harmonic averages for vertical differences using eq. 5.18
      !-------------------------------------------------------------------------
      zep = 1.e-15

!! mb zdrho_k, zdz_k, zdrho_i, zdz_i, zdrho_j, zdz_j re-centred about the point (ji,jj,jk) 
      zdrho_k(:,:,:) = 0._wp
      zdz_k  (:,:,:) = 0._wp

      DO_3D( 1, 1, 1, 1, 2, jpk-2 )
         cffw = MAX( 2._wp * zdrhoz(ji,jj,jk) * zdrhoz(ji,jj,jk+1), 0._wp )
         z1_cff = zdrhoz(ji,jj,jk) + zdrhoz(ji,jj,jk+1)
         zdrho_k(ji,jj,jk) = cffw / SIGN( MAX( ABS(z1_cff), zep ), z1_cff )
         zdz_k(ji,jj,jk) = 2._wp *   zdzz(ji,jj,jk) * zdzz(ji,jj,jk+1)   &
            &                  / ( zdzz(ji,jj,jk) + zdzz(ji,jj,jk+1) )
      END_3D

      !----------------------------------------------------------------------------------
      ! 3. apply boundary conditions at top and bottom using 5.36-5.37
      !----------------------------------------------------------------------------------

! mb for sea-ice shelves we will need to re-write this upper boundary condition in the same form as the lower boundary condition
      DO_2D( 1, 1, 1, 1 )
         zdrho_k(ji,jj,1) = aco_bc_vrt * ( rhd  (ji,jj,2) - rhd  (ji,jj,1) ) - bco_bc_vrt * zdrho_k(ji,jj,2)
         zdz_k  (ji,jj,1) = aco_bc_vrt * (-gde3w(ji,jj,2) + gde3w(ji,jj,1) ) - bco_bc_vrt * zdz_k  (ji,jj,2)
      END_2D

      DO_2D( 1, 1, 1, 1 )
         IF ( mbkt(ji,jj)>1 ) THEN
            iktb = mbkt(ji,jj)
            zdrho_k(ji,jj,iktb) = aco_bc_vrt * (     rhd(ji,jj,iktb) -     rhd(ji,jj,iktb-1) ) - bco_bc_vrt * zdrho_k(ji,jj,iktb-1)
            zdz_k  (ji,jj,iktb) = aco_bc_vrt * (-gde3w(ji,jj,iktb) + gde3w(ji,jj,iktb-1) ) - bco_bc_vrt * zdz_k  (ji,jj,iktb-1) 
         END IF
      END_2D

      !--------------------------------------------------------------
      ! 4. Compute side face integrals
      !-------------------------------------------------------------

!! ssh replaces e3w_n ; gde3w is a depth; the formulae involve heights  
!! rho_k stores grav * FX / rho_0  

      !--------------------------------------------------------------
      ! 4. a) Upper half of top-most grid box, compute and store
      !-------------------------------------------------------------
! *** AY note: ssh(ji,jj,Kmm) + gde3w(ji,jj,1) = e3w(ji,jj,1,Kmm)
      DO_2D( 0, 1, 0, 1)
jchanut's avatar
jchanut committed
         z_rho_k(ji,jj,1) =  grav * gdept(ji,jj,1,Kmm)                             & 
            &                     * (             rhd(ji,jj,1)                     &
            &                         -0.5_wp * ( rhd(ji,jj,2) - rhd(ji,jj,1) )    &
            &                              * gdept(ji,jj,1,Kmm) / e3w(ji,jj,2,Kmm) &
            &                       )
Guillaume Samson's avatar
Guillaume Samson committed
      END_2D

      !--------------------------------------------------------------
      ! 4. b) Interior faces, compute and store
      !-------------------------------------------------------------

      DO_3D( 0, 1, 0, 1, 2, jpkm1 )
         z_rho_k(ji,jj,jk) = zcoef0 * (   rhd    (ji,jj,jk) + rhd    (ji,jj,jk-1) )                                   &
            &                       * ( - gde3w(ji,jj,jk) + gde3w(ji,jj,jk-1) )                                               &
            &                       + z_grav_10 * (                                                                           &
            &     (   zdrho_k  (ji,jj,jk) - zdrho_k  (ji,jj,jk-1) )                                                           &
            &   * ( - gde3w(ji,jj,jk) + gde3w(ji,jj,jk-1) - z1_12 * ( zdz_k  (ji,jj,jk) + zdz_k  (ji,jj,jk-1) ) )             &
            &   - ( zdz_k    (ji,jj,jk) - zdz_k    (ji,jj,jk-1) )                                                             &
            &   * ( rhd    (ji,jj,jk) - rhd    (ji,jj,jk-1) - z1_12 * ( zdrho_k(ji,jj,jk) + zdrho_k(ji,jj,jk-1) ) )   &
            &                             )
      END_3D

      !----------------------------------------------------------------------------------------
      !  5. compute and store elementary horizontal differences in provisional arrays 
      !----------------------------------------------------------------------------------------
      zdrhox(:,:,:) = 0._wp
      zdzx  (:,:,:) = 0._wp
      zdrhoy(:,:,:) = 0._wp
      zdzy  (:,:,:) = 0._wp

      DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpkm1 )
         zdrhox(ji,jj,jk) = rhd  (ji+1,jj  ,jk) - rhd  (ji  ,jj  ,jk)
         zdzx  (ji,jj,jk) = gde3w(ji  ,jj  ,jk) - gde3w(ji+1,jj  ,jk)
         zdrhoy(ji,jj,jk) = rhd  (ji  ,jj+1,jk) - rhd  (ji  ,jj  ,jk)
         zdzy  (ji,jj,jk) = gde3w(ji  ,jj  ,jk) - gde3w(ji  ,jj+1,jk)
      END_3D

      IF( nn_hls == 1 ) CALL lbc_lnk( 'dynhpg', zdrhox, 'U', -1._wp, zdzx, 'U', -1._wp, zdrhoy, 'V', -1._wp, zdzy, 'V', -1._wp )

      !-------------------------------------------------------------------------
      ! 6. compute harmonic averages using eq. 5.18
      !-------------------------------------------------------------------------

      DO_3D( 0, 1, 0, 1, 1, jpkm1 )
         cffu = MAX( 2._wp * zdrhox(ji-1,jj,jk) * zdrhox(ji,jj,jk), 0._wp )
         z1_cff = zdrhox(ji-1,jj,jk) + zdrhox(ji,jj,jk)
         zdrho_i(ji,jj,jk) = cffu / SIGN( MAX( ABS(z1_cff), zep ), z1_cff )

         cffx = MAX( 2._wp * zdzx(ji-1,jj,jk)   * zdzx(ji,jj,jk), 0._wp )
         z1_cff = zdzx(ji-1,jj,jk)   + zdzx(ji,jj,jk)
         zdz_i(ji,jj,jk)   = cffx / SIGN( MAX( ABS(z1_cff), zep ), z1_cff )

         cffv = MAX( 2._wp * zdrhoy(ji,jj-1,jk) * zdrhoy(ji,jj,jk), 0._wp )
         z1_cff = zdrhoy(ji,jj-1,jk) + zdrhoy(ji,jj,jk)
         zdrho_j(ji,jj,jk) = cffv / SIGN( MAX( ABS(z1_cff), zep ), z1_cff )

         cffy = MAX( 2._wp * zdzy(ji,jj-1,jk)   * zdzy(ji,jj,jk), 0._wp )
         z1_cff = zdzy(ji,jj-1,jk)   + zdzy(ji,jj,jk)
         zdz_j(ji,jj,jk)   = cffy / SIGN( MAX( ABS(z1_cff), zep ), z1_cff )
      END_3D
      
!!! Note that zdzx, zdzy, zdzz, zdrhox, zdrhoy and zdrhoz should NOT be used beyond this point      

      !----------------------------------------------------------------------------------
      ! 6B. apply boundary conditions at side boundaries using 5.36-5.37
      !----------------------------------------------------------------------------------

      DO jk = 1, jpkm1
         zz_drho_i(:,:) = zdrho_i(:,:,jk)
         zz_dz_i  (:,:) = zdz_i  (:,:,jk)
         zz_drho_j(:,:) = zdrho_j(:,:,jk)
         zz_dz_j  (:,:) = zdz_j  (:,:,jk)
         ! Walls coming from left: should check from 2 to jpi-1 (and jpj=2-jpj)
         DO_2D( 0, 0, 0, 1 )
            IF ( umask(ji,jj,jk) > 0.5_wp .AND. umask(ji-1,jj,jk) < 0.5_wp .AND. umask(ji+1,jj,jk) > 0.5_wp)  THEN
               zz_drho_i(ji,jj) = aco_bc_hor * ( rhd    (ji+1,jj,jk) - rhd    (ji,jj,jk) ) - bco_bc_hor * zdrho_i(ji+1,jj,jk)
               zz_dz_i  (ji,jj) = aco_bc_hor * (-gde3w(ji+1,jj,jk) + gde3w(ji,jj,jk) ) - bco_bc_hor * zdz_i  (ji+1,jj,jk)
            END IF
         END_2D
         ! Walls coming from right: should check from 3 to jpi (and jpj=2-jpj)
         DO_2D( -1, 1, 0, 1 )
            IF ( umask(ji,jj,jk) < 0.5_wp .AND. umask(ji-1,jj,jk) > 0.5_wp .AND. umask(ji-2,jj,jk) > 0.5_wp) THEN
               zz_drho_i(ji,jj) = aco_bc_hor * ( rhd    (ji,jj,jk) - rhd    (ji-1,jj,jk) ) - bco_bc_hor * zdrho_i(ji-1,jj,jk)
               zz_dz_i  (ji,jj) = aco_bc_hor * (-gde3w(ji,jj,jk) + gde3w(ji-1,jj,jk) ) - bco_bc_hor * zdz_i  (ji-1,jj,jk)
            END IF
         END_2D
         ! Walls coming from left: should check from 2 to jpj-1 (and jpi=2-jpi)
         DO_2D( 0, 1, 0, 0 )
            IF ( vmask(ji,jj,jk) > 0.5_wp .AND. vmask(ji,jj-1,jk) < 0.5_wp .AND. vmask(ji,jj+1,jk) > 0.5_wp)  THEN
               zz_drho_j(ji,jj) = aco_bc_hor * ( rhd    (ji,jj+1,jk) - rhd    (ji,jj,jk) ) - bco_bc_hor * zdrho_j(ji,jj+1,jk)
               zz_dz_j  (ji,jj) = aco_bc_hor * (-gde3w(ji,jj+1,jk) + gde3w(ji,jj,jk) ) - bco_bc_hor * zdz_j  (ji,jj+1,jk)
            END IF
         END_2D
         ! Walls coming from right: should check from 3 to jpj (and jpi=2-jpi)
         DO_2D( 0, 1, -1, 1 )
            IF ( vmask(ji,jj,jk) < 0.5_wp .AND. vmask(ji,jj-1,jk) > 0.5_wp .AND. vmask(ji,jj-2,jk) > 0.5_wp) THEN
               zz_drho_j(ji,jj) = aco_bc_hor * ( rhd    (ji,jj,jk) - rhd    (ji,jj-1,jk) ) - bco_bc_hor * zdrho_j(ji,jj-1,jk)
               zz_dz_j  (ji,jj) = aco_bc_hor * (-gde3w(ji,jj,jk) + gde3w(ji,jj-1,jk) ) - bco_bc_hor * zdz_j  (ji,jj-1,jk)
            END IF
         END_2D
         zdrho_i(:,:,jk) = zz_drho_i(:,:)
         zdz_i  (:,:,jk) = zz_dz_i  (:,:)
         zdrho_j(:,:,jk) = zz_drho_j(:,:)
         zdz_j  (:,:,jk) = zz_dz_j  (:,:)
      END DO

      !--------------------------------------------------------------
      ! 7. Calculate integrals on side faces  
      !-------------------------------------------------------------

      DO_3D( 0, 0, 0, 0, 1, jpkm1 )
! two -ve signs cancel in next two lines (within zcoef0 and because gde3w is a depth not a height)
         z_rho_i(ji,jj,jk) = zcoef0 * ( rhd    (ji+1,jj,jk) + rhd    (ji,jj,jk) )                                       &
             &                    * ( gde3w(ji+1,jj,jk) - gde3w(ji,jj,jk) )                                    
         IF ( umask(ji-1, jj, jk) > 0.5 .OR. umask(ji+1, jj, jk) > 0.5 ) THEN
            z_rho_i(ji,jj,jk) = z_rho_i(ji,jj,jk) - z_grav_10 * (                                                               &
             &     (   zdrho_i  (ji+1,jj,jk) - zdrho_i  (ji,jj,jk) )                                                            &
             &   * ( - gde3w(ji+1,jj,jk) + gde3w(ji,jj,jk) - z1_12 * ( zdz_i  (ji+1,jj,jk) + zdz_i  (ji,jj,jk) ) )              &
             &   - (   zdz_i    (ji+1,jj,jk) - zdz_i    (ji,jj,jk) )                                                            &
             &   * (   rhd    (ji+1,jj,jk) - rhd    (ji,jj,jk) - z1_12 * ( zdrho_i(ji+1,jj,jk) + zdrho_i(ji,jj,jk) ) )  &
             &                                               )
         END IF
  
         z_rho_j(ji,jj,jk) = zcoef0 * ( rhd    (ji,jj+1,jk) + rhd    (ji,jj,jk) )                                       &
             &                    * ( gde3w(ji,jj+1,jk) - gde3w(ji,jj,jk) )                                  
         IF ( vmask(ji, jj-1, jk) > 0.5 .OR. vmask(ji, jj+1, jk) > 0.5 ) THEN
            z_rho_j(ji,jj,jk) = z_rho_j(ji,jj,jk) - z_grav_10 * (                                                               &
             &     (   zdrho_j  (ji,jj+1,jk) - zdrho_j  (ji,jj,jk) )                                                            &
             &   * ( - gde3w(ji,jj+1,jk) + gde3w(ji,jj,jk) - z1_12 * ( zdz_j  (ji,jj+1,jk) + zdz_j  (ji,jj,jk) ) )              &
             &   - (   zdz_j    (ji,jj+1,jk) - zdz_j    (ji,jj,jk) )                                                            &
             &   * (   rhd    (ji,jj+1,jk) - rhd    (ji,jj,jk) - z1_12 * ( zdrho_j(ji,jj+1,jk) + zdrho_j(ji,jj,jk) ) )  &
             &                                                 )
         END IF
      END_3D

      !--------------------------------------------------------------
      ! 8. Integrate in the vertical   
      !-------------------------------------------------------------
      !
      ! ---------------
      !  Surface value
      ! ---------------
      DO_2D( 0, 0, 0, 0 )
         zhpi(ji,jj,1) = ( z_rho_k(ji,jj,1) - z_rho_k(ji+1,jj  ,1) - z_rho_i(ji,jj,1) ) * r1_e1u(ji,jj)
         zhpj(ji,jj,1) = ( z_rho_k(ji,jj,1) - z_rho_k(ji  ,jj+1,1) - z_rho_j(ji,jj,1) ) * r1_e2v(ji,jj)
         IF( ln_wd_il ) THEN
           zhpi(ji,jj,1) = zhpi(ji,jj,1) * zcpx(ji,jj)
           zhpj(ji,jj,1) = zhpj(ji,jj,1) * zcpy(ji,jj) 
         ENDIF
         ! add to the general momentum trend
         puu(ji,jj,1,Krhs) = puu(ji,jj,1,Krhs) + zhpi(ji,jj,1)
         pvv(ji,jj,1,Krhs) = pvv(ji,jj,1,Krhs) + zhpj(ji,jj,1)
      END_2D

      ! ----------------
      !  interior value   (2=<jk=<jpkm1)
      ! ----------------
      DO_3D( 0, 0, 0, 0, 2, jpkm1 )
         ! hydrostatic pressure gradient along s-surfaces
         zhpi(ji,jj,jk) = zhpi(ji,jj,jk-1)                                                     &
            &           + (  ( z_rho_k(ji,jj,jk) - z_rho_k(ji+1,jj,jk  ) )                     &
            &              - ( z_rho_i(ji,jj,jk) - z_rho_i(ji  ,jj,jk-1) )  ) * r1_e1u(ji,jj)
         zhpj(ji,jj,jk) = zhpj(ji,jj,jk-1)                                                     &
            &           + (  ( z_rho_k(ji,jj,jk) - z_rho_k(ji,jj+1,jk  ) )                     &
            &               -( z_rho_j(ji,jj,jk) - z_rho_j(ji,jj  ,jk-1) )  ) * r1_e2v(ji,jj)
         IF( ln_wd_il ) THEN
           zhpi(ji,jj,jk) = zhpi(ji,jj,jk) * zcpx(ji,jj)
           zhpj(ji,jj,jk) = zhpj(ji,jj,jk) * zcpy(ji,jj) 
         ENDIF
         ! add to the general momentum trend
         puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) + zhpi(ji,jj,jk)
         pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) + zhpj(ji,jj,jk)
      END_3D
      !
      IF( ln_wd_il )   DEALLOCATE( zcpx, zcpy )
      !
   END SUBROUTINE hpg_djc


   SUBROUTINE hpg_prj( kt, Kmm, puu, pvv, Krhs )
      !!---------------------------------------------------------------------
      !!                  ***  ROUTINE hpg_prj  ***
      !!
      !! ** Method  :   s-coordinate case.
      !!      A Pressure-Jacobian horizontal pressure gradient method
      !!      based on the constrained cubic-spline interpolation for
      !!      all vertical coordinate systems
      !!
      !! ** Action : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now hydrastatic pressure trend
      !!----------------------------------------------------------------------
      INTEGER, PARAMETER  :: polynomial_type = 1    ! 1: cubic spline, 2: linear
      INTEGER                             , INTENT( in )  ::  kt          ! ocean time-step index
      INTEGER                             , INTENT( in )  ::  Kmm, Krhs   ! ocean time level indices
      REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) ::  puu, pvv    ! ocean velocities and RHS of momentum equation
      !!
      INTEGER  ::   ji, jj, jk, jkk                 ! dummy loop indices
      REAL(wp) ::   zcoef0, znad                    ! local scalars
      !
      !! The local variables for the correction term
      INTEGER  :: jk1, jis, jid, jjs, jjd
      LOGICAL  :: ll_tmp1, ll_tmp2                  ! local logical variables
      REAL(wp) :: zuijk, zvijk, zpwes, zpwed, zpnss, zpnsd, zdeps
      REAL(wp) :: zrhdt1
      REAL(wp) :: zdpdx1, zdpdx2, zdpdy1, zdpdy2
      REAL(wp), DIMENSION(A2D(nn_hls))     ::   zpgu, zpgv   ! 2D workspace
      REAL(wp), DIMENSION(A2D(nn_hls))     ::   zsshu_n, zsshv_n
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) ::   zdept, zrhh
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) ::   zhpi, zu, zv, fsp, xsp, asp, bsp, csp, dsp
      REAL(wp), DIMENSION(:,:), ALLOCATABLE ::   zcpx, zcpy   !W/D pressure filter
      !!----------------------------------------------------------------------
      !
      IF( .NOT. l_istiled .OR. ntile == 1 )  THEN                       ! Do only on the first tile
         IF( kt == nit000 ) THEN
            IF(lwp) WRITE(numout,*)
            IF(lwp) WRITE(numout,*) 'dyn:hpg_prj : hydrostatic pressure gradient trend'
            IF(lwp) WRITE(numout,*) '~~~~~~~~~~~   s-coordinate case, cubic spline pressure Jacobian'
         ENDIF
      ENDIF

      ! Local constant initialization
      zcoef0 = - grav
      znad = 1._wp
      IF( ln_linssh )   znad = 1._wp
      !
      ! ---------------
      !  Surface pressure gradient to be removed
      ! ---------------
      DO_2D( 0, 0, 0, 0 )
         zpgu(ji,jj) = - grav * ( ssh(ji+1,jj,Kmm) - ssh(ji,jj,Kmm) ) * r1_e1u(ji,jj)
         zpgv(ji,jj) = - grav * ( ssh(ji,jj+1,Kmm) - ssh(ji,jj,Kmm) ) * r1_e2v(ji,jj)
      END_2D
      !
      IF( ln_wd_il ) THEN
         ALLOCATE( zcpx(A2D(nn_hls)) , zcpy(A2D(nn_hls)) )
         DO_2D( 0, 0, 0, 0 )
            ll_tmp1 = MIN(   ssh(ji,jj,Kmm)              ,   ssh(ji+1,jj,Kmm)                 ) >       &
               &      MAX( -ht_0(ji,jj)                  , -ht_0(ji+1,jj)                     ) .AND.   &
               &      MAX(   ssh(ji,jj,Kmm) + ht_0(ji,jj),   ssh(ji+1,jj,Kmm) + ht_0(ji+1,jj) ) >       &