Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
MODULE diaptr
!!======================================================================
!! *** MODULE diaptr ***
!! Ocean physics: Computes meridonal transports and zonal means
!!=====================================================================
!! History : 1.0 ! 2003-09 (C. Talandier, G. Madec) Original code
!! 2.0 ! 2006-01 (A. Biastoch) Allow sub-basins computation
!! 3.2 ! 2010-03 (O. Marti, S. Flavoni) Add fields
!! 3.3 ! 2010-10 (G. Madec) dynamical allocation
!! 3.6 ! 2014-12 (C. Ethe) use of IOM
!! 3.6 ! 2016-06 (T. Graham) Addition of diagnostics for CMIP6
!! 4.0 ! 2010-08 ( C. Ethe, J. Deshayes ) Improvment
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! dia_ptr : Poleward Transport Diagnostics module
!! dia_ptr_init : Initialization, namelist read
!! ptr_sjk : "zonal" mean computation of a field - tracer or flux array
!! ptr_sj : "zonal" and vertical sum computation of a "meridional" flux array
!! (Generic interface to ptr_sj_3d, ptr_sj_2d)
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and active tracers
USE dom_oce ! ocean space and time domain
USE domtile
USE phycst ! physical constants
!
USE iom ! IOM library
USE in_out_manager ! I/O manager
USE lib_mpp ! MPP library
USE timing ! preformance summary
IMPLICIT NONE
PRIVATE
INTERFACE ptr_sum
MODULE PROCEDURE ptr_sum_3d, ptr_sum_2d
END INTERFACE
INTERFACE ptr_sj
MODULE PROCEDURE ptr_sj_3d, ptr_sj_2d
END INTERFACE
PUBLIC dia_ptr ! call in step module
PUBLIC dia_ptr_hst ! called from tra_ldf/tra_adv routines
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hstr_adv, hstr_ldf, hstr_eiv !: Heat/Salt TRansports(adv, diff, Bolus.)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hstr_ove, hstr_btr, hstr_vtr !: heat Salt TRansports(overturn, baro, merional)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: pvtr_int, pzon_int !: Other zonal integrals
LOGICAL, PUBLIC :: l_diaptr !: tracers trend flag
INTEGER, PARAMETER :: jp_msk = 3
INTEGER, PARAMETER :: jp_vtr = 4
REAL(wp) :: rc_sv = 1.e-6_wp ! conversion from m3/s to Sverdrup
REAL(wp) :: rc_pwatt = 1.e-15_wp ! conversion from W to PW (further x rho0 x Cp)
REAL(wp) :: rc_ggram = 1.e-9_wp ! conversion from g to Gg (further x rho0)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: btmsk ! T-point basin interior masks
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: btmsk34 ! mask out Southern Ocean (=0 south of 34°S)
LOGICAL :: ll_init = .TRUE. !: tracers trend flag
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: diaptr.F90 14834 2021-05-11 09:24:44Z hadcv $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
! NOTE: [tiling] tiling sometimes changes the diagnostics very slightly, usually where there are few zonal points e.g. the northern Indian Ocean basin. The difference is usually very small, for one point in one diagnostic. Presumably this is because of the additional zonal integration step over tiles.
SUBROUTINE dia_ptr( kt, Kmm, pvtr )
!!----------------------------------------------------------------------
!! *** ROUTINE dia_ptr ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in) :: kt ! ocean time-step index
INTEGER , INTENT(in) :: Kmm ! time level index
REAL(wp), DIMENSION(A2D(nn_hls),jpk) , INTENT(in), OPTIONAL :: pvtr ! j-effective transport
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('dia_ptr')
IF( kt == nit000 .AND. ll_init ) CALL dia_ptr_init ! -> will define l_diaptr and nbasin
!
IF( l_diaptr ) THEN
! Calculate zonal integrals
IF( PRESENT( pvtr ) ) THEN

sparonuz
committed
CALL dia_ptr_zint( Kmm, pvtr)
ELSE
CALL dia_ptr_zint( Kmm )
ENDIF
! Calculate diagnostics only when zonal integrals have finished
IF( .NOT. l_istiled .OR. ntile == nijtile ) CALL dia_ptr_iom(kt, Kmm, pvtr)

sparonuz
committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
ENDIF
IF( ln_timing ) CALL timing_stop('dia_ptr')
!
END SUBROUTINE dia_ptr
SUBROUTINE dia_ptr_iom( kt, Kmm, pvtr )
!!----------------------------------------------------------------------
!! *** ROUTINE dia_ptr_iom ***
!!----------------------------------------------------------------------
!! ** Purpose : Calculate diagnostics and send to XIOS
!!----------------------------------------------------------------------
INTEGER , INTENT(in) :: kt ! ocean time-step index
INTEGER , INTENT(in) :: Kmm ! time level index
REAL(wp), DIMENSION(A2D(nn_hls),jpk) , INTENT(in), OPTIONAL :: pvtr ! j-effective transport
!
INTEGER :: ji, jj, jk, jn ! dummy loop indices
REAL(wp), DIMENSION(jpi,jpj) :: z2d ! 2D workspace
REAL(wp), DIMENSION(jpj) :: zvsum, ztsum, zssum ! 1D workspace
!
!overturning calculation
REAL(wp), DIMENSION(:,:,: ), ALLOCATABLE :: sjk, r1_sjk, v_msf ! i-mean i-k-surface and its inverse
REAL(wp), DIMENSION(:,:,: ), ALLOCATABLE :: zt_jk, zs_jk ! i-mean T and S, j-Stream-Function
REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: z4d1, z4d2
REAL(wp), DIMENSION(:,:,: ), ALLOCATABLE :: z3dtr
!!----------------------------------------------------------------------
!
ALLOCATE( z3dtr(jpi,jpj,nbasin) )
IF( PRESENT( pvtr ) ) THEN
IF( iom_use( 'zomsf' ) ) THEN ! effective MSF
ALLOCATE( z4d1(jpi,jpj,jpk,nbasin) )
!
DO jn = 1, nbasin ! by sub-basins
z4d1(1,:,:,jn) = pvtr_int(:,:,jp_vtr,jn) ! zonal cumulative effective transport excluding closed seas
DO jk = jpkm1, 1, -1
z4d1(1,:,jk,jn) = z4d1(1,:,jk+1,jn) - z4d1(1,:,jk,jn) ! effective j-Stream-Function (MSF)
END DO
DO ji = 2, jpi
z4d1(ji,:,:,jn) = z4d1(1,:,:,jn)
ENDDO
END DO
CALL iom_put( 'zomsf', z4d1 * rc_sv )
!
DEALLOCATE( z4d1 )
ENDIF
IF( iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) ) THEN
ALLOCATE( sjk(jpj,jpk,nbasin), r1_sjk(jpj,jpk,nbasin), v_msf(jpj,jpk,nbasin), &
& zt_jk(jpj,jpk,nbasin), zs_jk(jpj,jpk,nbasin) )
!
DO jn = 1, nbasin
sjk(:,:,jn) = pvtr_int(:,:,jp_msk,jn)
r1_sjk(:,:,jn) = 0._wp
WHERE( sjk(:,:,jn) /= 0._wp ) r1_sjk(:,:,jn) = 1._wp / sjk(:,:,jn)
! i-mean T and S, j-Stream-Function, basin
zt_jk(:,:,jn) = pvtr_int(:,:,jp_tem,jn) * r1_sjk(:,:,jn)
zs_jk(:,:,jn) = pvtr_int(:,:,jp_sal,jn) * r1_sjk(:,:,jn)
v_msf(:,:,jn) = pvtr_int(:,:,jp_vtr,jn)
hstr_ove(:,jp_tem,jn) = SUM( v_msf(:,:,jn)*zt_jk(:,:,jn), 2 )
hstr_ove(:,jp_sal,jn) = SUM( v_msf(:,:,jn)*zs_jk(:,:,jn), 2 )
!
ENDDO
DO jn = 1, nbasin
z3dtr(1,:,jn) = hstr_ove(:,jp_tem,jn) * rc_pwatt ! (conversion in PW)
DO ji = 2, jpi
z3dtr(ji,:,jn) = z3dtr(1,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sophtove', z3dtr )
DO jn = 1, nbasin
z3dtr(1,:,jn) = hstr_ove(:,jp_sal,jn) * rc_ggram ! (conversion in Gg)
DO ji = 2, jpi
z3dtr(ji,:,jn) = z3dtr(1,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sopstove', z3dtr )
!
DEALLOCATE( sjk, r1_sjk, v_msf, zt_jk, zs_jk )
ENDIF
IF( iom_use( 'sopstbtr' ) .OR. iom_use( 'sophtbtr' ) ) THEN
! Calculate barotropic heat and salt transport here
ALLOCATE( sjk(jpj,1,nbasin), r1_sjk(jpj,1,nbasin) )
!
DO jn = 1, nbasin
sjk(:,1,jn) = SUM( pvtr_int(:,:,jp_msk,jn), 2 )
r1_sjk(:,1,jn) = 0._wp
WHERE( sjk(:,1,jn) /= 0._wp ) r1_sjk(:,1,jn) = 1._wp / sjk(:,1,jn)
!
zvsum(:) = SUM( pvtr_int(:,:,jp_vtr,jn), 2 )
ztsum(:) = SUM( pvtr_int(:,:,jp_tem,jn), 2 )
zssum(:) = SUM( pvtr_int(:,:,jp_sal,jn), 2 )
hstr_btr(:,jp_tem,jn) = zvsum(:) * ztsum(:) * r1_sjk(:,1,jn)
hstr_btr(:,jp_sal,jn) = zvsum(:) * zssum(:) * r1_sjk(:,1,jn)
!
ENDDO
DO jn = 1, nbasin
z3dtr(1,:,jn) = hstr_btr(:,jp_tem,jn) * rc_pwatt ! (conversion in PW)
DO ji = 2, jpi
z3dtr(ji,:,jn) = z3dtr(1,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sophtbtr', z3dtr )
DO jn = 1, nbasin
z3dtr(1,:,jn) = hstr_btr(:,jp_sal,jn) * rc_ggram ! (conversion in Gg)
DO ji = 2, jpi
z3dtr(ji,:,jn) = z3dtr(1,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sopstbtr', z3dtr )
!
DEALLOCATE( sjk, r1_sjk )
ENDIF
!
hstr_ove(:,:,:) = 0._wp ! Zero before next timestep
hstr_btr(:,:,:) = 0._wp
pvtr_int(:,:,:,:) = 0._wp
ELSE
IF( iom_use( 'zotem' ) .OR. iom_use( 'zosal' ) .OR. iom_use( 'zosrf' ) ) THEN ! i-mean i-k-surface
ALLOCATE( z4d1(jpi,jpj,jpk,nbasin), z4d2(jpi,jpj,jpk,nbasin) )
!
DO jn = 1, nbasin
z4d1(1,:,:,jn) = pzon_int(:,:,jp_msk,jn)
DO ji = 2, jpi
z4d1(ji,:,:,jn) = z4d1(1,:,:,jn)
ENDDO
ENDDO
CALL iom_put( 'zosrf', z4d1 )
!
DO jn = 1, nbasin
z4d2(1,:,:,jn) = pzon_int(:,:,jp_tem,jn) / MAX( z4d1(1,:,:,jn), 10.e-15 )
DO ji = 2, jpi
z4d2(ji,:,:,jn) = z4d2(1,:,:,jn)
ENDDO
ENDDO
CALL iom_put( 'zotem', z4d2 )
!
DO jn = 1, nbasin
z4d2(1,:,:,jn) = pzon_int(:,:,jp_sal,jn) / MAX( z4d1(1,:,:,jn), 10.e-15 )
DO ji = 2, jpi
z4d2(ji,:,:,jn) = z4d2(1,:,:,jn)
ENDDO
ENDDO
CALL iom_put( 'zosal', z4d2 )
!
DEALLOCATE( z4d1, z4d2 )
ENDIF
!
! ! Advective and diffusive heat and salt transport
IF( iom_use( 'sophtadv' ) .OR. iom_use( 'sopstadv' ) ) THEN
!
DO jn = 1, nbasin
z3dtr(1,:,jn) = hstr_adv(:,jp_tem,jn) * rc_pwatt ! (conversion in PW)
DO ji = 2, jpi
z3dtr(ji,:,jn) = z3dtr(1,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sophtadv', z3dtr )
DO jn = 1, nbasin
z3dtr(1,:,jn) = hstr_adv(:,jp_sal,jn) * rc_ggram ! (conversion in Gg)
DO ji = 2, jpi
z3dtr(ji,:,jn) = z3dtr(1,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sopstadv', z3dtr )
ENDIF
!
IF( iom_use( 'sophtldf' ) .OR. iom_use( 'sopstldf' ) ) THEN
!
DO jn = 1, nbasin
z3dtr(1,:,jn) = hstr_ldf(:,jp_tem,jn) * rc_pwatt ! (conversion in PW)
DO ji = 2, jpi
z3dtr(ji,:,jn) = z3dtr(1,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sophtldf', z3dtr )
DO jn = 1, nbasin
z3dtr(1,:,jn) = hstr_ldf(:,jp_sal,jn) * rc_ggram ! (conversion in Gg)
DO ji = 2, jpi
z3dtr(ji,:,jn) = z3dtr(1,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sopstldf', z3dtr )
ENDIF
!
IF( iom_use( 'sophteiv' ) .OR. iom_use( 'sopsteiv' ) ) THEN
!
DO jn = 1, nbasin
z3dtr(1,:,jn) = hstr_eiv(:,jp_tem,jn) * rc_pwatt ! (conversion in PW)
DO ji = 2, jpi
z3dtr(ji,:,jn) = z3dtr(1,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sophteiv', z3dtr )
DO jn = 1, nbasin
z3dtr(1,:,jn) = hstr_eiv(:,jp_sal,jn) * rc_ggram ! (conversion in Gg)
DO ji = 2, jpi
z3dtr(ji,:,jn) = z3dtr(1,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sopsteiv', z3dtr )
ENDIF
!
IF( iom_use( 'sopstvtr' ) .OR. iom_use( 'sophtvtr' ) ) THEN
DO jn = 1, nbasin
z3dtr(1,:,jn) = hstr_vtr(:,jp_tem,jn) * rc_pwatt ! (conversion in PW)
DO ji = 2, jpi
z3dtr(ji,:,jn) = z3dtr(1,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sophtvtr', z3dtr )
DO jn = 1, nbasin
z3dtr(1,:,jn) = hstr_vtr(:,jp_sal,jn) * rc_ggram ! (conversion in Gg)
DO ji = 2, jpi
z3dtr(ji,:,jn) = z3dtr(1,:,jn)
ENDDO
ENDDO
CALL iom_put( 'sopstvtr', z3dtr )
ENDIF
!
IF( iom_use( 'uocetr_vsum_cumul' ) ) THEN
CALL iom_get_var( 'uocetr_vsum_op', z2d ) ! get uocetr_vsum_op from xml
z2d(:,:) = ptr_ci_2d( z2d(:,:) )
CALL iom_put( 'uocetr_vsum_cumul', z2d )
ENDIF
!
hstr_adv(:,:,:) = 0._wp ! Zero before next timestep
hstr_ldf(:,:,:) = 0._wp
hstr_eiv(:,:,:) = 0._wp
hstr_vtr(:,:,:) = 0._wp
pzon_int(:,:,:,:) = 0._wp
ENDIF
!
DEALLOCATE( z3dtr )
!
END SUBROUTINE dia_ptr_iom
SUBROUTINE dia_ptr_zint( Kmm, pvtr )
!!----------------------------------------------------------------------
!! *** ROUTINE dia_ptr_zint ***
!!----------------------------------------------------------------------
!! ** Purpose : i and i-k sum operations on arrays
!!
!! ** Method : - Call ptr_sjk (i sum) or ptr_sj (i-k sum) to perform the sum operation
!! - Call ptr_sum to add this result to the sum over tiles
!!
!! ** Action : pvtr_int - terms for volume streamfunction, heat/salt transport barotropic/overturning terms
!! pzon_int - terms for i mean temperature/salinity
!!----------------------------------------------------------------------
INTEGER , INTENT(in) :: Kmm ! time level index
REAL(wp), DIMENSION(A2D(nn_hls),jpk), INTENT(in), OPTIONAL :: pvtr ! j-effective transport
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: zmask ! 3D workspace
REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: zts ! 4D workspace
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sjk, v_msf ! Zonal sum: i-k surface area, j-effective transport
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: zt_jk, zs_jk ! Zonal sum: i-k surface area * (T, S)
REAL(wp) :: zsfc, zvfc ! i-k surface area
INTEGER :: ji, jj, jk, jn ! dummy loop indices
!!----------------------------------------------------------------------
IF( PRESENT( pvtr ) ) THEN
! i sum of effective j transport excluding closed seas
IF( iom_use( 'zomsf' ) .OR. iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) ) THEN
ALLOCATE( v_msf(A1Dj(nn_hls),jpk,nbasin) )
DO jn = 1, nbasin
v_msf(:,:,jn) = ptr_sjk( pvtr(:,:,:), btmsk34(:,:,jn) )
ENDDO
CALL ptr_sum( pvtr_int(:,:,jp_vtr,:), v_msf(:,:,:) )
DEALLOCATE( v_msf )
ENDIF
! i sum of j surface area, j surface area - temperature/salinity product on V grid
IF( iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) .OR. &
& iom_use( 'sopstbtr' ) .OR. iom_use( 'sophtbtr' ) ) THEN
ALLOCATE( zmask(A2D(nn_hls),jpk), zts(A2D(nn_hls),jpk,jpts), &
& sjk(A1Dj(nn_hls),jpk,nbasin), &
& zt_jk(A1Dj(nn_hls),jpk,nbasin), zs_jk(A1Dj(nn_hls),jpk,nbasin) )
zmask(:,:,:) = 0._wp
zts(:,:,:,:) = 0._wp
DO_3D( 1, 1, 1, 0, 1, jpkm1 )
zvfc = e1v(ji,jj) * e3v(ji,jj,jk,Kmm)
zmask(ji,jj,jk) = vmask(ji,jj,jk) * zvfc
zts(ji,jj,jk,jp_tem) = (ts(ji,jj,jk,jp_tem,Kmm)+ts(ji,jj+1,jk,jp_tem,Kmm)) * 0.5 * zvfc !Tracers averaged onto V grid
zts(ji,jj,jk,jp_sal) = (ts(ji,jj,jk,jp_sal,Kmm)+ts(ji,jj+1,jk,jp_sal,Kmm)) * 0.5 * zvfc
END_3D
DO jn = 1, nbasin
sjk(:,:,jn) = ptr_sjk( zmask(:,:,:) , btmsk(:,:,jn) )
zt_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_tem), btmsk(:,:,jn) )
zs_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_sal), btmsk(:,:,jn) )
ENDDO
CALL ptr_sum( pvtr_int(:,:,jp_msk,:), sjk(:,:,:) )
CALL ptr_sum( pvtr_int(:,:,jp_tem,:), zt_jk(:,:,:) )
CALL ptr_sum( pvtr_int(:,:,jp_sal,:), zs_jk(:,:,:) )
DEALLOCATE( zmask, zts, sjk, zt_jk, zs_jk )
ENDIF
ELSE
! i sum of j surface area - temperature/salinity product on T grid
IF( iom_use( 'zotem' ) .OR. iom_use( 'zosal' ) .OR. iom_use( 'zosrf' ) ) THEN
ALLOCATE( zmask(A2D(nn_hls),jpk), zts(A2D(nn_hls),jpk,jpts), &
& sjk(A1Dj(nn_hls),jpk,nbasin), &
& zt_jk(A1Dj(nn_hls),jpk,nbasin), zs_jk(A1Dj(nn_hls),jpk,nbasin) )
zmask(:,:,:) = 0._wp
zts(:,:,:,:) = 0._wp
DO_3D( 1, 1, 1, 1, 1, jpkm1 )
zsfc = e1t(ji,jj) * e3t(ji,jj,jk,Kmm)
zmask(ji,jj,jk) = tmask(ji,jj,jk) * zsfc
zts(ji,jj,jk,jp_tem) = ts(ji,jj,jk,jp_tem,Kmm) * zsfc
zts(ji,jj,jk,jp_sal) = ts(ji,jj,jk,jp_sal,Kmm) * zsfc
END_3D
DO jn = 1, nbasin
sjk(:,:,jn) = ptr_sjk( zmask(:,:,:) , btmsk(:,:,jn) )
zt_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_tem), btmsk(:,:,jn) )
zs_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_sal), btmsk(:,:,jn) )
ENDDO
CALL ptr_sum( pzon_int(:,:,jp_msk,:), sjk(:,:,:) )
CALL ptr_sum( pzon_int(:,:,jp_tem,:), zt_jk(:,:,:) )
CALL ptr_sum( pzon_int(:,:,jp_sal,:), zs_jk(:,:,:) )
DEALLOCATE( zmask, zts, sjk, zt_jk, zs_jk )
ENDIF
! i-k sum of j surface area - temperature/salinity product on V grid
IF( iom_use( 'sopstvtr' ) .OR. iom_use( 'sophtvtr' ) ) THEN
ALLOCATE( zts(A2D(nn_hls),jpk,jpts) )
zts(:,:,:,:) = 0._wp
DO_3D( 1, 1, 1, 0, 1, jpkm1 )
zvfc = e1v(ji,jj) * e3v(ji,jj,jk,Kmm)
zts(ji,jj,jk,jp_tem) = (ts(ji,jj,jk,jp_tem,Kmm)+ts(ji,jj+1,jk,jp_tem,Kmm)) * 0.5 * zvfc !Tracers averaged onto V grid
zts(ji,jj,jk,jp_sal) = (ts(ji,jj,jk,jp_sal,Kmm)+ts(ji,jj+1,jk,jp_sal,Kmm)) * 0.5 * zvfc
END_3D
CALL dia_ptr_hst( jp_tem, 'vtr', zts(:,:,:,jp_tem) )
CALL dia_ptr_hst( jp_sal, 'vtr', zts(:,:,:,jp_sal) )
DEALLOCATE( zts )
ENDIF
ENDIF
END SUBROUTINE dia_ptr_zint
SUBROUTINE dia_ptr_init
!!----------------------------------------------------------------------
!! *** ROUTINE dia_ptr_init ***
!!
!! ** Purpose : Initialization
!!----------------------------------------------------------------------
INTEGER :: inum, jn ! local integers
!!
REAL(wp), DIMENSION(jpi,jpj) :: zmsk
!!----------------------------------------------------------------------
! l_diaptr is defined with iom_use
! --> dia_ptr_init must be done after the call to iom_init
! --> cannot be .TRUE. without cpp key: key_xios --> nbasin define by iom_init is initialized
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
l_diaptr = iom_use( 'zomsf' ) .OR. iom_use( 'zotem' ) .OR. iom_use( 'zosal' ) .OR. &
& iom_use( 'zosrf' ) .OR. iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) .OR. &
& iom_use( 'sopstbtr' ) .OR. iom_use( 'sophtbtr' ) .OR. iom_use( 'sophtadv' ) .OR. &
& iom_use( 'sopstadv' ) .OR. iom_use( 'sophtldf' ) .OR. iom_use( 'sopstldf' ) .OR. &
& iom_use( 'sophteiv' ) .OR. iom_use( 'sopsteiv' ) .OR. iom_use( 'sopstvtr' ) .OR. &
& iom_use( 'sophtvtr' ) .OR. iom_use( 'uocetr_vsum_cumul' )
IF(lwp) THEN ! Control print
WRITE(numout,*)
WRITE(numout,*) 'dia_ptr_init : poleward transport and msf initialization'
WRITE(numout,*) '~~~~~~~~~~~~'
WRITE(numout,*) ' Poleward heat & salt transport (T) or not (F) l_diaptr = ', l_diaptr
ENDIF
IF( l_diaptr ) THEN
!
IF( dia_ptr_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'dia_ptr_init : unable to allocate arrays' )
!
rc_pwatt = rc_pwatt * rho0_rcp ! conversion from K.s-1 to PetaWatt
rc_ggram = rc_ggram * rho0 ! conversion from m3/s to Gg/s
IF( lk_mpp ) CALL mpp_ini_znl( numout ) ! Define MPI communicator for zonal sum
btmsk(:,:,1) = tmask_i(:,:)
IF( nbasin == 5 ) THEN ! nbasin has been initialized in iom_init to define the axis "basin"
CALL iom_open( 'subbasins', inum )
CALL iom_get( inum, jpdom_global, 'atlmsk', btmsk(:,:,2) ) ! Atlantic basin
CALL iom_get( inum, jpdom_global, 'pacmsk', btmsk(:,:,3) ) ! Pacific basin
CALL iom_get( inum, jpdom_global, 'indmsk', btmsk(:,:,4) ) ! Indian basin
CALL iom_close( inum )
btmsk(:,:,5) = MAX ( btmsk(:,:,3), btmsk(:,:,4) ) ! Indo-Pacific basin
ENDIF
DO jn = 2, nbasin
btmsk(:,:,jn) = btmsk(:,:,jn) * tmask_i(:,:) ! interior domain only
END DO
! JD : modification so that overturning streamfunction is available in Atlantic at 34S to compare with observations
WHERE( gphit(:,:)*tmask_i(:,:) < -34._wp)
zmsk(:,:) = 0._wp ! mask out Southern Ocean
ELSE WHERE
zmsk(:,:) = ssmask(:,:)
END WHERE
btmsk34(:,:,1) = btmsk(:,:,1)
DO jn = 2, nbasin
btmsk34(:,:,jn) = btmsk(:,:,jn) * zmsk(:,:) ! interior domain only
ENDDO
! Initialise arrays to zero because diatpr is called before they are first calculated
! Note that this means diagnostics will not be exactly correct when model run is restarted.
hstr_adv(:,:,:) = 0._wp
hstr_ldf(:,:,:) = 0._wp
hstr_eiv(:,:,:) = 0._wp
hstr_ove(:,:,:) = 0._wp
hstr_btr(:,:,:) = 0._wp !
hstr_vtr(:,:,:) = 0._wp !
pvtr_int(:,:,:,:) = 0._wp
pzon_int(:,:,:,:) = 0._wp
!
ll_init = .FALSE.
!
ENDIF
!
END SUBROUTINE dia_ptr_init
SUBROUTINE dia_ptr_hst( ktra, cptr, pvflx )
!!----------------------------------------------------------------------
!! *** ROUTINE dia_ptr_hst ***
!!----------------------------------------------------------------------
!! Wrapper for heat and salt transport calculations to calculate them for each basin
!! Called from all advection and/or diffusion routines
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: ktra ! tracer index
CHARACTER(len=3) , INTENT(in) :: cptr ! transport type 'adv'/'ldf'/'eiv'
REAL(wp), DIMENSION(A2D(nn_hls),jpk) , INTENT(in) :: pvflx ! 3D input array of advection/diffusion
REAL(wp), DIMENSION(A1Dj(nn_hls),nbasin) :: zsj !
INTEGER :: jn !
DO jn = 1, nbasin
zsj(:,jn) = ptr_sj( pvflx(:,:,:), btmsk(:,:,jn) )
ENDDO
!
IF( cptr == 'adv' ) THEN
IF( ktra == jp_tem ) CALL ptr_sum( hstr_adv(:,jp_tem,:), zsj(:,:) )
IF( ktra == jp_sal ) CALL ptr_sum( hstr_adv(:,jp_sal,:), zsj(:,:) )
ELSE IF( cptr == 'ldf' ) THEN
IF( ktra == jp_tem ) CALL ptr_sum( hstr_ldf(:,jp_tem,:), zsj(:,:) )
IF( ktra == jp_sal ) CALL ptr_sum( hstr_ldf(:,jp_sal,:), zsj(:,:) )
ELSE IF( cptr == 'eiv' ) THEN
IF( ktra == jp_tem ) CALL ptr_sum( hstr_eiv(:,jp_tem,:), zsj(:,:) )
IF( ktra == jp_sal ) CALL ptr_sum( hstr_eiv(:,jp_sal,:), zsj(:,:) )
ELSE IF( cptr == 'vtr' ) THEN
IF( ktra == jp_tem ) CALL ptr_sum( hstr_vtr(:,jp_tem,:), zsj(:,:) )
IF( ktra == jp_sal ) CALL ptr_sum( hstr_vtr(:,jp_sal,:), zsj(:,:) )
ENDIF
!
END SUBROUTINE dia_ptr_hst
SUBROUTINE ptr_sum_2d( phstr, pva )
!!----------------------------------------------------------------------
!! *** ROUTINE ptr_sum_2d ***
!!----------------------------------------------------------------------
!! ** Purpose : Add two 2D arrays with (j,nbasin) dimensions
!!
!! ** Method : - phstr = phstr + pva
!! - Call mpp_sum if the final tile
!!
!! ** Action : phstr
!!----------------------------------------------------------------------
REAL(wp), DIMENSION(jpj,nbasin) , INTENT(inout) :: phstr !
REAL(wp), DIMENSION(A1Dj(nn_hls),nbasin), INTENT(in) :: pva !
INTEGER :: jj
#if ! defined key_mpi_off
INTEGER, DIMENSION(1) :: ish1d
INTEGER, DIMENSION(2) :: ish2d
REAL(wp), DIMENSION(jpj*nbasin) :: zwork
#endif
DO jj = ntsj, ntej
phstr(jj,:) = phstr(jj,:) + pva(jj,:)
END DO
#if ! defined key_mpi_off
IF( .NOT. l_istiled .OR. ntile == nijtile ) THEN
ish1d(1) = jpj*nbasin
ish2d(1) = jpj ; ish2d(2) = nbasin
zwork(:) = RESHAPE( phstr(:,:), ish1d )
CALL mpp_sum( 'diaptr', zwork, ish1d(1), ncomm_znl )
phstr(:,:) = RESHAPE( zwork, ish2d )
ENDIF
#endif
END SUBROUTINE ptr_sum_2d
SUBROUTINE ptr_sum_3d( phstr, pva )
!!----------------------------------------------------------------------
!! *** ROUTINE ptr_sum_3d ***
!!----------------------------------------------------------------------
!! ** Purpose : Add two 3D arrays with (j,k,nbasin) dimensions
!!
!! ** Method : - phstr = phstr + pva
!! - Call mpp_sum if the final tile
!!
!! ** Action : phstr
!!----------------------------------------------------------------------
REAL(wp), DIMENSION(jpj,jpk,nbasin) , INTENT(inout) :: phstr !
REAL(wp), DIMENSION(A1Dj(nn_hls),jpk,nbasin), INTENT(in) :: pva !
INTEGER :: jj, jk
#if ! defined key_mpi_off
INTEGER, DIMENSION(1) :: ish1d
INTEGER, DIMENSION(3) :: ish3d
REAL(wp), DIMENSION(jpj*jpk*nbasin) :: zwork
#endif
DO jk = 1, jpk
DO jj = ntsj, ntej
phstr(jj,jk,:) = phstr(jj,jk,:) + pva(jj,jk,:)
END DO
END DO
#if ! defined key_mpi_off
IF( .NOT. l_istiled .OR. ntile == nijtile ) THEN
ish1d(1) = jpj*jpk*nbasin
ish3d(1) = jpj ; ish3d(2) = jpk ; ish3d(3) = nbasin
zwork(:) = RESHAPE( phstr(:,:,:), ish1d )
CALL mpp_sum( 'diaptr', zwork, ish1d(1), ncomm_znl )
phstr(:,:,:) = RESHAPE( zwork, ish3d )
ENDIF
#endif
END SUBROUTINE ptr_sum_3d
FUNCTION dia_ptr_alloc()
!!----------------------------------------------------------------------
!! *** ROUTINE dia_ptr_alloc ***
!!----------------------------------------------------------------------
INTEGER :: dia_ptr_alloc ! return value
INTEGER, DIMENSION(2) :: ierr
!!----------------------------------------------------------------------
ierr(:) = 0
!
! nbasin has been initialized in iom_init to define the axis "basin"
!
IF( .NOT. ALLOCATED( btmsk ) ) THEN
ALLOCATE( btmsk(jpi,jpj,nbasin) , btmsk34(jpi,jpj,nbasin), &
& hstr_adv(jpj,jpts,nbasin), hstr_eiv(jpj,jpts,nbasin), &
& hstr_ove(jpj,jpts,nbasin), hstr_btr(jpj,jpts,nbasin), &
& hstr_ldf(jpj,jpts,nbasin), hstr_vtr(jpj,jpts,nbasin), STAT=ierr(1) )
!
ALLOCATE( pvtr_int(jpj,jpk,jpts+2,nbasin), &
& pzon_int(jpj,jpk,jpts+1,nbasin), STAT=ierr(2) )
!
dia_ptr_alloc = MAXVAL( ierr )
CALL mpp_sum( 'diaptr', dia_ptr_alloc )
ENDIF
!
END FUNCTION dia_ptr_alloc
FUNCTION ptr_sj_3d( pvflx, pmsk ) RESULT ( p_fval )
!!----------------------------------------------------------------------
!! *** ROUTINE ptr_sj_3d ***
!!
!! ** Purpose : i-k sum computation of a j-flux array
!!
!! ** Method : - i-k sum of pvflx using the interior 2D vmask (vmask_i).
!! pvflx is supposed to be a masked flux (i.e. * vmask*e1v*e3v)
!!
!! ** Action : - p_fval: i-k-mean poleward flux of pvflx
!!----------------------------------------------------------------------
REAL(wp), INTENT(in), DIMENSION(A2D(nn_hls),jpk) :: pvflx ! mask flux array at V-point
REAL(wp), INTENT(in), DIMENSION(jpi,jpj) :: pmsk ! Optional 2D basin mask
!
INTEGER :: ji, jj, jk ! dummy loop arguments
REAL(wp), DIMENSION(A1Dj(nn_hls)) :: p_fval ! function value
!!--------------------------------------------------------------------
!
p_fval(:) = 0._wp
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
p_fval(jj) = p_fval(jj) + pvflx(ji,jj,jk) * pmsk(ji,jj) * tmask_i(ji,jj)
END_3D
END FUNCTION ptr_sj_3d
FUNCTION ptr_sj_2d( pvflx, pmsk ) RESULT ( p_fval )
!!----------------------------------------------------------------------
!! *** ROUTINE ptr_sj_2d ***
!!
!! ** Purpose : "zonal" and vertical sum computation of a j-flux array
!!
!! ** Method : - i-k sum of pvflx using the interior 2D vmask (vmask_i).
!! pvflx is supposed to be a masked flux (i.e. * vmask*e1v*e3v)
!!
!! ** Action : - p_fval: i-k-mean poleward flux of pvflx
!!----------------------------------------------------------------------
REAL(wp) , INTENT(in), DIMENSION(A2D(nn_hls)) :: pvflx ! mask flux array at V-point
REAL(wp) , INTENT(in), DIMENSION(jpi,jpj) :: pmsk ! Optional 2D basin mask
!
INTEGER :: ji,jj ! dummy loop arguments
REAL(wp), DIMENSION(A1Dj(nn_hls)) :: p_fval ! function value
!!--------------------------------------------------------------------
!
p_fval(:) = 0._wp
DO_2D( 0, 0, 0, 0 )
p_fval(jj) = p_fval(jj) + pvflx(ji,jj) * pmsk(ji,jj) * tmask_i(ji,jj)
END_2D
END FUNCTION ptr_sj_2d
FUNCTION ptr_ci_2d( pva ) RESULT ( p_fval )
!!----------------------------------------------------------------------
!! *** ROUTINE ptr_ci_2d ***
!!
!! ** Purpose : "meridional" cumulated sum computation of a j-flux array
!!
!! ** Method : - j cumulated sum of pva using the interior 2D vmask (umask_i).
!!
!! ** Action : - p_fval: j-cumulated sum of pva
!!----------------------------------------------------------------------
REAL(wp) , INTENT(in), DIMENSION(jpi,jpj) :: pva ! mask flux array at V-point
!
INTEGER :: ji,jj,jc ! dummy loop arguments
INTEGER :: ijpj ! ???
REAL(wp), DIMENSION(jpi,jpj) :: p_fval ! function value
!!--------------------------------------------------------------------
!
ijpj = jpj ! ???
p_fval(:,:) = 0._wp
DO jc = 1, jpnj ! looping over all processors in j axis
DO_2D( 0, 0, 0, 0 )
p_fval(ji,jj) = p_fval(ji,jj-1) + pva(ji,jj) * tmask_i(ji,jj)
END_2D
END DO
!
END FUNCTION ptr_ci_2d
FUNCTION ptr_sjk( pta, pmsk ) RESULT ( p_fval )
!!----------------------------------------------------------------------
!! *** ROUTINE ptr_sjk ***
!!
!! ** Purpose : i-sum computation of an array
!!
!! ** Method : - i-sum of field using the interior 2D vmask (pmsk).
!!
!! ** Action : - p_fval: i-sum of masked field
!!----------------------------------------------------------------------
!!
IMPLICIT none
REAL(wp) , INTENT(in), DIMENSION(A2D(nn_hls),jpk) :: pta ! mask flux array at V-point
REAL(wp) , INTENT(in), DIMENSION(jpi,jpj) :: pmsk ! Optional 2D basin mask
!!
INTEGER :: ji, jj, jk ! dummy loop arguments
REAL(wp), DIMENSION(A1Dj(nn_hls),jpk) :: p_fval ! return function value
!!--------------------------------------------------------------------
!
p_fval(:,:) = 0._wp
!
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
p_fval(jj,jk) = p_fval(jj,jk) + pta(ji,jj,jk) * pmsk(ji,jj) * tmask_i(ji,jj)
END_3D
END FUNCTION ptr_sjk
!!======================================================================
END MODULE diaptr