Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
MODULE stopar
!!======================================================================
!! *** MODULE stopar ***
!! Stochastic parameters : definition and time stepping
!!=====================================================================
!! History : 3.3 ! 2011-10 (J.-M. Brankart) Original code
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! sto_par : update the stochastic parameters
!! sto_par_init : define the stochastic parameterization
!! sto_rst_read : read restart file for stochastic parameters
!! sto_rst_write : write restart file for stochastic parameters
!! sto_par_white : fill input array with white Gaussian noise
!! sto_par_flt : apply horizontal Laplacian filter to input array
!!----------------------------------------------------------------------
USE storng ! random number generator (external module)
USE par_oce ! ocean parameters
USE dom_oce ! ocean space and time domain variables
USE lbclnk ! lateral boundary conditions (or mpp link)
USE in_out_manager ! I/O manager
USE iom ! I/O module
USE lib_mpp
IMPLICIT NONE
PRIVATE
PUBLIC sto_par_init ! called by nemogcm.F90
PUBLIC sto_par ! called by step.F90
PUBLIC sto_rst_write ! called by step.F90
LOGICAL :: ln_rststo = .FALSE. ! restart stochastic parameters from restart file
LOGICAL :: ln_rstseed = .FALSE. ! read seed of RNG from restart file
CHARACTER(len=32) :: cn_storst_in = "restart_sto" ! suffix of sto restart name (input)
CHARACTER(len=32) :: cn_storst_out = "restart_sto" ! suffix of sto restart name (output)
INTEGER :: numstor, numstow ! logical unit for restart (read and write)
INTEGER :: jpsto2d = 0 ! number of 2D stochastic parameters
INTEGER :: jpsto3d = 0 ! number of 3D stochastic parameters
REAL(wp), PUBLIC, DIMENSION(:,:,:), ALLOCATABLE :: sto2d ! 2D stochastic parameters
REAL(wp), PUBLIC, DIMENSION(:,:,:,:), ALLOCATABLE :: sto3d ! 3D stochastic parameters
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: sto_tmp ! temporary workspace
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: sto2d_abc ! a, b, c parameters (for 2D arrays)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: sto3d_abc ! a, b, c parameters (for 3D arrays)
REAL(wp), DIMENSION(:), ALLOCATABLE :: sto2d_ave ! mean value (for 2D arrays)
REAL(wp), DIMENSION(:), ALLOCATABLE :: sto3d_ave ! mean value (for 3D arrays)
REAL(wp), DIMENSION(:), ALLOCATABLE :: sto2d_std ! standard deviation (for 2D arrays)
REAL(wp), DIMENSION(:), ALLOCATABLE :: sto3d_std ! standard deviation (for 3D arrays)
REAL(wp), DIMENSION(:), ALLOCATABLE :: sto2d_lim ! limitation factor (for 2D arrays)
REAL(wp), DIMENSION(:), ALLOCATABLE :: sto3d_lim ! limitation factor (for 3D arrays)
REAL(wp), DIMENSION(:), ALLOCATABLE :: sto2d_tcor ! time correlation (for 2D arrays)
REAL(wp), DIMENSION(:), ALLOCATABLE :: sto3d_tcor ! time correlation (for 3D arrays)
INTEGER, DIMENSION(:), ALLOCATABLE :: sto2d_ord ! order of autoregressive process
INTEGER, DIMENSION(:), ALLOCATABLE :: sto3d_ord ! order of autoregressive process
CHARACTER(len=lca), DIMENSION(:), ALLOCATABLE :: sto2d_typ ! nature of grid point (T, U, V, W, F, I)
CHARACTER(len=lca), DIMENSION(:), ALLOCATABLE :: sto3d_typ ! nature of grid point (T, U, V, W, F, I)
REAL(wp), DIMENSION(:), ALLOCATABLE :: sto2d_sgn ! control of the sign accross the north fold
REAL(wp), DIMENSION(:), ALLOCATABLE :: sto3d_sgn ! control of the sign accross the north fold
INTEGER, DIMENSION(:), ALLOCATABLE :: sto2d_flt ! number of passes of Laplacian filter
INTEGER, DIMENSION(:), ALLOCATABLE :: sto3d_flt ! number of passes of Laplacian filter
REAL(wp), DIMENSION(:), ALLOCATABLE :: sto2d_fac ! factor to restore std after filtering
REAL(wp), DIMENSION(:), ALLOCATABLE :: sto3d_fac ! factor to restore std after filtering
LOGICAL, PUBLIC :: ln_sto_ldf = .FALSE. ! stochastic lateral diffusion
INTEGER, PUBLIC :: jsto_ldf ! index of lateral diffusion stochastic parameter
REAL(wp) :: rn_ldf_std ! lateral diffusion standard deviation (in percent)
REAL(wp) :: rn_ldf_tcor ! lateral diffusion correlation timescale (in timesteps)
LOGICAL, PUBLIC :: ln_sto_hpg = .FALSE. ! stochastic horizontal pressure gradient
INTEGER, PUBLIC :: jsto_hpgi ! index of stochastic hpg parameter (i direction)
INTEGER, PUBLIC :: jsto_hpgj ! index of stochastic hpg parameter (j direction)
REAL(wp) :: rn_hpg_std ! density gradient standard deviation (in percent)
REAL(wp) :: rn_hpg_tcor ! density gradient correlation timescale (in timesteps)
LOGICAL, PUBLIC :: ln_sto_pstar = .FALSE. ! stochastic ice strength
INTEGER, PUBLIC :: jsto_pstar ! index of stochastic ice strength
REAL(wp), PUBLIC:: rn_pstar_std ! ice strength standard deviation (in percent)
REAL(wp) :: rn_pstar_tcor ! ice strength correlation timescale (in timesteps)
INTEGER :: nn_pstar_flt = 0 ! number of passes of Laplacian filter
INTEGER :: nn_pstar_ord = 1 ! order of autoregressive processes
LOGICAL, PUBLIC :: ln_sto_trd = .FALSE. ! stochastic model trend
INTEGER, PUBLIC :: jsto_trd ! index of stochastic trend parameter
REAL(wp) :: rn_trd_std ! trend standard deviation (in percent)
REAL(wp) :: rn_trd_tcor ! trend correlation timescale (in timesteps)
LOGICAL, PUBLIC :: ln_sto_eos = .FALSE. ! stochastic equation of state
INTEGER, PUBLIC :: nn_sto_eos = 1 ! number of degrees of freedom in stochastic equation of state
INTEGER, PUBLIC, DIMENSION(:), ALLOCATABLE :: jsto_eosi ! index of stochastic eos parameter (i direction)
INTEGER, PUBLIC, DIMENSION(:), ALLOCATABLE :: jsto_eosj ! index of stochastic eos parameter (j direction)
INTEGER, PUBLIC, DIMENSION(:), ALLOCATABLE :: jsto_eosk ! index of stochastic eos parameter (k direction)
REAL(wp) :: rn_eos_stdxy ! random walk horz. standard deviation (in grid points)
REAL(wp) :: rn_eos_stdz ! random walk vert. standard deviation (in grid points)
REAL(wp) :: rn_eos_tcor ! random walk correlation timescale (in timesteps)
REAL(wp) :: rn_eos_lim = 3.0_wp ! limitation factor
INTEGER :: nn_eos_flt = 0 ! number of passes of Laplacian filter
INTEGER :: nn_eos_ord = 1 ! order of autoregressive processes
LOGICAL, PUBLIC :: ln_sto_trc = .FALSE. ! stochastic tracer dynamics
INTEGER, PUBLIC :: nn_sto_trc = 1 ! number of degrees of freedom in stochastic tracer dynamics
INTEGER, PUBLIC, DIMENSION(:), ALLOCATABLE :: jsto_trci ! index of stochastic trc parameter (i direction)
INTEGER, PUBLIC, DIMENSION(:), ALLOCATABLE :: jsto_trcj ! index of stochastic trc parameter (j direction)
INTEGER, PUBLIC, DIMENSION(:), ALLOCATABLE :: jsto_trck ! index of stochastic trc parameter (k direction)
REAL(wp) :: rn_trc_stdxy ! random walk horz. standard deviation (in grid points)
REAL(wp) :: rn_trc_stdz ! random walk vert. standard deviation (in grid points)
REAL(wp) :: rn_trc_tcor ! random walk correlation timescale (in timesteps)
REAL(wp) :: rn_trc_lim = 3.0_wp ! limitation factor
INTEGER :: nn_trc_flt = 0 ! number of passes of Laplacian filter
INTEGER :: nn_trc_ord = 1 ! order of autoregressive processes
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: stopar.F90 13295 2020-07-10 18:24:21Z acc $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE sto_par( kt )
!!----------------------------------------------------------------------
!! *** ROUTINE sto_par ***
!!
!! ** Purpose : update the stochastic parameters
!!
!! ** Method : model basic stochastic parameters
!! as a first order autoregressive process AR(1),
!! governed by the equation:
!! X(t) = a * X(t-1) + b * w + c
!! where the parameters a, b and c are related
!! to expected value, standard deviation
!! and time correlation (all stationary in time) by:
!! E [X(t)] = c / ( 1 - a )
!! STD [X(t)] = b / SQRT( 1 - a * a )
!! COR [X(t),X(t-k)] = a ** k
!! and w is a Gaussian white noise.
!!
!! Higher order autoregressive proces can be optionally generated
!! by replacing the white noise by a lower order process.
!!
!! 1) The statistics of the stochastic parameters (X) are assumed
!! constant in space (homogeneous) and time (stationary).
!! This could be generalized by replacing the constant
!! a, b, c parameters by functions of space and time.
!!
!! 2) The computation is performed independently for every model
!! grid point, which corresponds to assume that the stochastic
!! parameters are uncorrelated in space.
!! This could be generalized by including a spatial filter: Y = Filt[ X ]
!! (possibly non-homgeneous and non-stationary) in the computation,
!! or by solving an elliptic equation: L[ Y ] = X.
!!
!! 3) The stochastic model for the parameters could also
!! be generalized to depend on the current state of the ocean (not done here).
!!----------------------------------------------------------------------
INTEGER, INTENT( in ) :: kt ! ocean time-step index
!!
INTEGER :: ji, jj, jk, jsto, jflt
REAL(wp) :: stomax
!!----------------------------------------------------------------------
!
! Update 2D stochastic arrays
!
DO jsto = 1, jpsto2d
! Store array from previous time step
sto_tmp(:,:) = sto2d(:,:,jsto)
IF ( sto2d_ord(jsto) == 1 ) THEN
! Draw new random numbers from N(0,1) --> w
CALL sto_par_white( sto2d(:,:,jsto) )
! Apply horizontal Laplacian filter to w
DO jflt = 1, sto2d_flt(jsto)
CALL lbc_lnk( 'stopar', sto2d(:,:,jsto), sto2d_typ(jsto), sto2d_sgn(jsto) )
CALL sto_par_flt( sto2d(:,:,jsto) )
END DO
! Factor to restore standard deviation after filtering
sto2d(:,:,jsto) = sto2d(:,:,jsto) * sto2d_fac(jsto)
ELSE
! Use previous process (one order lower) instead of white noise
sto2d(:,:,jsto) = sto2d(:,:,jsto-1)
ENDIF
! Multiply white noise (or lower order process) by b --> b * w
sto2d(:,:,jsto) = sto2d(:,:,jsto) * sto2d_abc(jsto,2)
! Update autoregressive processes --> a * X(t-1) + b * w
sto2d(:,:,jsto) = sto2d(:,:,jsto) + sto_tmp(:,:) * sto2d_abc(jsto,1)
! Add parameter c --> a * X(t-1) + b * w + c
sto2d(:,:,jsto) = sto2d(:,:,jsto) + sto2d_abc(jsto,3)
! Limit random parameter anomalies to std times the limitation factor
stomax = sto2d_std(jsto) * sto2d_lim(jsto)
sto2d(:,:,jsto) = sto2d(:,:,jsto) - sto2d_ave(jsto)
sto2d(:,:,jsto) = SIGN(MIN(stomax,ABS(sto2d(:,:,jsto))),sto2d(:,:,jsto))
sto2d(:,:,jsto) = sto2d(:,:,jsto) + sto2d_ave(jsto)
! Lateral boundary conditions on sto2d
CALL lbc_lnk( 'stopar', sto2d(:,:,jsto), sto2d_typ(jsto), sto2d_sgn(jsto) )
END DO
!
! Update 3D stochastic arrays
!
DO jsto = 1, jpsto3d
DO jk = 1, jpk
! Store array from previous time step
sto_tmp(:,:) = sto3d(:,:,jk,jsto)
IF ( sto3d_ord(jsto) == 1 ) THEN
! Draw new random numbers from N(0,1) --> w
CALL sto_par_white( sto3d(:,:,jk,jsto) )
! Apply horizontal Laplacian filter to w
DO jflt = 1, sto3d_flt(jsto)
CALL lbc_lnk( 'stopar', sto3d(:,:,jk,jsto), sto3d_typ(jsto), sto3d_sgn(jsto) )
CALL sto_par_flt( sto3d(:,:,jk,jsto) )
END DO
! Factor to restore standard deviation after filtering
sto3d(:,:,jk,jsto) = sto3d(:,:,jk,jsto) * sto3d_fac(jsto)
ELSE
! Use previous process (one order lower) instead of white noise
sto3d(:,:,jk,jsto) = sto3d(:,:,jk,jsto-1)
ENDIF
! Multiply white noise by b --> b * w
sto3d(:,:,jk,jsto) = sto3d(:,:,jk,jsto) * sto3d_abc(jsto,2)
! Update autoregressive processes --> a * X(t-1) + b * w
sto3d(:,:,jk,jsto) = sto3d(:,:,jk,jsto) + sto_tmp(:,:) * sto3d_abc(jsto,1)
! Add parameter c --> a * X(t-1) + b * w + c
sto3d(:,:,jk,jsto) = sto3d(:,:,jk,jsto) + sto3d_abc(jsto,3)
! Limit random parameters anomalies to std times the limitation factor
stomax = sto3d_std(jsto) * sto3d_lim(jsto)
sto3d(:,:,jk,jsto) = sto3d(:,:,jk,jsto) - sto3d_ave(jsto)
sto3d(:,:,jk,jsto) = SIGN(MIN(stomax,ABS(sto3d(:,:,jk,jsto))),sto3d(:,:,jk,jsto))
sto3d(:,:,jk,jsto) = sto3d(:,:,jk,jsto) + sto3d_ave(jsto)
END DO
! Lateral boundary conditions on sto3d
CALL lbc_lnk( 'stopar', sto3d(:,:,:,jsto), sto3d_typ(jsto), sto3d_sgn(jsto) )
END DO
!
END SUBROUTINE sto_par
SUBROUTINE sto_par_init
!!----------------------------------------------------------------------
!! *** ROUTINE sto_par_init ***
!!
!! ** Purpose : define the stochastic parameterization
!!----------------------------------------------------------------------
NAMELIST/namsto/ ln_sto_ldf, rn_ldf_std, rn_ldf_tcor, &
& ln_sto_hpg, rn_hpg_std, rn_hpg_tcor, &
& ln_sto_pstar, rn_pstar_std, rn_pstar_tcor, nn_pstar_flt, nn_pstar_ord, &
& ln_sto_trd, rn_trd_std, rn_trd_tcor, &
& ln_sto_eos, nn_sto_eos, rn_eos_stdxy, rn_eos_stdz, &
& rn_eos_tcor, nn_eos_ord, nn_eos_flt, rn_eos_lim, &
& ln_sto_trc, nn_sto_trc, rn_trc_stdxy, rn_trc_stdz, &
& rn_trc_tcor, nn_trc_ord, nn_trc_flt, rn_trc_lim, &
& ln_rststo, ln_rstseed, cn_storst_in, cn_storst_out
!!----------------------------------------------------------------------
INTEGER :: jsto, jmem, jarea, jdof, jord, jordm1, jk, jflt
INTEGER(KIND=8) :: zseed1, zseed2, zseed3, zseed4
REAL(wp) :: rinflate
INTEGER :: ios ! Local integer output status for namelist read
! Read namsto namelist : stochastic parameterization
READ ( numnam_ref, namsto, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsto in reference namelist' )
READ ( numnam_cfg, namsto, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsto in configuration namelist' )
IF(lwm) WRITE ( numond, namsto )
IF( .NOT.ln_sto_eos ) THEN ! no use of stochastic parameterization
IF(lwp) THEN
WRITE(numout,*)
WRITE(numout,*) 'sto_par_init : NO use of stochastic parameterization'
WRITE(numout,*) '~~~~~~~~~~~~'
ENDIF
RETURN
ENDIF
!IF(ln_ens_rst_in) cn_storst_in = cn_mem//cn_storst_in
! Parameter print
IF(lwp) THEN
WRITE(numout,*)
WRITE(numout,*) 'sto_par_init : stochastic parameterization'
WRITE(numout,*) '~~~~~~~~~~~~'
WRITE(numout,*) ' Namelist namsto : stochastic parameterization'
WRITE(numout,*) ' restart stochastic parameters ln_rststo = ', ln_rststo
WRITE(numout,*) ' read seed of RNG from restart file ln_rstseed = ', ln_rstseed
WRITE(numout,*) ' suffix of sto restart name (input) cn_storst_in = ', cn_storst_in
WRITE(numout,*) ' suffix of sto restart name (output) cn_storst_out = ', cn_storst_out
! WRITE(numout,*) ' stochastic lateral diffusion ln_sto_ldf = ', ln_sto_ldf
! WRITE(numout,*) ' lateral diffusion std (in percent) rn_ldf_std = ', rn_ldf_std
! WRITE(numout,*) ' lateral diffusion tcor (in timesteps) rn_ldf_tcor = ', rn_ldf_tcor
! WRITE(numout,*) ' stochastic horizontal pressure gradient ln_sto_hpg = ', ln_sto_hpg
! WRITE(numout,*) ' density gradient std (in percent) rn_hpg_std = ', rn_hpg_std
! WRITE(numout,*) ' density gradient tcor (in timesteps) rn_hpg_tcor = ', rn_hpg_tcor
! WRITE(numout,*) ' stochastic ice strength ln_sto_pstar = ', ln_sto_pstar
! WRITE(numout,*) ' ice strength std (in percent) rn_pstar_std = ', rn_pstar_std
! WRITE(numout,*) ' ice strength tcor (in timesteps) rn_pstar_tcor = ', rn_pstar_tcor
! WRITE(numout,*) ' order of autoregressive processes nn_pstar_ord = ', nn_pstar_ord
! WRITE(numout,*) ' passes of Laplacian filter nn_pstar_flt = ', nn_pstar_flt
!WRITE(numout,*) ' stochastic trend ln_sto_trd = ', ln_sto_trd
!WRITE(numout,*) ' trend std (in percent) rn_trd_std = ', rn_trd_std
!WRITE(numout,*) ' trend tcor (in timesteps) rn_trd_tcor = ', rn_trd_tcor
WRITE(numout,*) ' stochastic equation of state ln_sto_eos = ', ln_sto_eos
WRITE(numout,*) ' number of degrees of freedom nn_sto_eos = ', nn_sto_eos
WRITE(numout,*) ' random walk horz. std (in grid points) rn_eos_stdxy = ', rn_eos_stdxy
WRITE(numout,*) ' random walk vert. std (in grid points) rn_eos_stdz = ', rn_eos_stdz
WRITE(numout,*) ' random walk tcor (in timesteps) rn_eos_tcor = ', rn_eos_tcor
WRITE(numout,*) ' order of autoregressive processes nn_eos_ord = ', nn_eos_ord
WRITE(numout,*) ' passes of Laplacian filter nn_eos_flt = ', nn_eos_flt
WRITE(numout,*) ' limitation factor rn_eos_lim = ', rn_eos_lim
! WRITE(numout,*) ' stochastic tracers dynamics ln_sto_trc = ', ln_sto_trc
! WRITE(numout,*) ' number of degrees of freedom nn_sto_trc = ', nn_sto_trc
! WRITE(numout,*) ' random walk horz. std (in grid points) rn_trc_stdxy = ', rn_trc_stdxy
! WRITE(numout,*) ' random walk vert. std (in grid points) rn_trc_stdz = ', rn_trc_stdz
! WRITE(numout,*) ' random walk tcor (in timesteps) rn_trc_tcor = ', rn_trc_tcor
! WRITE(numout,*) ' order of autoregressive processes nn_trc_ord = ', nn_trc_ord
! WRITE(numout,*) ' passes of Laplacian filter nn_trc_flt = ', nn_trc_flt
! WRITE(numout,*) ' limitation factor rn_trc_lim = ', rn_trc_lim
ENDIF
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' stochastic parameterization :'
! Set number of 2D stochastic arrays
jpsto2d = 0
IF( ln_sto_ldf ) THEN
IF(lwp) WRITE(numout,*) ' - stochastic lateral diffusion'
jpsto2d = jpsto2d + 1
jsto_ldf = jpsto2d
ENDIF
IF( ln_sto_pstar ) THEN
IF(lwp) WRITE(numout,*) ' - stochastic ice strength'
jpsto2d = jpsto2d + 1 * nn_pstar_ord
jsto_pstar = jpsto2d
ENDIF
IF( ln_sto_eos ) THEN
IF ( lk_agrif ) CALL ctl_stop('EOS stochastic parametrization is not compatible with AGRIF')
IF(lwp) WRITE(numout,*) ' - stochastic equation of state'
ALLOCATE(jsto_eosi(nn_sto_eos))
ALLOCATE(jsto_eosj(nn_sto_eos))
ALLOCATE(jsto_eosk(nn_sto_eos))
DO jdof = 1, nn_sto_eos
jpsto2d = jpsto2d + 3 * nn_eos_ord
jsto_eosi(jdof) = jpsto2d - 2 * nn_eos_ord
jsto_eosj(jdof) = jpsto2d - 1 * nn_eos_ord
jsto_eosk(jdof) = jpsto2d
END DO
ELSE
nn_sto_eos = 0
ENDIF
IF( ln_sto_trc ) THEN
IF(lwp) WRITE(numout,*) ' - stochastic tracers dynamics'
ALLOCATE(jsto_trci(nn_sto_trc))
ALLOCATE(jsto_trcj(nn_sto_trc))
ALLOCATE(jsto_trck(nn_sto_trc))
DO jdof = 1, nn_sto_trc
jpsto2d = jpsto2d + 3 * nn_trc_ord
jsto_trci(jdof) = jpsto2d - 2 * nn_trc_ord
jsto_trcj(jdof) = jpsto2d - 1 * nn_trc_ord
jsto_trck(jdof) = jpsto2d
END DO
ELSE
nn_sto_trc = 0
ENDIF
! Set number of 3D stochastic arrays
jpsto3d = 0
IF( ln_sto_hpg ) THEN
IF(lwp) WRITE(numout,*) ' - stochastic horizontal pressure gradient'
jpsto3d = jpsto3d + 2
jsto_hpgi = jpsto3d - 1
jsto_hpgj = jpsto3d
ENDIF
IF( ln_sto_trd ) THEN
IF(lwp) WRITE(numout,*) ' - stochastic trend'
jpsto3d = jpsto3d + 1
jsto_trd = jpsto3d
ENDIF
! Allocate 2D stochastic arrays
IF ( jpsto2d > 0 ) THEN
ALLOCATE ( sto2d(jpi,jpj,jpsto2d) )
ALLOCATE ( sto2d_abc(jpsto2d,3) )
ALLOCATE ( sto2d_ave(jpsto2d) )
ALLOCATE ( sto2d_std(jpsto2d) )
ALLOCATE ( sto2d_lim(jpsto2d) )
ALLOCATE ( sto2d_tcor(jpsto2d) )
ALLOCATE ( sto2d_ord(jpsto2d) )
ALLOCATE ( sto2d_typ(jpsto2d) )
ALLOCATE ( sto2d_sgn(jpsto2d) )
ALLOCATE ( sto2d_flt(jpsto2d) )
ALLOCATE ( sto2d_fac(jpsto2d) )
ENDIF
! Allocate 3D stochastic arrays
IF ( jpsto3d > 0 ) THEN
ALLOCATE ( sto3d(jpi,jpj,jpk,jpsto3d) )
ALLOCATE ( sto3d_abc(jpsto3d,3) )
ALLOCATE ( sto3d_ave(jpsto3d) )
ALLOCATE ( sto3d_std(jpsto3d) )
ALLOCATE ( sto3d_lim(jpsto3d) )
ALLOCATE ( sto3d_tcor(jpsto3d) )
ALLOCATE ( sto3d_ord(jpsto3d) )
ALLOCATE ( sto3d_typ(jpsto3d) )
ALLOCATE ( sto3d_sgn(jpsto3d) )
ALLOCATE ( sto3d_flt(jpsto3d) )
ALLOCATE ( sto3d_fac(jpsto3d) )
ENDIF
! Allocate temporary workspace
IF ( jpsto2d > 0 .OR. jpsto3d > 0 ) THEN
ALLOCATE ( sto_tmp(jpi,jpj) ) ; sto_tmp(:,:) = 0._wp
ENDIF
! 1) For every stochastic parameter:
! ----------------------------------
! - set nature of grid point and control of the sign
! across the north fold (sto2d_typ, sto2d_sgn)
! - set number of passes of Laplacian filter (sto2d_flt)
! - set order of every autoregressive process (sto2d_ord)
DO jsto = 1, jpsto2d
sto2d_typ(jsto) = 'T'
sto2d_sgn(jsto) = 1._wp
sto2d_flt(jsto) = 0
sto2d_ord(jsto) = 1
DO jord = 0, nn_pstar_ord-1
IF ( jsto+jord == jsto_pstar ) THEN ! Stochastic ice strength (ave=1)
sto2d_ord(jsto) = nn_pstar_ord - jord
sto2d_flt(jsto) = nn_pstar_flt
ENDIF
ENDDO
DO jdof = 1, nn_sto_eos
DO jord = 0, nn_eos_ord-1
IF ( jsto+jord == jsto_eosi(jdof) ) THEN ! Stochastic equation of state i (ave=0)
sto2d_ord(jsto) = nn_eos_ord - jord
sto2d_sgn(jsto) = -1._wp
sto2d_flt(jsto) = nn_eos_flt
ENDIF
IF ( jsto+jord == jsto_eosj(jdof) ) THEN ! Stochastic equation of state j (ave=0)
sto2d_ord(jsto) = nn_eos_ord - jord
sto2d_sgn(jsto) = -1._wp
sto2d_flt(jsto) = nn_eos_flt
ENDIF
IF ( jsto+jord == jsto_eosk(jdof) ) THEN ! Stochastic equation of state k (ave=0)
sto2d_ord(jsto) = nn_eos_ord - jord
sto2d_flt(jsto) = nn_eos_flt
ENDIF
END DO
END DO
DO jdof = 1, nn_sto_trc
DO jord = 0, nn_trc_ord-1
IF ( jsto+jord == jsto_trci(jdof) ) THEN ! Stochastic tracers dynamics i (ave=0)
sto2d_ord(jsto) = nn_trc_ord - jord
sto2d_sgn(jsto) = -1._wp
sto2d_flt(jsto) = nn_trc_flt
ENDIF
IF ( jsto+jord == jsto_trcj(jdof) ) THEN ! Stochastic tracers dynamics j (ave=0)
sto2d_ord(jsto) = nn_trc_ord - jord
sto2d_sgn(jsto) = -1._wp
sto2d_flt(jsto) = nn_trc_flt
ENDIF
IF ( jsto+jord == jsto_trck(jdof) ) THEN ! Stochastic tracers dynamics k (ave=0)
sto2d_ord(jsto) = nn_trc_ord - jord
sto2d_flt(jsto) = nn_trc_flt
ENDIF
END DO
END DO
sto2d_fac(jsto) = sto_par_flt_fac ( sto2d_flt(jsto) )
END DO
!
DO jsto = 1, jpsto3d
sto3d_typ(jsto) = 'T'
sto3d_sgn(jsto) = 1._wp
sto3d_flt(jsto) = 0
sto3d_ord(jsto) = 1
IF ( jsto == jsto_hpgi ) THEN ! Stochastic density gradient i (ave=1)
sto3d_typ(jsto) = 'U'
ENDIF
IF ( jsto == jsto_hpgj ) THEN ! Stochastic density gradient j (ave=1)
sto3d_typ(jsto) = 'V'
ENDIF
sto3d_fac(jsto) = sto_par_flt_fac ( sto3d_flt(jsto) )
END DO
! 2) For every stochastic parameter:
! ----------------------------------
! set average, standard deviation and time correlation
DO jsto = 1, jpsto2d
sto2d_ave(jsto) = 0._wp
sto2d_std(jsto) = 1._wp
sto2d_tcor(jsto) = 1._wp
sto2d_lim(jsto) = 3._wp
IF ( jsto == jsto_ldf ) THEN ! Stochastic lateral diffusion (ave=1)
sto2d_ave(jsto) = 1._wp
sto2d_std(jsto) = rn_ldf_std
sto2d_tcor(jsto) = rn_ldf_tcor
ENDIF
DO jord = 0, nn_pstar_ord-1
IF ( jsto+jord == jsto_pstar ) THEN ! Stochastic ice strength (ave=1)
sto2d_std(jsto) = 1._wp
sto2d_tcor(jsto) = rn_pstar_tcor
ENDIF
ENDDO
DO jdof = 1, nn_sto_eos
DO jord = 0, nn_eos_ord-1
IF ( jsto+jord == jsto_eosi(jdof) ) THEN ! Stochastic equation of state i (ave=0)
sto2d_std(jsto) = rn_eos_stdxy
sto2d_tcor(jsto) = rn_eos_tcor
sto2d_lim(jsto) = rn_eos_lim
ENDIF
IF ( jsto+jord == jsto_eosj(jdof) ) THEN ! Stochastic equation of state j (ave=0)
sto2d_std(jsto) = rn_eos_stdxy
sto2d_tcor(jsto) = rn_eos_tcor
sto2d_lim(jsto) = rn_eos_lim
ENDIF
IF ( jsto+jord == jsto_eosk(jdof) ) THEN ! Stochastic equation of state k (ave=0)
sto2d_std(jsto) = rn_eos_stdz
sto2d_tcor(jsto) = rn_eos_tcor
sto2d_lim(jsto) = rn_eos_lim
ENDIF
END DO
END DO
DO jdof = 1, nn_sto_trc
DO jord = 0, nn_trc_ord-1
IF ( jsto+jord == jsto_trci(jdof) ) THEN ! Stochastic tracer dynamics i (ave=0)
sto2d_std(jsto) = rn_trc_stdxy
sto2d_tcor(jsto) = rn_trc_tcor
sto2d_lim(jsto) = rn_trc_lim
ENDIF
IF ( jsto+jord == jsto_trcj(jdof) ) THEN ! Stochastic tracer dynamics j (ave=0)
sto2d_std(jsto) = rn_trc_stdxy
sto2d_tcor(jsto) = rn_trc_tcor
sto2d_lim(jsto) = rn_trc_lim
ENDIF
IF ( jsto+jord == jsto_trck(jdof) ) THEN ! Stochastic tracer dynamics k (ave=0)
sto2d_std(jsto) = rn_trc_stdz
sto2d_tcor(jsto) = rn_trc_tcor
sto2d_lim(jsto) = rn_trc_lim
ENDIF
END DO
END DO
END DO
!
DO jsto = 1, jpsto3d
sto3d_ave(jsto) = 0._wp
sto3d_std(jsto) = 1._wp
sto3d_tcor(jsto) = 1._wp
sto3d_lim(jsto) = 3._wp
IF ( jsto == jsto_hpgi ) THEN ! Stochastic density gradient i (ave=1)
sto3d_ave(jsto) = 1._wp
sto3d_std(jsto) = rn_hpg_std
sto3d_tcor(jsto) = rn_hpg_tcor
ENDIF
IF ( jsto == jsto_hpgj ) THEN ! Stochastic density gradient j (ave=1)
sto3d_ave(jsto) = 1._wp
sto3d_std(jsto) = rn_hpg_std
sto3d_tcor(jsto) = rn_hpg_tcor
ENDIF
IF ( jsto == jsto_trd ) THEN ! Stochastic trend (ave=1)
sto3d_ave(jsto) = 1._wp
sto3d_std(jsto) = rn_trd_std
sto3d_tcor(jsto) = rn_trd_tcor
ENDIF
END DO
! 3) For every stochastic parameter:
! ----------------------------------
! - compute parameters (a, b, c) of the AR1 autoregressive process
! from expected value (ave), standard deviation (std)
! and time correlation (tcor):
! a = EXP ( - 1 / tcor ) --> sto2d_abc(:,1)
! b = std * SQRT( 1 - a * a ) --> sto2d_abc(:,2)
! c = ave * ( 1 - a ) --> sto2d_abc(:,3)
! - for higher order processes (ARn, n>1), use approximate formula
! for the b parameter (valid for tcor>>1 time step)
DO jsto = 1, jpsto2d
IF ( sto2d_tcor(jsto) == 0._wp ) THEN
sto2d_abc(jsto,1) = 0._wp
ELSE
sto2d_abc(jsto,1) = EXP ( - 1._wp / sto2d_tcor(jsto) )
ENDIF
IF ( sto2d_ord(jsto) == 1 ) THEN ! Exact formula for 1st order process
rinflate = sto2d_std(jsto)
ELSE
! Approximate formula, valid for tcor >> 1
jordm1 = sto2d_ord(jsto) - 1
rinflate = SQRT ( REAL( jordm1 , wp ) / REAL( 2*(2*jordm1-1) , wp ) )
ENDIF
sto2d_abc(jsto,2) = rinflate * SQRT ( 1._wp - sto2d_abc(jsto,1) &
* sto2d_abc(jsto,1) )
sto2d_abc(jsto,3) = sto2d_ave(jsto) * ( 1._wp - sto2d_abc(jsto,1) )
END DO
!
DO jsto = 1, jpsto3d
IF ( sto3d_tcor(jsto) == 0._wp ) THEN
sto3d_abc(jsto,1) = 0._wp
ELSE
sto3d_abc(jsto,1) = EXP ( - 1._wp / sto3d_tcor(jsto) )
ENDIF
IF ( sto3d_ord(jsto) == 1 ) THEN ! Exact formula for 1st order process
rinflate = sto3d_std(jsto)
ELSE
! Approximate formula, valid for tcor >> 1
jordm1 = sto3d_ord(jsto) - 1
rinflate = SQRT ( REAL( jordm1 , wp ) / REAL( 2*(2*jordm1-1) , wp ) )
ENDIF
sto3d_abc(jsto,2) = rinflate * SQRT ( 1._wp - sto3d_abc(jsto,1) &
* sto3d_abc(jsto,1) )
sto3d_abc(jsto,3) = sto3d_ave(jsto) * ( 1._wp - sto3d_abc(jsto,1) )
END DO
! 4) Initialize seeds for random number generator
! -----------------------------------------------
! using different seeds for different processors (jarea)
! and different ensemble members (jmem)
CALL kiss_reset( )
DO jarea = 1, narea
!DO jmem = 0, nmember
zseed1 = kiss() ; zseed2 = kiss() ; zseed3 = kiss() ; zseed4 = kiss()
!END DO
END DO
CALL kiss_seed( zseed1, zseed2, zseed3, zseed4 )
! 5) Initialize stochastic parameters to: ave + std * w
! -----------------------------------------------------
DO jsto = 1, jpsto2d
! Draw random numbers from N(0,1) --> w
CALL sto_par_white( sto2d(:,:,jsto) )
! Apply horizontal Laplacian filter to w
DO jflt = 1, sto2d_flt(jsto)
CALL lbc_lnk( 'stopar', sto2d(:,:,jsto), sto2d_typ(jsto), sto2d_sgn(jsto) )
CALL sto_par_flt( sto2d(:,:,jsto) )
END DO
! Factor to restore standard deviation after filtering
sto2d(:,:,jsto) = sto2d(:,:,jsto) * sto2d_fac(jsto)
! Limit random parameter to the limitation factor
sto2d(:,:,jsto) = SIGN(MIN(sto2d_lim(jsto),ABS(sto2d(:,:,jsto))),sto2d(:,:,jsto))
! Multiply by standard devation and add average value
sto2d(:,:,jsto) = sto2d(:,:,jsto) * sto2d_std(jsto) + sto2d_ave(jsto)
END DO
!
DO jsto = 1, jpsto3d
DO jk = 1, jpk
! Draw random numbers from N(0,1) --> w
CALL sto_par_white( sto3d(:,:,jk,jsto) )
! Apply horizontal Laplacian filter to w
DO jflt = 1, sto3d_flt(jsto)
CALL lbc_lnk( 'stopar', sto3d(:,:,jk,jsto), sto3d_typ(jsto), sto3d_sgn(jsto) )
CALL sto_par_flt( sto3d(:,:,jk,jsto) )
END DO
! Factor to restore standard deviation after filtering
sto3d(:,:,jk,jsto) = sto3d(:,:,jk,jsto) * sto3d_fac(jsto)
! Limit random parameter to the limitation factor
sto3d(:,:,jk,jsto) = SIGN(MIN(sto3d_lim(jsto),ABS(sto3d(:,:,jk,jsto))),sto3d(:,:,jk,jsto))
! Multiply by standard devation and add average value
sto3d(:,:,jk,jsto) = sto3d(:,:,jk,jsto) * sto3d_std(jsto) + sto3d_ave(jsto)
END DO
END DO
! 6) Restart stochastic parameters from file
! ------------------------------------------
IF( ln_rststo ) CALL sto_rst_read
END SUBROUTINE sto_par_init
SUBROUTINE sto_rst_read
!!----------------------------------------------------------------------
!! *** ROUTINE sto_rst_read ***
!!
!! ** Purpose : read stochastic parameters from restart file
!!----------------------------------------------------------------------
INTEGER :: jsto, jseed
INTEGER :: idg ! number of digits
INTEGER(KIND=8) :: ziseed(4) ! RNG seeds in integer type
REAL(KIND=dp) :: zrseed(4) ! RNG seeds in double-precision (with same bits to save in restart)
CHARACTER(LEN=9) :: clsto2d='sto2d_000' ! stochastic parameter variable name
CHARACTER(LEN=9) :: clsto3d='sto3d_000' ! stochastic parameter variable name
CHARACTER(LEN=15) :: clseed='seed0_0000' ! seed variable name
CHARACTER(LEN=6) :: clfmt ! writing format
!!----------------------------------------------------------------------
IF ( jpsto2d > 0 .OR. jpsto3d > 0 ) THEN
IF(lwp) THEN
WRITE(numout,*)
WRITE(numout,*) 'sto_rst_read : read stochastic parameters from restart file'
WRITE(numout,*) '~~~~~~~~~~~~'
ENDIF
! Open the restart file
CALL iom_open( cn_storst_in, numstor )
! Get stochastic parameters from restart file:
! 2D stochastic parameters
DO jsto = 1 , jpsto2d
WRITE(clsto2d(7:9),'(i3.3)') jsto
CALL iom_get( numstor, jpdom_auto, clsto2d, sto2d(:,:, jsto) )
END DO
! 3D stochastic parameters
DO jsto = 1 , jpsto3d
WRITE(clsto3d(7:9),'(i3.3)') jsto
CALL iom_get( numstor, jpdom_auto, clsto3d, sto3d(:,:,:,jsto) )
END DO
IF (ln_rstseed) THEN
! Get saved state of the random number generator
idg = MAX( INT(LOG10(REAL(jpnij,wp))) + 1, 4 ) ! how many digits to we need to write? min=4, max=9
WRITE(clfmt, "('(i', i1, '.', i1, ')')") idg, idg ! "(ix.x)"
DO jseed = 1 , 4
WRITE(clseed(5:5) ,'(i1.1)') jseed
WRITE(clseed(7:7+idg-1), clfmt ) narea
CALL iom_get( numstor, clseed(1:7+idg-1) , zrseed(jseed) )
END DO
ziseed = TRANSFER( zrseed , ziseed)
CALL kiss_seed( ziseed(1) , ziseed(2) , ziseed(3) , ziseed(4) )
ENDIF
! Close the restart file
CALL iom_close( numstor )
ENDIF
END SUBROUTINE sto_rst_read
SUBROUTINE sto_rst_write( kt )
!!----------------------------------------------------------------------
!! *** ROUTINE sto_rst_write ***
!!
!! ** Purpose : write stochastic parameters in restart file
!!----------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! ocean time-step
!!
INTEGER :: jsto, jseed
INTEGER :: idg ! number of digits
INTEGER(KIND=8) :: ziseed(4) ! RNG seeds in integer type
REAL(KIND=dp) :: zrseed(4) ! RNG seeds in double-precision (with same bits to save in restart)
CHARACTER(LEN=20) :: clkt ! ocean time-step defined as a character
CHARACTER(LEN=50) :: clname ! restart file name
CHARACTER(LEN=9) :: clsto2d='sto2d_000' ! stochastic parameter variable name
CHARACTER(LEN=9) :: clsto3d='sto3d_000' ! stochastic parameter variable name
CHARACTER(LEN=15) :: clseed='seed0_0000' ! seed variable name
CHARACTER(LEN=6) :: clfmt ! writing format
!!----------------------------------------------------------------------
IF( .NOT. ln_rst_list .AND. nn_stock == -1 ) RETURN ! we will never do any restart
IF ( jpsto2d > 0 .OR. jpsto3d > 0 ) THEN
IF( kt == nitrst .OR. kt == nitend ) THEN
IF(lwp) THEN
WRITE(numout,*)
WRITE(numout,*) 'sto_rst_write : write stochastic parameters in restart file'
WRITE(numout,*) '~~~~~~~~~~~~~'
ENDIF
ENDIF
! Put stochastic parameters in restart files
! (as opened at previous timestep, see below)
IF( kt > nit000) THEN
IF( kt == nitrst .OR. kt == nitend ) THEN
! get and save current state of the random number generator
CALL kiss_state( ziseed(1) , ziseed(2) , ziseed(3) , ziseed(4) )
zrseed = TRANSFER( ziseed , zrseed)
idg = MAX( INT(LOG10(REAL(jpnij,wp))) + 1, 4 ) ! how many digits to we need to write? min=4, max=9
WRITE(clfmt, "('(i', i1, '.', i1, ')')") idg, idg ! "(ix.x)"
DO jseed = 1 , 4
WRITE(clseed(5:5) ,'(i1.1)') jseed
WRITE(clseed(7:7+idg-1), clfmt ) narea
CALL iom_rstput( kt, nitrst, numstow, clseed(1:7+idg-1), zrseed(jseed) )
END DO
! 2D stochastic parameters
DO jsto = 1 , jpsto2d
WRITE(clsto2d(7:9),'(i3.3)') jsto
CALL iom_rstput( kt, nitrst, numstow, clsto2d , sto2d(:,:,jsto) )
END DO
! 3D stochastic parameters
DO jsto = 1 , jpsto3d
WRITE(clsto3d(7:9),'(i3.3)') jsto
CALL iom_rstput( kt, nitrst, numstow, clsto3d , sto3d(:,:,:,jsto) )
END DO
! close the restart file
CALL iom_close( numstow )
ENDIF
ENDIF
! Open the restart file one timestep before writing restart
IF( kt < nitend) THEN
IF( kt == nitrst - 1 .OR. nn_stock == 1 .OR. kt == nitend-1 ) THEN
! create the filename
IF( nitrst > 999999999 ) THEN ; WRITE(clkt, * ) nitrst
ELSE ; WRITE(clkt, '(i8.8)') nitrst
ENDIF
clname = TRIM(cexper)//"_"//TRIM(ADJUSTL(clkt))//"_"//TRIM(cn_storst_out)
! print information
IF(lwp) THEN
WRITE(numout,*) ' open stochastic parameters restart file: '//clname
IF( kt == nitrst - 1 ) THEN
WRITE(numout,*) ' kt = nitrst - 1 = ', kt
ELSE
WRITE(numout,*) ' kt = ' , kt
ENDIF
ENDIF
! open the restart file
CALL iom_open( clname, numstow, ldwrt = .TRUE. )
ENDIF
ENDIF
ENDIF
END SUBROUTINE sto_rst_write
SUBROUTINE sto_par_white( psto )
!!----------------------------------------------------------------------
!! *** ROUTINE sto_par_white ***
!!
!! ** Purpose : fill input array with white Gaussian noise
!!----------------------------------------------------------------------
REAL(wp), DIMENSION(jpi,jpj), INTENT(out) :: psto
!!
INTEGER :: ji, jj
REAL(wp) :: gran ! Gaussian random number (forced KIND=8 as in kiss_gaussian)
DO_2D( 1, 1, 1, 1 )
CALL kiss_gaussian( gran )
psto(ji,jj) = gran
END_2D
END SUBROUTINE sto_par_white
SUBROUTINE sto_par_flt( psto )
!!----------------------------------------------------------------------
!! *** ROUTINE sto_par_flt ***
!!
!! ** Purpose : apply horizontal Laplacian filter to input array
!!----------------------------------------------------------------------
REAL(wp), DIMENSION(jpi,jpj), INTENT(out) :: psto
!!
INTEGER :: ji, jj
DO_2D( 0, 0, 0, 0 )
psto(ji,jj) = 0.5_wp * psto(ji,jj) + 0.125_wp * &
& ( psto(ji-1,jj) + psto(ji+1,jj) + &
& psto(ji,jj-1) + psto(ji,jj+1) )
END_2D
END SUBROUTINE sto_par_flt
FUNCTION sto_par_flt_fac( kpasses )
!!----------------------------------------------------------------------
!! *** FUNCTION sto_par_flt_fac ***
!!
!! ** Purpose : compute factor to restore standard deviation
!! as a function of the number of passes
!! of the Laplacian filter
!!----------------------------------------------------------------------
INTEGER, INTENT(in) :: kpasses
REAL(wp) :: sto_par_flt_fac
!!
INTEGER :: jpasses, ji, jj, jflti, jfltj
INTEGER, DIMENSION(-1:1,-1:1) :: pflt0
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pfltb
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pflta
REAL(wp) :: ratio
pflt0(-1,-1) = 0 ; pflt0(-1,0) = 1 ; pflt0(-1,1) = 0
pflt0( 0,-1) = 1 ; pflt0( 0,0) = 4 ; pflt0( 0,1) = 1
pflt0( 1,-1) = 0 ; pflt0( 1,0) = 1 ; pflt0( 1,1) = 0
ALLOCATE(pfltb(-kpasses-1:kpasses+1,-kpasses-1:kpasses+1))
ALLOCATE(pflta(-kpasses-1:kpasses+1,-kpasses-1:kpasses+1))
pfltb(:,:) = 0
pfltb(0,0) = 1
DO jpasses = 1, kpasses
pflta(:,:) = 0
DO jflti= -1, 1
DO jfltj= -1, 1
DO ji= -kpasses, kpasses
DO jj= -kpasses, kpasses
pflta(ji,jj) = pflta(ji,jj) + pfltb(ji+jflti,jj+jfltj) * pflt0(jflti,jfltj)
ENDDO
ENDDO
ENDDO
ENDDO
pfltb(:,:) = pflta(:,:)
ENDDO
ratio = SUM(pfltb(:,:))
ratio = ratio * ratio / SUM(pfltb(:,:)*pfltb(:,:))
ratio = SQRT(ratio)
DEALLOCATE(pfltb,pflta)
sto_par_flt_fac = ratio
END FUNCTION sto_par_flt_fac
END MODULE stopar