Skip to content
Snippets Groups Projects
sbccpl.F90 188 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
MODULE sbccpl
   !!======================================================================
   !!                       ***  MODULE  sbccpl  ***
   !! Surface Boundary Condition :  momentum, heat and freshwater fluxes in coupled mode
   !!======================================================================
   !! History :  2.0  ! 2007-06  (R. Redler, N. Keenlyside, W. Park) Original code split into flxmod & taumod
   !!            3.0  ! 2008-02  (G. Madec, C Talandier)  surface module
   !!            3.1  ! 2009_02  (G. Madec, S. Masson, E. Maisonave, A. Caubel) generic coupled interface
   !!            3.4  ! 2011_11  (C. Harris) more flexibility + multi-category fields
   !!            4.2  ! 2020-12  (G. Madec, E. Clementi)  wave coupling updates
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   namsbc_cpl      : coupled formulation namlist
   !!   sbc_cpl_init    : initialisation of the coupled exchanges
   !!   sbc_cpl_rcv     : receive fields from the atmosphere over the ocean (ocean only)
   !!                     receive stress from the atmosphere over the ocean (ocean-ice case)
   !!   sbc_cpl_ice_tau : receive stress from the atmosphere over ice
   !!   sbc_cpl_ice_flx : receive fluxes from the atmosphere over ice
   !!   sbc_cpl_snd     : send     fields to the atmosphere
   !!----------------------------------------------------------------------
   USE dom_oce         ! ocean space and time domain
   USE sbc_oce         ! Surface boundary condition: ocean fields
   USE trc_oce         ! share SMS/Ocean variables
   USE sbc_ice         ! Surface boundary condition: ice fields
   USE sbcapr          ! Stochastic param. : ???
   USE sbcdcy          ! surface boundary condition: diurnal cycle
   USE sbcwave         ! surface boundary condition: waves
   USE phycst          ! physical constants
   USE isf_oce , ONLY : l_isfoasis, fwfisf_oasis ! ice shelf boundary condition
#if defined key_si3
   USE ice            ! ice variables
#endif
   USE cpl_oasis3     ! OASIS3 coupling
   USE geo2ocean      !
#if defined key_medusa
   USE oce , ONLY: CO2Flux_out_cpl, DMS_out_cpl, chloro_out_cpl,  &
                        PCO2a_in_cpl, Dust_in_cpl
#endif
Guillaume Samson's avatar
Guillaume Samson committed
   USE ocealb         !
   USE eosbn2         !
   USE sbcrnf  , ONLY : l_rnfcpl
   USE cpl_rnf_1d, ONLY: nn_cpl_river, cpl_rnf_1d_init, cpl_rnf_1d_to_2d   ! Variables used in 1D river outflow 
#if defined key_medusa
   USE par_trc , ONLY : ln_medusa
#endif
Guillaume Samson's avatar
Guillaume Samson committed
#if defined key_cice
   USE ice_domain_size, only: ncat
#endif
#if defined key_si3
   USE icevar         ! for CALL ice_var_snwblow
#endif
   !
   USE in_out_manager ! I/O manager
   USE iom            ! NetCDF library
   USE lib_mpp        ! distribued memory computing library
   USE lbclnk         ! ocean lateral boundary conditions (or mpp link)
   USE timing
Guillaume Samson's avatar
Guillaume Samson committed

#if defined key_oasis3
   USE mod_oasis, ONLY : OASIS_Sent, OASIS_ToRest, OASIS_SentOut, OASIS_ToRestOut
#endif

Guillaume Samson's avatar
Guillaume Samson committed

   IMPLICIT NONE
   PRIVATE

   PUBLIC   sbc_cpl_init      ! routine called by sbcmod.F90
   PUBLIC   sbc_cpl_rcv       ! routine called by icestp.F90
   PUBLIC   sbc_cpl_snd       ! routine called by step.F90
   PUBLIC   sbc_cpl_ice_tau   ! routine called by icestp.F90
   PUBLIC   sbc_cpl_ice_flx   ! routine called by icestp.F90
   PUBLIC   sbc_cpl_alloc     ! routine called in sbcice_cice.F90

   INTEGER, PARAMETER ::   jpr_otx1   =  1   ! 3 atmosphere-ocean stress components on grid 1
   INTEGER, PARAMETER ::   jpr_oty1   =  2   !
   INTEGER, PARAMETER ::   jpr_otz1   =  3   !
   INTEGER, PARAMETER ::   jpr_otx2   =  4   ! 3 atmosphere-ocean stress components on grid 2
   INTEGER, PARAMETER ::   jpr_oty2   =  5   !
   INTEGER, PARAMETER ::   jpr_otz2   =  6   !
   INTEGER, PARAMETER ::   jpr_itx1   =  7   ! 3 atmosphere-ice   stress components on grid 1
   INTEGER, PARAMETER ::   jpr_ity1   =  8   !
   INTEGER, PARAMETER ::   jpr_itz1   =  9   !
   INTEGER, PARAMETER ::   jpr_itx2   = 10   ! 3 atmosphere-ice   stress components on grid 2
   INTEGER, PARAMETER ::   jpr_ity2   = 11   !
   INTEGER, PARAMETER ::   jpr_itz2   = 12   !
   INTEGER, PARAMETER ::   jpr_qsroce = 13   ! Qsr above the ocean
   INTEGER, PARAMETER ::   jpr_qsrice = 14   ! Qsr above the ice
   INTEGER, PARAMETER ::   jpr_qsrmix = 15
   INTEGER, PARAMETER ::   jpr_qnsoce = 16   ! Qns above the ocean
   INTEGER, PARAMETER ::   jpr_qnsice = 17   ! Qns above the ice
   INTEGER, PARAMETER ::   jpr_qnsmix = 18
   INTEGER, PARAMETER ::   jpr_rain   = 19   ! total liquid precipitation (rain)
   INTEGER, PARAMETER ::   jpr_snow   = 20   ! solid precipitation over the ocean (snow)
   INTEGER, PARAMETER ::   jpr_tevp   = 21   ! total evaporation
   INTEGER, PARAMETER ::   jpr_ievp   = 22   ! solid evaporation (sublimation)
   INTEGER, PARAMETER ::   jpr_sbpr   = 23   ! sublimation - liquid precipitation - solid precipitation
   INTEGER, PARAMETER ::   jpr_semp   = 24   ! solid freshwater budget (sublimation - snow)
   INTEGER, PARAMETER ::   jpr_oemp   = 25   ! ocean freshwater budget (evap - precip)
   INTEGER, PARAMETER ::   jpr_w10m   = 26   ! 10m wind
   INTEGER, PARAMETER ::   jpr_dqnsdt = 27   ! d(Q non solar)/d(temperature)
   INTEGER, PARAMETER ::   jpr_rnf    = 28   ! runoffs
   INTEGER, PARAMETER ::   jpr_cal    = 29   ! calving
   INTEGER, PARAMETER ::   jpr_taum   = 30   ! wind stress module
   INTEGER, PARAMETER ::   jpr_co2    = 31
   INTEGER, PARAMETER ::   jpr_topm   = 32   ! topmeltn
   INTEGER, PARAMETER ::   jpr_botm   = 33   ! botmeltn
   INTEGER, PARAMETER ::   jpr_sflx   = 34   ! salt flux
   INTEGER, PARAMETER ::   jpr_toce   = 35   ! ocean temperature
   INTEGER, PARAMETER ::   jpr_soce   = 36   ! ocean salinity
   INTEGER, PARAMETER ::   jpr_ocx1   = 37   ! ocean current on grid 1
   INTEGER, PARAMETER ::   jpr_ocy1   = 38   !
   INTEGER, PARAMETER ::   jpr_ssh    = 39   ! sea surface height
   INTEGER, PARAMETER ::   jpr_fice   = 40   ! ice fraction
   INTEGER, PARAMETER ::   jpr_e3t1st = 41   ! first T level thickness
   INTEGER, PARAMETER ::   jpr_fraqsr = 42   ! fraction of solar net radiation absorbed in the first ocean level
   INTEGER, PARAMETER ::   jpr_mslp   = 43   ! mean sea level pressure
   !**  surface wave coupling  **
   INTEGER, PARAMETER ::   jpr_hsig   = 44   ! Hsig
   INTEGER, PARAMETER ::   jpr_phioc  = 45   ! Wave=>ocean energy flux
   INTEGER, PARAMETER ::   jpr_sdrftx = 46   ! Stokes drift on grid 1
   INTEGER, PARAMETER ::   jpr_sdrfty = 47   ! Stokes drift on grid 2
   INTEGER, PARAMETER ::   jpr_wper   = 48   ! Mean wave period
   INTEGER, PARAMETER ::   jpr_wnum   = 49   ! Mean wavenumber
   INTEGER, PARAMETER ::   jpr_wstrf  = 50   ! Stress fraction adsorbed by waves
   INTEGER, PARAMETER ::   jpr_wdrag  = 51   ! Neutral surface drag coefficient
   INTEGER, PARAMETER ::   jpr_charn  = 52   ! Chranock coefficient
   INTEGER, PARAMETER ::   jpr_twox   = 53   ! wave to ocean momentum flux
   INTEGER, PARAMETER ::   jpr_twoy   = 54   ! wave to ocean momentum flux
   INTEGER, PARAMETER ::   jpr_tawx   = 55   ! net wave-supported stress
   INTEGER, PARAMETER ::   jpr_tawy   = 56   ! net wave-supported stress
   INTEGER, PARAMETER ::   jpr_bhd    = 57   ! Bernoulli head. waves' induced surface pressure
   INTEGER, PARAMETER ::   jpr_tusd   = 58   ! zonal stokes transport
   INTEGER, PARAMETER ::   jpr_tvsd   = 59   ! meridional stokes tranmport
   INTEGER, PARAMETER ::   jpr_isf    = 60
   INTEGER, PARAMETER ::   jpr_icb    = 61
   INTEGER, PARAMETER ::   jpr_ts_ice = 62   ! Sea ice surface temp
   !!INTEGER, PARAMETER ::   jpr_qtrice = 63   ! Transmitted solar thru sea-ice
   INTEGER, PARAMETER ::   jpr_grnm   = 63   ! Greenland ice mass 
   INTEGER, PARAMETER ::   jpr_antm   = 64   ! Antarctic ice mass 
   INTEGER, PARAMETER ::   jpr_rnf_1d = 65   ! 1D river runoff 
   INTEGER, PARAMETER ::   jpr_qtr    = 66   ! Transmitted solar
#if defined key_medusa
   INTEGER, PARAMETER ::   jpr_atm_pco2 = 67 ! Incoming atm pCO2 flux
   INTEGER, PARAMETER ::   jpr_atm_dust = 68 ! Incoming atm aggregate dust
   INTEGER, PARAMETER ::   jprcv      = 69   ! total number of fields received
#else
   INTEGER, PARAMETER ::   jprcv      = 66   ! total number of fields received
#endif
Guillaume Samson's avatar
Guillaume Samson committed

   INTEGER, PARAMETER ::   jps_fice   =  1   ! ice fraction sent to the atmosphere
   INTEGER, PARAMETER ::   jps_toce   =  2   ! ocean temperature
   INTEGER, PARAMETER ::   jps_tice   =  3   ! ice   temperature
   INTEGER, PARAMETER ::   jps_tmix   =  4   ! mixed temperature (ocean+ice)
   INTEGER, PARAMETER ::   jps_albice =  5   ! ice   albedo
   INTEGER, PARAMETER ::   jps_albmix =  6   ! mixed albedo
   INTEGER, PARAMETER ::   jps_hice   =  7   ! ice  thickness
   INTEGER, PARAMETER ::   jps_hsnw   =  8   ! snow thickness
   INTEGER, PARAMETER ::   jps_ocx1   =  9   ! ocean current on grid 1
   INTEGER, PARAMETER ::   jps_ocy1   = 10   !
   INTEGER, PARAMETER ::   jps_ocz1   = 11   !
   INTEGER, PARAMETER ::   jps_ivx1   = 12   ! ice   current on grid 1
   INTEGER, PARAMETER ::   jps_ivy1   = 13   !
   INTEGER, PARAMETER ::   jps_ivz1   = 14   !
   INTEGER, PARAMETER ::   jps_co2    = 15
   INTEGER, PARAMETER ::   jps_soce   = 16   ! ocean salinity
   INTEGER, PARAMETER ::   jps_ssh    = 17   ! sea surface height
   INTEGER, PARAMETER ::   jps_qsroce = 18   ! Qsr above the ocean
   INTEGER, PARAMETER ::   jps_qnsoce = 19   ! Qns above the ocean
   INTEGER, PARAMETER ::   jps_oemp   = 20   ! ocean freshwater budget (evap - precip)
   INTEGER, PARAMETER ::   jps_sflx   = 21   ! salt flux
   INTEGER, PARAMETER ::   jps_otx1   = 22   ! 2 atmosphere-ocean stress components on grid 1
   INTEGER, PARAMETER ::   jps_oty1   = 23   !
   INTEGER, PARAMETER ::   jps_rnf    = 24   ! runoffs
   INTEGER, PARAMETER ::   jps_taum   = 25   ! wind stress module
   INTEGER, PARAMETER ::   jps_fice2  = 26   ! ice fraction sent to OCE (by SAS when doing SAS-OCE coupling)
   INTEGER, PARAMETER ::   jps_e3t1st = 27   ! first level depth (vvl)
   INTEGER, PARAMETER ::   jps_fraqsr = 28   ! fraction of solar net radiation absorbed in the first ocean level
   INTEGER, PARAMETER ::   jps_ficet  = 29   ! total ice fraction
   INTEGER, PARAMETER ::   jps_ocxw   = 30   ! currents on grid 1
   INTEGER, PARAMETER ::   jps_ocyw   = 31   ! currents on grid 2
   INTEGER, PARAMETER ::   jps_wlev   = 32   ! water level
   INTEGER, PARAMETER ::   jps_fice1  = 33   ! first-order ice concentration (for semi-implicit coupling of atmos-ice fluxes)
   INTEGER, PARAMETER ::   jps_a_p    = 34   ! meltpond area fraction
   INTEGER, PARAMETER ::   jps_ht_p   = 35   ! meltpond thickness
   INTEGER, PARAMETER ::   jps_kice   = 36   ! sea ice effective conductivity
   INTEGER, PARAMETER ::   jps_sstfrz = 37   ! sea surface freezing temperature
   INTEGER, PARAMETER ::   jps_ttilyr = 38   ! sea ice top layer temp
#if defined key_medusa
   INTEGER, PARAMETER ::   jps_bio_co2 = 39    ! MEDUSA air-sea CO2 flux
   INTEGER, PARAMETER ::   jps_bio_dms = 40    ! MEDUSA DMS surface concentration
   INTEGER, PARAMETER ::   jps_bio_chloro = 41 ! MEDUSA chlorophyll surface concentration

   INTEGER, PARAMETER ::   jpsnd      = 41   ! total number of fields sent 
#else
   INTEGER, PARAMETER ::   jpsnd      = 38   ! total number of fields sent 
Guillaume Samson's avatar
Guillaume Samson committed
#endif

#if ! defined key_oasis3 
   ! Dummy variables to enable compilation when oasis3 is not being used 
   INTEGER                    ::   OASIS_Sent        = -1 
   INTEGER                    ::   OASIS_SentOut     = -1 
   INTEGER                    ::   OASIS_ToRest      = -1 
   INTEGER                    ::   OASIS_ToRestOut   = -1 
#endif 

Guillaume Samson's avatar
Guillaume Samson committed
   !                                  !!** namelist namsbc_cpl **
   TYPE ::   FLD_C                     !
      CHARACTER(len = 32) ::   cldes      ! desciption of the coupling strategy
      CHARACTER(len = 32) ::   clcat      ! multiple ice categories strategy
      CHARACTER(len = 32) ::   clvref     ! reference of vector ('spherical' or 'cartesian')
      CHARACTER(len = 32) ::   clvor      ! orientation of vector fields ('eastward-northward' or 'local grid')
      CHARACTER(len = 32) ::   clvgrd     ! grids on which is located the vector fields
   END TYPE FLD_C
   !                                   ! Send to the atmosphere
   TYPE(FLD_C) ::   sn_snd_temp  , sn_snd_alb , sn_snd_thick, sn_snd_crt   , sn_snd_co2,  &
      &             sn_snd_thick1, sn_snd_cond, sn_snd_mpnd , sn_snd_sstfrz, sn_snd_ttilyr
   !                                   ! Received from the atmosphere
#if defined key_medusa
   TYPE(FLD_C) ::   sn_snd_bio_co2, sn_snd_bio_dms, sn_snd_bio_chloro
#endif
   TYPE(FLD_C) ::   sn_rcv_w10m, sn_rcv_taumod, sn_rcv_tau, sn_rcv_tauw, sn_rcv_dqnsdt, sn_rcv_qsr,  &
Guillaume Samson's avatar
Guillaume Samson committed
      &             sn_rcv_qns , sn_rcv_emp   , sn_rcv_rnf, sn_rcv_ts_ice
   TYPE(FLD_C) ::   sn_rcv_cal, sn_rcv_iceflx, sn_rcv_co2, sn_rcv_mslp, sn_rcv_icb, sn_rcv_isf,      &
                    sn_rcv_grnm, sn_rcv_antm
#if defined key_medusa
   TYPE(FLD_C) ::   sn_rcv_atm_pco2, sn_rcv_atm_dust
#endif
   ! Send to waves 
   TYPE(FLD_C) ::   sn_snd_ifrac, sn_snd_crtw, sn_snd_wlev 

Guillaume Samson's avatar
Guillaume Samson committed
   TYPE(FLD_C) ::   sn_rcv_hsig, sn_rcv_phioc, sn_rcv_sdrfx, sn_rcv_sdrfy, sn_rcv_wper, sn_rcv_wnum, &
      &             sn_rcv_wstrf, sn_rcv_wdrag, sn_rcv_charn, sn_rcv_taw, sn_rcv_bhd, sn_rcv_tusd, sn_rcv_tvsd

   ! Received from waves 
   TYPE(FLD_C) ::   sn_rcv_tauwoc, sn_rcv_wfreq
   ! Transmitted solar
   TYPE(FLD_C) ::   sn_rcv_qtr
Guillaume Samson's avatar
Guillaume Samson committed
   !                                   ! Other namelist parameters
!!   TYPE(FLD_C) ::   sn_rcv_qtrice
   INTEGER     ::   nn_cplmodel           ! Maximum number of models to/from which NEMO is potentialy sending/receiving data
   LOGICAL     ::   ln_usecplmask         !  use a coupling mask file to merge data received from several models
                                          !   -> file cplmask.nc with the float variable called cplmask (jpi,jpj,nn_cplmodel)
   LOGICAL     ::   ln_scale_ice_flux     !  use ice fluxes that are already "ice weighted" ( i.e. multiplied ice concentration)
   LOGICAL     ::   ln_couple_ocean_evap  ! Do we couple total (ocean+sea ice) evaporation (FALSE)
                                          ! or ocean only evaporation (TRUE)
Guillaume Samson's avatar
Guillaume Samson committed

   TYPE ::   DYNARR
      REAL(wp), POINTER, DIMENSION(:,:,:) ::   z3
   END TYPE DYNARR

   TYPE( DYNARR ), SAVE, DIMENSION(jprcv) ::   frcv                ! all fields recieved from the atmosphere

   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   alb_oce_mix    ! ocean albedo sent to atmosphere (mix clear/overcast sky)
Guillaume Samson's avatar
Guillaume Samson committed

   INTEGER , ALLOCATABLE, SAVE, DIMENSION(:) ::   nrcvinfo           ! OASIS info argument

   !! Substitution
#  include "do_loop_substitute.h90"
#  include "single_precision_substitute.h90"
Guillaume Samson's avatar
Guillaume Samson committed
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: sbccpl.F90 15551 2021-11-28 20:19:36Z gsamson $
Guillaume Samson's avatar
Guillaume Samson committed
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   INTEGER FUNCTION sbc_cpl_alloc()
      !!----------------------------------------------------------------------
      !!             ***  FUNCTION sbc_cpl_alloc  ***
      !!----------------------------------------------------------------------
      INTEGER :: ierr(4)
      !!----------------------------------------------------------------------
      ierr(:) = 0
      !
      ALLOCATE( alb_oce_mix(jpi,jpj), nrcvinfo(jprcv),  STAT=ierr(1) )

#if ! defined key_si3 && ! defined key_cice
      ALLOCATE( a_i(jpi,jpj,1) , STAT=ierr(2) )  ! used in sbcice_if.F90 (done here as there is no sbc_ice_if_init)
#endif
      ALLOCATE( xcplmask(jpi,jpj,0:nn_cplmodel) , STAT=ierr(3) )
      !
      IF( .NOT. ln_apr_dyn ) ALLOCATE( ssh_ib(jpi,jpj), ssh_ibb(jpi,jpj), apr(jpi, jpj), STAT=ierr(4) )

      sbc_cpl_alloc = MAXVAL( ierr )
      CALL mpp_sum ( 'sbccpl', sbc_cpl_alloc )
      IF( sbc_cpl_alloc > 0 )   CALL ctl_warn('sbc_cpl_alloc: allocation of arrays failed')
      !
   END FUNCTION sbc_cpl_alloc


   SUBROUTINE sbc_cpl_init( k_ice )
      !!----------------------------------------------------------------------
      !!             ***  ROUTINE sbc_cpl_init  ***
      !!
      !! ** Purpose :   Initialisation of send and received information from
      !!                the atmospheric component
      !!
      !! ** Method  : * Read namsbc_cpl namelist
      !!              * define the receive interface
      !!              * define the send    interface
      !!              * initialise the OASIS coupler
      !!----------------------------------------------------------------------
      INTEGER, INTENT(in) ::   k_ice   ! ice management in the sbc (=0/1/2/3)
      !
      INTEGER ::   jn          ! dummy loop index
      INTEGER ::   ios, inum   ! Local integer
      REAL(wp), DIMENSION(jpi,jpj) ::   zacs, zaos
      !!
      NAMELIST/namsbc_cpl/  nn_cplmodel  , ln_usecplmask, nn_cats_cpl , ln_scale_ice_flux,             &
         &                  ln_couple_ocean_evap,                                                      &
Guillaume Samson's avatar
Guillaume Samson committed
         &                  sn_snd_temp  , sn_snd_alb   , sn_snd_thick, sn_snd_crt   , sn_snd_co2   ,  &
         &                  sn_snd_ttilyr, sn_snd_cond  , sn_snd_mpnd , sn_snd_sstfrz, sn_snd_thick1,  &
         &                  sn_snd_ifrac , sn_snd_crtw  , sn_snd_wlev , sn_rcv_hsig  , sn_rcv_phioc ,  &
         &                  sn_rcv_w10m  , sn_rcv_taumod, sn_rcv_tau  , sn_rcv_dqnsdt, sn_rcv_qsr   ,  &
         &                  sn_rcv_sdrfx , sn_rcv_sdrfy , sn_rcv_wper , sn_rcv_wnum  , sn_rcv_wstrf ,  &
         &                  sn_rcv_charn , sn_rcv_taw   , sn_rcv_bhd  , sn_rcv_tusd  , sn_rcv_tvsd,    &
            sn_rcv_qtr   ,  &
Guillaume Samson's avatar
Guillaume Samson committed
         &                  sn_rcv_wdrag , sn_rcv_qns   , sn_rcv_emp  , sn_rcv_rnf   , sn_rcv_cal  ,   &
         &                  sn_rcv_iceflx, sn_rcv_co2   , sn_rcv_icb  , sn_rcv_isf   , sn_rcv_ts_ice,  & !!, sn_rcv_qtrice
         &                  sn_rcv_mslp, &
                            sn_rcv_grnm  , sn_rcv_antm  ,                               &
         &                  nn_coupled_iceshelf_fluxes  , ln_iceshelf_init_atmos ,                     &
         &                  rn_greenland_total_fw_flux  , rn_greenland_calving_fraction  ,             &
         &                  rn_antarctica_total_fw_flux , rn_antarctica_calving_fraction ,             &
#if defined key_medusa
         &                  rn_iceshelf_fluxes_tolerance,                                              &
                                                                !  Add MEDUSA related fields to namelist
                            sn_snd_bio_co2 , sn_snd_bio_dms, sn_snd_bio_chloro,                        &
         &                  sn_rcv_atm_pco2, sn_rcv_atm_dust
#else
         &                  rn_iceshelf_fluxes_tolerance
#endif

Guillaume Samson's avatar
Guillaume Samson committed

      !!---------------------------------------------------------------------
      !
      ! ================================ !
      !      Namelist informations       !
      ! ================================ !
      ! 
      IF (ln_timing) CALL timing_start('sbc_cpl_init')
Guillaume Samson's avatar
Guillaume Samson committed
      READ  ( numnam_ref, namsbc_cpl, IOSTAT = ios, ERR = 901)
901   IF( ios /= 0 )   CALL ctl_nam ( ios , 'namsbc_cpl in reference namelist' )
      !
      READ  ( numnam_cfg, namsbc_cpl, IOSTAT = ios, ERR = 902 )
902   IF( ios >  0 )   CALL ctl_nam ( ios , 'namsbc_cpl in configuration namelist' )
      IF(lwm) WRITE ( numond, namsbc_cpl )
      !
      IF(lwp) THEN                        ! control print
         WRITE(numout,*)
         WRITE(numout,*)'sbc_cpl_init : namsbc_cpl namelist '
         WRITE(numout,*)'~~~~~~~~~~~~'
      ENDIF
      IF( lwp .AND. ln_cpl ) THEN                        ! control print
         WRITE(numout,*)'  nn_cplmodel                         = ', nn_cplmodel
         WRITE(numout,*)'  ln_usecplmask                       = ', ln_usecplmask
         WRITE(numout,*)'  ln_scale_ice_flux                   = ', ln_scale_ice_flux
         WRITE(numout,*)'  ln_couple_ocean_evap                = ', ln_couple_ocean_evap
Guillaume Samson's avatar
Guillaume Samson committed
         WRITE(numout,*)'  nn_cats_cpl                         = ', nn_cats_cpl
         WRITE(numout,*)'  received fields (mutiple ice categogies)'
         WRITE(numout,*)'      10m wind module                 = ', TRIM(sn_rcv_w10m%cldes  ), ' (', TRIM(sn_rcv_w10m%clcat  ), ')'
         WRITE(numout,*)'      stress module                   = ', TRIM(sn_rcv_taumod%cldes), ' (', TRIM(sn_rcv_taumod%clcat), ')'
         WRITE(numout,*)'      surface stress                  = ', TRIM(sn_rcv_tau%cldes   ), ' (', TRIM(sn_rcv_tau%clcat   ), ')'
         WRITE(numout,*)'                     - referential    = ', sn_rcv_tau%clvref
         WRITE(numout,*)'                     - orientation    = ', sn_rcv_tau%clvor
         WRITE(numout,*)'                     - mesh           = ', sn_rcv_tau%clvgrd
         WRITE(numout,*)'      non-solar heat flux sensitivity = ', TRIM(sn_rcv_dqnsdt%cldes), ' (', TRIM(sn_rcv_dqnsdt%clcat), ')'
         WRITE(numout,*)'      solar heat flux                 = ', TRIM(sn_rcv_qsr%cldes   ), ' (', TRIM(sn_rcv_qsr%clcat   ), ')'
         WRITE(numout,*)'      non-solar heat flux             = ', TRIM(sn_rcv_qns%cldes   ), ' (', TRIM(sn_rcv_qns%clcat   ), ')'
         WRITE(numout,*)'      freshwater budget               = ', TRIM(sn_rcv_emp%cldes   ), ' (', TRIM(sn_rcv_emp%clcat   ), ')'
         WRITE(numout,*)'      runoffs                         = ', TRIM(sn_rcv_rnf%cldes   ), ' (', TRIM(sn_rcv_rnf%clcat   ), ')'
         WRITE(numout,*)'      calving                         = ', TRIM(sn_rcv_cal%cldes   ), ' (', TRIM(sn_rcv_cal%clcat   ), ')'
         WRITE(numout,*)'      Greenland ice mass              = ', TRIM(sn_rcv_grnm%cldes  ), ' (', TRIM(sn_rcv_grnm%clcat  ), ')' 
         WRITE(numout,*)'      Antarctica ice mass             = ', TRIM(sn_rcv_antm%cldes  ), ' (', TRIM(sn_rcv_antm%clcat  ), ')' 
Guillaume Samson's avatar
Guillaume Samson committed
         WRITE(numout,*)'      iceberg                         = ', TRIM(sn_rcv_icb%cldes   ), ' (', TRIM(sn_rcv_icb%clcat   ), ')'
         WRITE(numout,*)'      ice shelf                       = ', TRIM(sn_rcv_isf%cldes   ), ' (', TRIM(sn_rcv_isf%clcat   ), ')'
         WRITE(numout,*)'      sea ice heat fluxes             = ', TRIM(sn_rcv_iceflx%cldes), ' (', TRIM(sn_rcv_iceflx%clcat), ')'
         WRITE(numout,*)'      transmitted solar               = ', TRIM(sn_rcv_qtr%cldes   ), ' (', TRIM(sn_rcv_qtr%clcat   ), ')'
Guillaume Samson's avatar
Guillaume Samson committed
         WRITE(numout,*)'      atm co2                         = ', TRIM(sn_rcv_co2%cldes   ), ' (', TRIM(sn_rcv_co2%clcat   ), ')'
         WRITE(numout,*)'      Sea ice surface skin temperature= ', TRIM(sn_rcv_ts_ice%cldes), ' (', TRIM(sn_rcv_ts_ice%clcat), ')'
         WRITE(numout,*)'      surface waves:'
         WRITE(numout,*)'      significant wave heigth         = ', TRIM(sn_rcv_hsig%cldes  ), ' (', TRIM(sn_rcv_hsig%clcat  ), ')'
         WRITE(numout,*)'      wave to oce energy flux         = ', TRIM(sn_rcv_phioc%cldes ), ' (', TRIM(sn_rcv_phioc%clcat ), ')'
         WRITE(numout,*)'      Surface Stokes drift grid u     = ', TRIM(sn_rcv_sdrfx%cldes ), ' (', TRIM(sn_rcv_sdrfx%clcat ), ')'
         WRITE(numout,*)'      Surface Stokes drift grid v     = ', TRIM(sn_rcv_sdrfy%cldes ), ' (', TRIM(sn_rcv_sdrfy%clcat ), ')'
         WRITE(numout,*)'      Mean wave period                = ', TRIM(sn_rcv_wper%cldes  ), ' (', TRIM(sn_rcv_wper%clcat  ), ')'
         WRITE(numout,*)'      Mean wave number                = ', TRIM(sn_rcv_wnum%cldes  ), ' (', TRIM(sn_rcv_wnum%clcat  ), ')'
         WRITE(numout,*)'      Stress frac adsorbed by waves   = ', TRIM(sn_rcv_wstrf%cldes ), ' (', TRIM(sn_rcv_wstrf%clcat ), ')'
         WRITE(numout,*)'      Neutral surf drag coefficient   = ', TRIM(sn_rcv_wdrag%cldes ), ' (', TRIM(sn_rcv_wdrag%clcat ), ')'
         WRITE(numout,*)'      Charnock coefficient            = ', TRIM(sn_rcv_charn%cldes ), ' (', TRIM(sn_rcv_charn%clcat ), ')'
         WRITE(numout,*)'  sent fields (multiple ice categories)'
         WRITE(numout,*)'      surface temperature             = ', TRIM(sn_snd_temp%cldes  ), ' (', TRIM(sn_snd_temp%clcat  ), ')'
         WRITE(numout,*)'      top ice layer temperature       = ', TRIM(sn_snd_ttilyr%cldes), ' (', TRIM(sn_snd_ttilyr%clcat), ')'
         WRITE(numout,*)'      albedo                          = ', TRIM(sn_snd_alb%cldes   ), ' (', TRIM(sn_snd_alb%clcat   ), ')'
         WRITE(numout,*)'      ice/snow thickness              = ', TRIM(sn_snd_thick%cldes ), ' (', TRIM(sn_snd_thick%clcat ), ')'
         WRITE(numout,*)'      total ice fraction              = ', TRIM(sn_snd_ifrac%cldes ), ' (', TRIM(sn_snd_ifrac%clcat ), ')'
         WRITE(numout,*)'      surface current                 = ', TRIM(sn_snd_crt%cldes   ), ' (', TRIM(sn_snd_crt%clcat   ), ')'
         WRITE(numout,*)'                      - referential   = ', sn_snd_crt%clvref
         WRITE(numout,*)'                      - orientation   = ', sn_snd_crt%clvor
         WRITE(numout,*)'                      - mesh          = ', sn_snd_crt%clvgrd
#if defined key_medusa
         WRITE(numout,*)'      bio co2 flux                    = ', TRIM(sn_snd_bio_co2%cldes),' (', TRIM(sn_snd_bio_co2%clcat), ')'
         WRITE(numout,*)'      bio dms flux                    = ', TRIM(sn_snd_bio_dms%cldes),' (', TRIM(sn_snd_bio_dms%clcat), ')'
         WRITE(numout,*)'      bio dms chlorophyll             = ', TRIM(sn_snd_bio_chloro%cldes), ' (', TRIM(sn_snd_bio_chloro%clcat), ')'
#endif
Guillaume Samson's avatar
Guillaume Samson committed
         WRITE(numout,*)'      oce co2 flux                    = ', TRIM(sn_snd_co2%cldes   ), ' (', TRIM(sn_snd_co2%clcat   ), ')'
         WRITE(numout,*)'      ice effective conductivity      = ', TRIM(sn_snd_cond%cldes  ), ' (', TRIM(sn_snd_cond%clcat  ), ')'
         WRITE(numout,*)'      meltponds fraction and depth    = ', TRIM(sn_snd_mpnd%cldes  ), ' (', TRIM(sn_snd_mpnd%clcat  ), ')'
         WRITE(numout,*)'      sea surface freezing temp       = ', TRIM(sn_snd_sstfrz%cldes), ' (', TRIM(sn_snd_sstfrz%clcat), ')'
         WRITE(numout,*)'      water level                     = ', TRIM(sn_snd_wlev%cldes  ), ' (', TRIM(sn_snd_wlev%clcat  ), ')'
         WRITE(numout,*)'      mean sea level pressure         = ', TRIM(sn_rcv_mslp%cldes  ), ' (', TRIM(sn_rcv_mslp%clcat  ), ')'
         WRITE(numout,*)'      surface current to waves        = ', TRIM(sn_snd_crtw%cldes  ), ' (', TRIM(sn_snd_crtw%clcat  ), ')'
         WRITE(numout,*)'                      - referential   = ', sn_snd_crtw%clvref
         WRITE(numout,*)'                      - orientation   = ', sn_snd_crtw%clvor
         WRITE(numout,*)'                      - mesh          = ', sn_snd_crtw%clvgrd
#if defined key_medusa
         WRITE(numout,*)'      atm pco2                        = ', TRIM(sn_rcv_atm_pco2%cldes),'(', TRIM(sn_rcv_atm_pco2%clcat   ), ')'
         WRITE(numout,*)'      atm dust                        = ', TRIM(sn_rcv_atm_dust%cldes),'(', TRIM(sn_rcv_atm_dust%clcat),')'
#endif
          WRITE(numout,*)'  nn_coupled_iceshelf_fluxes          = ', nn_coupled_iceshelf_fluxes
         WRITE(numout,*)'  ln_iceshelf_init_atmos              = ', ln_iceshelf_init_atmos
         WRITE(numout,*)'  rn_greenland_total_fw_flux          = ', rn_greenland_total_fw_flux
         WRITE(numout,*)'  rn_antarctica_total_fw_flux         = ', rn_antarctica_total_fw_flux
         WRITE(numout,*)'  rn_greenland_calving_fraction       = ', rn_greenland_calving_fraction
         WRITE(numout,*)'  rn_antarctica_calving_fraction      = ', rn_antarctica_calving_fraction
         WRITE(numout,*)'  rn_iceshelf_fluxes_tolerance        = ', rn_iceshelf_fluxes_tolerance
Guillaume Samson's avatar
Guillaume Samson committed
      ENDIF
      IF( lwp .AND. ln_wave) THEN                        ! control print
      WRITE(numout,*)'      surface waves:'
         WRITE(numout,*)'      Significant wave heigth         = ', TRIM(sn_rcv_hsig%cldes  ), ' (', TRIM(sn_rcv_hsig%clcat  ), ')'
         WRITE(numout,*)'      Wave to oce energy flux         = ', TRIM(sn_rcv_phioc%cldes ), ' (', TRIM(sn_rcv_phioc%clcat ), ')'
         WRITE(numout,*)'      Surface Stokes drift grid u     = ', TRIM(sn_rcv_sdrfx%cldes ), ' (', TRIM(sn_rcv_sdrfx%clcat ), ')'
         WRITE(numout,*)'      Surface Stokes drift grid v     = ', TRIM(sn_rcv_sdrfy%cldes ), ' (', TRIM(sn_rcv_sdrfy%clcat ), ')'
         WRITE(numout,*)'      Mean wave period                = ', TRIM(sn_rcv_wper%cldes  ), ' (', TRIM(sn_rcv_wper%clcat  ), ')'
         WRITE(numout,*)'      Mean wave number                = ', TRIM(sn_rcv_wnum%cldes  ), ' (', TRIM(sn_rcv_wnum%clcat  ), ')'
         WRITE(numout,*)'      Stress frac adsorbed by waves   = ', TRIM(sn_rcv_wstrf%cldes ), ' (', TRIM(sn_rcv_wstrf%clcat ), ')'
         WRITE(numout,*)'      Neutral surf drag coefficient   = ', TRIM(sn_rcv_wdrag%cldes ), ' (', TRIM(sn_rcv_wdrag%clcat ), ')'
         WRITE(numout,*)'      Charnock coefficient            = ', TRIM(sn_rcv_charn%cldes ), ' (', TRIM(sn_rcv_charn%clcat ), ')'
         WRITE(numout,*)' Transport associated to Stokes drift grid u = ', TRIM(sn_rcv_tusd%cldes ), ' (', TRIM(sn_rcv_tusd%clcat ), ')'
         WRITE(numout,*)' Transport associated to Stokes drift grid v = ', TRIM(sn_rcv_tvsd%cldes ), ' (', TRIM(sn_rcv_tvsd%clcat ), ')'
         WRITE(numout,*)'      Bernouilli pressure head        = ', TRIM(sn_rcv_bhd%cldes   ), ' (', TRIM(sn_rcv_bhd%clcat  ), ')'
         WRITE(numout,*)'Wave to ocean momentum flux and Net wave-supported stress = ', TRIM(sn_rcv_taw%cldes ), ' (', TRIM(sn_rcv_taw%clcat ), ')'
         WRITE(numout,*)'      Surface current to waves        = ', TRIM(sn_snd_crtw%cldes  ), ' (', TRIM(sn_snd_crtw%clcat  ), ')'
         WRITE(numout,*)'                      - referential   = ', sn_snd_crtw%clvref
         WRITE(numout,*)'                      - orientation   = ', sn_snd_crtw%clvor
         WRITE(numout,*)'                      - mesh          = ', sn_snd_crtw%clvgrd
      ENDIF
      !                                   ! allocate sbccpl arrays
      IF( sbc_cpl_alloc() /= 0 )   CALL ctl_stop( 'STOP', 'sbc_cpl_alloc : unable to allocate arrays' )

      ! ================================ !
      !   Define the receive interface   !
      ! ================================ !
      nrcvinfo(:) = OASIS_idle   ! needed by nrcvinfo(jpr_otx1) if we do not receive ocean stress

      ! for each field: define the OASIS name                              (srcv(:)%clname)
      !                 define receive or not from the namelist parameters (srcv(:)%laction)
      !                 define the north fold type of lbc                  (srcv(:)%nsgn)

      ! default definitions of srcv
      srcv(:)%laction = .FALSE. 
      srcv(:)%clgrid = 'T' 
      srcv(:)%nsgn = 1. 
      srcv(:)%nct = 1 
      srcv(:)%dimensions = 2 
Guillaume Samson's avatar
Guillaume Samson committed

      !                                                      ! ------------------------- !
      !                                                      ! ice and ocean wind stress !
      !                                                      ! ------------------------- !
      !                                                           ! Name
      srcv(jpr_otx1)%clname = 'O_OTaux1'      ! 1st ocean component on grid ONE (T or U)
      srcv(jpr_oty1)%clname = 'O_OTauy1'      ! 2nd   -      -         -     -
      srcv(jpr_otz1)%clname = 'O_OTauz1'      ! 3rd   -      -         -     -
      srcv(jpr_otx2)%clname = 'O_OTaux2'      ! 1st ocean component on grid TWO (V)
      srcv(jpr_oty2)%clname = 'O_OTauy2'      ! 2nd   -      -         -     -
      srcv(jpr_otz2)%clname = 'O_OTauz2'      ! 3rd   -      -         -     -
      !
      srcv(jpr_itx1)%clname = 'O_ITaux1'      ! 1st  ice  component on grid ONE (T, F, I or U)
      srcv(jpr_ity1)%clname = 'O_ITauy1'      ! 2nd   -      -         -     -
      srcv(jpr_itz1)%clname = 'O_ITauz1'      ! 3rd   -      -         -     -
      srcv(jpr_itx2)%clname = 'O_ITaux2'      ! 1st  ice  component on grid TWO (V)
      srcv(jpr_ity2)%clname = 'O_ITauy2'      ! 2nd   -      -         -     -
      srcv(jpr_itz2)%clname = 'O_ITauz2'      ! 3rd   -      -         -     -
      !
      ! Vectors: change of sign at north fold ONLY if on the local grid
      IF(       TRIM( sn_rcv_tau%cldes ) == 'oce only' .OR. TRIM( sn_rcv_tau%cldes ) == 'oce and ice'  &
           .OR. TRIM( sn_rcv_tau%cldes ) == 'mixed oce-ice' ) THEN ! avoid working with the atmospheric fields if they are not coupled
      !
      IF( TRIM( sn_rcv_tau%clvor ) == 'local grid' )   srcv(jpr_otx1:jpr_itz2)%nsgn = -1.

      !                                                           ! Set grid and action
      SELECT CASE( TRIM( sn_rcv_tau%clvgrd ) )      !  'T', 'U,V', 'U,V,I', 'U,V,F', 'T,I', 'T,F', or 'T,U,V'
      CASE( 'T' )
         srcv(jpr_otx1:jpr_itz2)%clgrid  = 'T'        ! oce and ice components given at T-point
         srcv(jpr_otx1:jpr_otz1)%laction = .TRUE.     ! receive oce components on grid 1
         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1
      CASE( 'U,V' )
         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'U'        ! oce components given at U-point
         srcv(jpr_otx2:jpr_otz2)%clgrid  = 'V'        !           and           V-point
         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'U'        ! ice components given at U-point
         srcv(jpr_itx2:jpr_itz2)%clgrid  = 'V'        !           and           V-point
         srcv(jpr_otx1:jpr_itz2)%laction = .TRUE.     ! receive oce and ice components on both grid 1 & 2
      CASE( 'U,V,T' )
         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'U'        ! oce components given at U-point
         srcv(jpr_otx2:jpr_otz2)%clgrid  = 'V'        !           and           V-point
         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'T'        ! ice components given at T-point
         srcv(jpr_otx1:jpr_otz2)%laction = .TRUE.     ! receive oce components on grid 1 & 2
         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1 only
      CASE( 'U,V,I' )
         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'U'        ! oce components given at U-point
         srcv(jpr_otx2:jpr_otz2)%clgrid  = 'V'        !           and           V-point
         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'I'        ! ice components given at I-point
         srcv(jpr_otx1:jpr_otz2)%laction = .TRUE.     ! receive oce components on grid 1 & 2
         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1 only
      CASE( 'U,V,F' )
         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'U'        ! oce components given at U-point
         srcv(jpr_otx2:jpr_otz2)%clgrid  = 'V'        !           and           V-point
         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'F'        ! ice components given at F-point
         !srcv(jpr_otx1:jpr_otz2)%laction = .TRUE.     ! receive oce components on grid 1 & 2
 	 ! Currently needed for HadGEM3 - but shouldn't affect anyone else for the moment
         srcv(jpr_otx1)%laction = .TRUE.
         srcv(jpr_oty1)%laction = .TRUE.
         !
Guillaume Samson's avatar
Guillaume Samson committed
         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1 only
      CASE( 'T,I' )
         srcv(jpr_otx1:jpr_itz2)%clgrid  = 'T'        ! oce and ice components given at T-point
         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'I'        ! ice components given at I-point
         srcv(jpr_otx1:jpr_otz1)%laction = .TRUE.     ! receive oce components on grid 1
         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1
      CASE( 'T,F' )
         srcv(jpr_otx1:jpr_itz2)%clgrid  = 'T'        ! oce and ice components given at T-point
         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'F'        ! ice components given at F-point
         srcv(jpr_otx1:jpr_otz1)%laction = .TRUE.     ! receive oce components on grid 1
         srcv(jpr_itx1:jpr_itz1)%laction = .TRUE.     ! receive ice components on grid 1
      CASE( 'T,U,V' )
         srcv(jpr_otx1:jpr_otz1)%clgrid  = 'T'        ! oce components given at T-point
         srcv(jpr_itx1:jpr_itz1)%clgrid  = 'U'        ! ice components given at U-point
         srcv(jpr_itx2:jpr_itz2)%clgrid  = 'V'        !           and           V-point
         srcv(jpr_otx1:jpr_otz1)%laction = .TRUE.     ! receive oce components on grid 1 only
         srcv(jpr_itx1:jpr_itz2)%laction = .TRUE.     ! receive ice components on grid 1 & 2
      CASE default
         CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_tau%clvgrd' )
      END SELECT
      !
      IF( TRIM( sn_rcv_tau%clvref ) == 'spherical' )   &           ! spherical: 3rd component not received
         &     srcv( (/jpr_otz1, jpr_otz2, jpr_itz1, jpr_itz2/) )%laction = .FALSE.
      !
      IF( TRIM( sn_rcv_tau%clvor  ) == 'local grid' ) THEN        ! already on local grid -> no need of the second grid
            srcv(jpr_otx2:jpr_otz2)%laction = .FALSE.
            srcv(jpr_itx2:jpr_itz2)%laction = .FALSE.
            srcv(jpr_oty1)%clgrid = srcv(jpr_oty2)%clgrid   ! not needed but cleaner...
            srcv(jpr_ity1)%clgrid = srcv(jpr_ity2)%clgrid   ! not needed but cleaner...
      ENDIF
      !
      IF( TRIM( sn_rcv_tau%cldes ) /= 'oce and ice' ) THEN        ! 'oce and ice' case ocean stress on ocean mesh used
         srcv(jpr_itx1:jpr_itz2)%laction = .FALSE.    ! ice components not received
         srcv(jpr_itx1)%clgrid = 'U'                  ! ocean stress used after its transformation
         srcv(jpr_ity1)%clgrid = 'V'                  ! i.e. it is always at U- & V-points for i- & j-comp. resp.
      ENDIF
      ENDIF

      !                                                      ! ------------------------- !
      !                                                      !    freshwater budget      !   E-P
      !                                                      ! ------------------------- !
      ! we suppose that atmosphere modele do not make the difference between precipiration (liquide or solid)
      ! over ice of free ocean within the same atmospheric cell.cd
      srcv(jpr_rain)%clname = 'OTotRain'      ! Rain = liquid precipitation
      srcv(jpr_snow)%clname = 'OTotSnow'      ! Snow = solid precipitation
      srcv(jpr_tevp)%clname = 'OTotEvap'      ! total evaporation (over oce + ice sublimation)
      srcv(jpr_ievp)%clname = 'OIceEvap'      ! evaporation over ice = sublimation
      srcv(jpr_sbpr)%clname = 'OSubMPre'      ! sublimation - liquid precipitation - solid precipitation
      srcv(jpr_semp)%clname = 'OISubMSn'      ! ice solid water budget = sublimation - solid precipitation
      srcv(jpr_oemp)%clname = 'OOEvaMPr'      ! ocean water budget = ocean Evap - ocean precip
      SELECT CASE( TRIM( sn_rcv_emp%cldes ) )
      CASE( 'none'          )       ! nothing to do
      CASE( 'oce only'      )   ;   srcv(jpr_oemp)%laction = .TRUE.
      CASE( 'conservative'  )
         srcv( (/jpr_rain, jpr_snow, jpr_ievp, jpr_tevp/) )%laction = .TRUE.
         IF( k_ice <= 1 )  srcv(jpr_ievp)%laction = .FALSE.
      CASE( 'oce and ice'   )   ;   srcv( (/jpr_ievp, jpr_sbpr, jpr_semp, jpr_oemp/) )%laction = .TRUE.
      CASE default              ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_emp%cldes' )
      END SELECT
      !
      !                                                      ! ------------------------- !
      !                                                      !     Runoffs & Calving     !
      !                                                      ! ------------------------- !
      srcv(jpr_rnf   )%clname = 'O_Runoff'
      srcv(jpr_rnf_1d   )%clname = 'ORunff1D' 
      IF( TRIM( sn_rcv_rnf%cldes ) == 'coupled' .OR. TRIM( sn_rcv_rnf%cldes ) == 'coupled1d' ) THEN  
         IF( TRIM( sn_rcv_rnf%cldes ) == 'coupled' ) srcv(jpr_rnf)%laction = .TRUE. 
         IF( TRIM( sn_rcv_rnf%cldes ) == 'coupled1d' ) THEN 
            srcv(jpr_rnf_1d)%laction = .TRUE. 
            srcv(jpr_rnf_1d)%dimensions = 1 ! 1D field passed through coupler 
         END IF 
Guillaume Samson's avatar
Guillaume Samson committed
         l_rnfcpl              = .TRUE.                      ! -> no need to read runoffs in sbcrnf
         ln_rnf                = nn_components /= jp_iam_sas ! -> force to go through sbcrnf if not sas
         IF(lwp) WRITE(numout,*)
         IF(lwp) WRITE(numout,*) '   runoffs received from oasis -> force ln_rnf = ', ln_rnf
      ENDIF
      !
      srcv(jpr_cal   )%clname = 'OCalving'    
      IF( TRIM( sn_rcv_cal%cldes ) == 'coupled' )   srcv(jpr_cal)%laction = .TRUE.      
 
      srcv(jpr_grnm  )%clname = 'OGrnmass'  
      IF( TRIM( sn_rcv_grnm%cldes ) == 'coupled' ) THEN 
         srcv(jpr_grnm)%laction = .TRUE.  
         srcv(jpr_grnm)%dimensions = 0 ! Scalar field
      ENDIF 
       
      srcv(jpr_antm  )%clname = 'OAntmass' 
      IF( TRIM( sn_rcv_antm%cldes ) == 'coupled' ) THEN
         srcv(jpr_antm)%laction = .TRUE.
         srcv(jpr_antm)%dimensions = 0 ! Scalar field
      ENDIF

Guillaume Samson's avatar
Guillaume Samson committed
      srcv(jpr_isf)%clname = 'OIcshelf'   ;  IF( TRIM( sn_rcv_isf%cldes) == 'coupled' )   srcv(jpr_isf)%laction = .TRUE.
      srcv(jpr_icb)%clname = 'OIceberg'   ;  IF( TRIM( sn_rcv_icb%cldes) == 'coupled' )   srcv(jpr_icb)%laction = .TRUE.

      IF( srcv(jpr_isf)%laction ) THEN
         l_isfoasis = .TRUE.  ! -> isf fwf comes from oasis
         IF(lwp) WRITE(numout,*)
         IF(lwp) WRITE(numout,*) '   iceshelf received from oasis '
      ENDIF
      !
      !
      !                                                      ! ------------------------- !
      !                                                      !    non solar radiation    !   Qns
      !                                                      ! ------------------------- !
      srcv(jpr_qnsoce)%clname = 'O_QnsOce'
      srcv(jpr_qnsice)%clname = 'O_QnsIce'
      srcv(jpr_qnsmix)%clname = 'O_QnsMix'
      SELECT CASE( TRIM( sn_rcv_qns%cldes ) )
      CASE( 'none'          )       ! nothing to do
      CASE( 'oce only'      )   ;   srcv(               jpr_qnsoce   )%laction = .TRUE.
      CASE( 'conservative'  )   ;   srcv( (/jpr_qnsice, jpr_qnsmix/) )%laction = .TRUE.
      CASE( 'oce and ice'   )   ;   srcv( (/jpr_qnsice, jpr_qnsoce/) )%laction = .TRUE.
      CASE( 'mixed oce-ice' )   ;   srcv(               jpr_qnsmix   )%laction = .TRUE.
      CASE default              ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_qns%cldes' )
      END SELECT
      IF( TRIM( sn_rcv_qns%cldes ) == 'mixed oce-ice' .AND. nn_cats_cpl > 1 ) &
         CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qns%cldes not currently allowed to be mixed oce-ice for multi-category ice' )
      !
      !                                                      ! ------------------------- !
      !                                                      !    solar radiation        !   Qsr
      !                                                      ! ------------------------- !
      srcv(jpr_qsroce)%clname = 'O_QsrOce'
      srcv(jpr_qsrice)%clname = 'O_QsrIce'
      srcv(jpr_qsrmix)%clname = 'O_QsrMix'
      SELECT CASE( TRIM( sn_rcv_qsr%cldes ) )
      CASE( 'none'          )       ! nothing to do
      CASE( 'oce only'      )   ;   srcv(               jpr_qsroce   )%laction = .TRUE.
      CASE( 'conservative'  )   ;   srcv( (/jpr_qsrice, jpr_qsrmix/) )%laction = .TRUE.
      CASE( 'oce and ice'   )   ;   srcv( (/jpr_qsrice, jpr_qsroce/) )%laction = .TRUE.
      CASE( 'mixed oce-ice' )   ;   srcv(               jpr_qsrmix   )%laction = .TRUE.
      CASE default              ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_qsr%cldes' )
      END SELECT
      IF( TRIM( sn_rcv_qsr%cldes ) == 'mixed oce-ice' .AND. nn_cats_cpl > 1 ) &
         CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qsr%cldes not currently allowed to be mixed oce-ice for multi-category ice' )
      !
      !                                                      ! ------------------------- !
      !                                                      !   non solar sensitivity   !   d(Qns)/d(T)
      !                                                      ! ------------------------- !
      srcv(jpr_dqnsdt)%clname = 'O_dQnsdT'
      IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'coupled' )   srcv(jpr_dqnsdt)%laction = .TRUE.
      !
      ! non solar sensitivity mandatory for mixed oce-ice solar radiation coupling technique
      IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'none' .AND. TRIM( sn_rcv_qns%cldes ) == 'mixed oce-ice' )  &
         &   CALL ctl_stop( 'sbc_cpl_init: namsbc_cpl namelist mismatch between sn_rcv_qns%cldes and sn_rcv_dqnsdt%cldes' )
      !
      !                                                      ! ------------------------- !
      !                                                      !      10m wind module      !
      !                                                      ! ------------------------- !
      srcv(jpr_w10m)%clname = 'O_Wind10'   ;   IF( TRIM(sn_rcv_w10m%cldes  ) == 'coupled' )   srcv(jpr_w10m)%laction = .TRUE.
      !
      !                                                      ! ------------------------- !
      !                                                      !   wind stress module      !
      !                                                      ! ------------------------- !
      srcv(jpr_taum)%clname = 'O_TauMod'   ;   IF( TRIM(sn_rcv_taumod%cldes) == 'coupled' )   srcv(jpr_taum)%laction = .TRUE.
      !
      !                                                      ! ------------------------- !
      !                                                      !      Atmospheric CO2      !
      !                                                      ! ------------------------- !
      srcv(jpr_co2 )%clname = 'O_AtmCO2'
      IF( TRIM(sn_rcv_co2%cldes   ) == 'coupled' )  THEN
         srcv(jpr_co2 )%laction = .TRUE.
         l_co2cpl = .TRUE.
         IF(lwp) WRITE(numout,*)
         IF(lwp) WRITE(numout,*) '   Atmospheric pco2 received from oasis '
         IF(lwp) WRITE(numout,*)
      ENDIF

#if defined key_medusa   
      !                                                      ! --------------------------------------- !
      !                                                      ! Incoming CO2 and DUST fluxes for MEDUSA !
      !                                                      ! --------------------------------------- !
      srcv(jpr_atm_pco2)%clname = 'OATMPCO2'
      IF (TRIM(sn_rcv_atm_pco2%cldes) == 'medusa') THEN
        srcv(jpr_atm_pco2)%laction = .TRUE.
      END IF

      srcv(jpr_atm_dust)%clname = 'OATMDUST'
      IF (TRIM(sn_rcv_atm_dust%cldes) == 'medusa')  THEN
        srcv(jpr_atm_dust)%laction = .TRUE.
      END IF
#endif

Guillaume Samson's avatar
Guillaume Samson committed
      !
      !                                                      ! ------------------------- !
      !                                                      ! Mean Sea Level Pressure   !
      !                                                      ! ------------------------- !
      srcv(jpr_mslp)%clname = 'O_MSLP'     ;   IF( TRIM(sn_rcv_mslp%cldes  ) == 'coupled' )    srcv(jpr_mslp)%laction = .TRUE.
      !
      !                                                      ! --------------------------------- !
      !                                                      !  ice topmelt and conduction flux  !   
      !                                                      ! --------------------------------- !
      srcv(jpr_topm )%clname = 'OTopMlt'
      srcv(jpr_botm )%clname = 'OBotMlt'
      IF( TRIM(sn_rcv_iceflx%cldes) == 'coupled' ) THEN
         IF( TRIM( sn_rcv_iceflx%clcat ) == 'yes' ) THEN
            srcv(jpr_topm:jpr_botm)%nct = nn_cats_cpl
         ELSE
            CALL ctl_stop( 'sbc_cpl_init: sn_rcv_iceflx%clcat should always be set to yes currently' )
         ENDIF
         srcv(jpr_topm:jpr_botm)%laction = .TRUE.
      ENDIF
!!      !                                                      ! --------------------------- !
!!      !                                                      ! transmitted solar thru ice  !   
!!      !                                                      ! --------------------------- !
!!      srcv(jpr_qtrice)%clname = 'OQtr'
!!      IF( TRIM(sn_rcv_qtrice%cldes) == 'coupled' ) THEN
!!         IF ( TRIM( sn_rcv_qtrice%clcat ) == 'yes' ) THEN
!!            srcv(jpr_qtrice)%nct = nn_cats_cpl
!!         ELSE
!!           CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qtrice%clcat should always be set to yes currently' )
!!         ENDIF
!!         srcv(jpr_qtrice)%laction = .TRUE.
!!      ENDIF

      !                                                      ! ------------------------- !
      !                                                      !    transmitted solar      !   
      !                                                      ! ------------------------- !
      srcv(jpr_qtr )%clname = 'OQtr'
      IF( TRIM(sn_rcv_qtr%cldes) == 'coupled' ) THEN
         IF ( TRIM( sn_rcv_qtr%clcat ) == 'yes' ) THEN
            srcv(jpr_qtr)%nct = nn_cats_cpl
         ELSE
            CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qtr%clcat should always be set to yes currently' )
         ENDIF
         srcv(jpr_qtr)%laction = .TRUE.
      ENDIF


Guillaume Samson's avatar
Guillaume Samson committed
      !                                                      ! ------------------------- !
      !                                                      !    ice skin temperature   !
      !                                                      ! ------------------------- !
      srcv(jpr_ts_ice)%clname = 'OTsfIce'    ! needed by Met Office
      IF( TRIM( sn_rcv_ts_ice%cldes ) == 'ice' )   srcv(jpr_ts_ice)%laction = .TRUE.
      IF( TRIM( sn_rcv_ts_ice%clcat ) == 'yes' )   srcv(jpr_ts_ice)%nct     = nn_cats_cpl
      IF( TRIM( sn_rcv_emp%clcat    ) == 'yes' )   srcv(jpr_ievp)%nct       = nn_cats_cpl

#if defined key_si3
      IF( ln_cndflx .AND. .NOT.ln_cndemulate ) THEN
         IF( .NOT.srcv(jpr_ts_ice)%laction )  &
            &   CALL ctl_stop( 'sbc_cpl_init: srcv(jpr_ts_ice)%laction should be set to true when ln_cndflx=T' )
      ENDIF
#endif
      !                                                      ! ------------------------- !
      !                                                      !      Wave breaking        !
      !                                                      ! ------------------------- !
      srcv(jpr_hsig)%clname  = 'O_Hsigwa'    ! significant wave height
      IF( TRIM(sn_rcv_hsig%cldes  ) == 'coupled' )  THEN
         srcv(jpr_hsig)%laction = .TRUE.
         cpl_hsig = .TRUE.
      ENDIF
      srcv(jpr_phioc)%clname = 'O_PhiOce'    ! wave to ocean energy
      IF( TRIM(sn_rcv_phioc%cldes ) == 'coupled' )  THEN
         srcv(jpr_phioc)%laction = .TRUE.
         cpl_phioc = .TRUE.
      ENDIF
      srcv(jpr_sdrftx)%clname = 'O_Sdrfx'    ! Stokes drift in the u direction
      IF( TRIM(sn_rcv_sdrfx%cldes ) == 'coupled' )  THEN
         srcv(jpr_sdrftx)%laction = .TRUE.
         cpl_sdrftx = .TRUE.
      ENDIF
      srcv(jpr_sdrfty)%clname = 'O_Sdrfy'    ! Stokes drift in the v direction
      IF( TRIM(sn_rcv_sdrfy%cldes ) == 'coupled' )  THEN
         srcv(jpr_sdrfty)%laction = .TRUE.
         cpl_sdrfty = .TRUE.
      ENDIF
      srcv(jpr_wper)%clname = 'O_WPer'       ! mean wave period
      IF( TRIM(sn_rcv_wper%cldes  ) == 'coupled' )  THEN
         srcv(jpr_wper)%laction = .TRUE.
         cpl_wper = .TRUE.
      ENDIF
      srcv(jpr_wnum)%clname = 'O_WNum'       ! mean wave number
      IF( TRIM(sn_rcv_wnum%cldes ) == 'coupled' )  THEN
         srcv(jpr_wnum)%laction = .TRUE.
         cpl_wnum = .TRUE.
      ENDIF
      srcv(jpr_wstrf)%clname = 'O_WStrf'     ! stress fraction adsorbed by the wave
      IF( TRIM(sn_rcv_wstrf%cldes ) == 'coupled' )  THEN
         srcv(jpr_wstrf)%laction = .TRUE.
         cpl_wstrf = .TRUE.
      ENDIF
      srcv(jpr_wdrag)%clname = 'O_WDrag'     ! neutral surface drag coefficient
      IF( TRIM(sn_rcv_wdrag%cldes ) == 'coupled' )  THEN
         srcv(jpr_wdrag)%laction = .TRUE.
         cpl_wdrag = .TRUE.
      ENDIF
      srcv(jpr_charn)%clname = 'O_Charn'     ! Chranock coefficient
      IF( TRIM(sn_rcv_charn%cldes ) == 'coupled' )  THEN
         srcv(jpr_charn)%laction = .TRUE.
         cpl_charn = .TRUE.
      ENDIF
      srcv(jpr_bhd)%clname = 'O_Bhd'     ! Bernoulli head. waves' induced surface pressure
      IF( TRIM(sn_rcv_bhd%cldes ) == 'coupled' )  THEN
         srcv(jpr_bhd)%laction = .TRUE.
         cpl_bhd = .TRUE.
      ENDIF
      srcv(jpr_tusd)%clname = 'O_Tusd'     ! zonal stokes transport
      IF( TRIM(sn_rcv_tusd%cldes ) == 'coupled' )  THEN
         srcv(jpr_tusd)%laction = .TRUE.
         cpl_tusd = .TRUE.
      ENDIF
      srcv(jpr_tvsd)%clname = 'O_Tvsd'     ! meridional stokes tranmport
      IF( TRIM(sn_rcv_tvsd%cldes ) == 'coupled' )  THEN
         srcv(jpr_tvsd)%laction = .TRUE.
         cpl_tvsd = .TRUE.
      ENDIF

      srcv(jpr_twox)%clname = 'O_Twox'     ! wave to ocean momentum flux in the u direction
      srcv(jpr_twoy)%clname = 'O_Twoy'     ! wave to ocean momentum flux in the v direction
      srcv(jpr_tawx)%clname = 'O_Tawx'     ! Net wave-supported stress in the u direction
      srcv(jpr_tawy)%clname = 'O_Tawy'     ! Net wave-supported stress in the v direction
      IF( TRIM(sn_rcv_taw%cldes ) == 'coupled' )  THEN
         srcv(jpr_twox)%laction = .TRUE.
         srcv(jpr_twoy)%laction = .TRUE.
         srcv(jpr_tawx)%laction = .TRUE.
         srcv(jpr_tawy)%laction = .TRUE.
         cpl_taw = .TRUE.
      ENDIF
      !
      !                                                      ! ------------------------------- !
      !                                                      !   OCE-SAS coupling - rcv by opa !
      !                                                      ! ------------------------------- !
      srcv(jpr_sflx)%clname = 'O_SFLX'
      srcv(jpr_fice)%clname = 'RIceFrc'
      !
      IF( nn_components == jp_iam_oce ) THEN    ! OCE coupled to SAS via OASIS: force received field by OCE (sent by SAS)
         srcv(:)%laction = .FALSE.   ! force default definition in case of opa <-> sas coupling
         srcv(:)%clgrid  = 'T'       ! force default definition in case of opa <-> sas coupling
         srcv(:)%nsgn    = 1.        ! force default definition in case of opa <-> sas coupling
         srcv( (/jpr_qsroce, jpr_qnsoce, jpr_oemp, jpr_sflx, jpr_fice, jpr_otx1, jpr_oty1, jpr_taum/) )%laction = .TRUE.
         srcv(jpr_otx1)%clgrid = 'U'        ! oce components given at U-point
         srcv(jpr_oty1)%clgrid = 'V'        !           and           V-point
         ! Vectors: change of sign at north fold ONLY if on the local grid
         srcv( (/jpr_otx1,jpr_oty1/) )%nsgn = -1.
         sn_rcv_tau%clvgrd = 'U,V'
         sn_rcv_tau%clvor = 'local grid'
         sn_rcv_tau%clvref = 'spherical'
         sn_rcv_emp%cldes = 'oce only'
         !
         IF(lwp) THEN                        ! control print
            WRITE(numout,*)
            WRITE(numout,*)'               Special conditions for SAS-OCE coupling  '
            WRITE(numout,*)'               OCE component  '
            WRITE(numout,*)
            WRITE(numout,*)'  received fields from SAS component '
            WRITE(numout,*)'                  ice cover '
            WRITE(numout,*)'                  oce only EMP  '
            WRITE(numout,*)'                  salt flux  '
            WRITE(numout,*)'                  mixed oce-ice solar flux  '
            WRITE(numout,*)'                  mixed oce-ice non solar flux  '
            WRITE(numout,*)'                  wind stress U,V on local grid and sperical coordinates '
            WRITE(numout,*)'                  wind stress module'
            WRITE(numout,*)
         ENDIF
      ENDIF
      !                                                      ! -------------------------------- !
      !                                                      !   OCE-SAS coupling - rcv by sas  !
      !                                                      ! -------------------------------- !
      srcv(jpr_toce  )%clname = 'I_SSTSST'
      srcv(jpr_soce  )%clname = 'I_SSSal'
      srcv(jpr_ocx1  )%clname = 'I_OCurx1'
      srcv(jpr_ocy1  )%clname = 'I_OCury1'
      srcv(jpr_ssh   )%clname = 'I_SSHght'
      srcv(jpr_e3t1st)%clname = 'I_E3T1st'
      srcv(jpr_fraqsr)%clname = 'I_FraQsr'
      !
      IF( nn_components == jp_iam_sas ) THEN
         IF( .NOT. ln_cpl ) srcv(:)%laction = .FALSE.   ! force default definition in case of opa <-> sas coupling
         IF( .NOT. ln_cpl ) srcv(:)%clgrid  = 'T'       ! force default definition in case of opa <-> sas coupling
         IF( .NOT. ln_cpl ) srcv(:)%nsgn    = 1.        ! force default definition in case of opa <-> sas coupling
         srcv( (/jpr_toce, jpr_soce, jpr_ssh, jpr_fraqsr, jpr_ocx1, jpr_ocy1/) )%laction = .TRUE.
         srcv( jpr_e3t1st )%laction = .NOT.ln_linssh
         srcv(jpr_ocx1)%clgrid = 'U'        ! oce components given at U-point
         srcv(jpr_ocy1)%clgrid = 'V'        !           and           V-point
         ! Vectors: change of sign at north fold ONLY if on the local grid
         srcv(jpr_ocx1:jpr_ocy1)%nsgn = -1.
         ! Change first letter to couple with atmosphere if already coupled OCE
         ! this is nedeed as each variable name used in the namcouple must be unique:
         ! for example O_Runoff received by OCE from SAS and therefore S_Runoff received by SAS from the Atmosphere
         DO jn = 1, jprcv
            IF( srcv(jn)%clname(1:1) == "O" ) srcv(jn)%clname = "S"//srcv(jn)%clname(2:LEN(srcv(jn)%clname))
         END DO
         !
         IF(lwp) THEN                        ! control print
            WRITE(numout,*)
            WRITE(numout,*)'               Special conditions for SAS-OCE coupling  '
            WRITE(numout,*)'               SAS component  '
            WRITE(numout,*)
            IF( .NOT. ln_cpl ) THEN
               WRITE(numout,*)'  received fields from OCE component '
            ELSE
               WRITE(numout,*)'  Additional received fields from OCE component : '
            ENDIF
            WRITE(numout,*)'               sea surface temperature (Celsius) '
            WRITE(numout,*)'               sea surface salinity '
            WRITE(numout,*)'               surface currents '
            WRITE(numout,*)'               sea surface height '
            WRITE(numout,*)'               thickness of first ocean T level '
            WRITE(numout,*)'               fraction of solar net radiation absorbed in the first ocean level'
            WRITE(numout,*)
         ENDIF
      ENDIF


      ! ================================ !
      !     Define the send interface    !
      ! ================================ !
      ! for each field: define the OASIS name                           (ssnd(:)%clname)
      !                 define send or not from the namelist parameters (ssnd(:)%laction)
      !                 define the north fold type of lbc               (ssnd(:)%nsgn)

      ! default definitions of nsnd
      ssnd(:)%laction = .FALSE. 
      ssnd(:)%clgrid = 'T' 
      ssnd(:)%nsgn = 1. 
      ssnd(:)%nct = 1 
      ssnd(:)%dimensions = 2 
         
Guillaume Samson's avatar
Guillaume Samson committed
      !                                                      ! ------------------------- !
      !                                                      !    Surface temperature    !
      !                                                      ! ------------------------- !
      ssnd(jps_toce)%clname   = 'O_SSTSST'
      ssnd(jps_tice)%clname   = 'O_TepIce'
      ssnd(jps_ttilyr)%clname = 'O_TtiLyr'
      ssnd(jps_tmix)%clname   = 'O_TepMix'
      SELECT CASE( TRIM( sn_snd_temp%cldes ) )
      CASE( 'none'                                 )       ! nothing to do
      CASE( 'oce only'                             )   ;   ssnd( jps_toce )%laction = .TRUE.
      CASE( 'oce and ice' , 'weighted oce and ice' , 'oce and weighted ice' )
         ssnd( (/jps_toce, jps_tice/) )%laction = .TRUE.
         IF( TRIM( sn_snd_temp%clcat ) == 'yes' )  ssnd(jps_tice)%nct = nn_cats_cpl
      CASE( 'mixed oce-ice'                        )   ;   ssnd( jps_tmix )%laction = .TRUE.
      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_temp%cldes' )
      END SELECT

      !                                                      ! ------------------------- !
      !                                                      !          Albedo           !
      !                                                      ! ------------------------- !
      ssnd(jps_albice)%clname = 'O_AlbIce'
      ssnd(jps_albmix)%clname = 'O_AlbMix'
      SELECT CASE( TRIM( sn_snd_alb%cldes ) )
      CASE( 'none'                 )     ! nothing to do
      CASE( 'ice' , 'weighted ice' )   ; ssnd(jps_albice)%laction = .TRUE.
      CASE( 'mixed oce-ice'        )   ; ssnd(jps_albmix)%laction = .TRUE.
      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_alb%cldes' )
      END SELECT
      !
      ! Need to calculate oceanic albedo if
      !     1. sending mixed oce-ice albedo or
      !     2. receiving mixed oce-ice solar radiation
      IF( TRIM ( sn_snd_alb%cldes ) == 'mixed oce-ice' .OR. TRIM ( sn_rcv_qsr%cldes ) == 'mixed oce-ice' ) THEN
         CALL oce_alb( zaos, zacs )
         ! Due to lack of information on nebulosity : mean clear/overcast sky
         alb_oce_mix(:,:) = ( zacs(:,:) + zaos(:,:) ) * 0.5
      ENDIF
      !                                                      ! ------------------------- !
      !                                                      !  Ice fraction & Thickness !
      !                                                      ! ------------------------- !
      ssnd(jps_fice)%clname  = 'OIceFrc'
      ssnd(jps_ficet)%clname = 'OIceFrcT'
      ssnd(jps_hice)%clname  = 'OIceTck'
      ssnd(jps_a_p)%clname   = 'OPndFrc'
      ssnd(jps_ht_p)%clname  = 'OPndTck'
      ssnd(jps_hsnw)%clname  = 'OSnwTck'
      ssnd(jps_fice1)%clname = 'OIceFrd'
      IF( k_ice /= 0 ) THEN
         ssnd(jps_fice)%laction  = .TRUE.                 ! if ice treated in the ocean (even in climato case)
         ssnd(jps_fice1)%laction = .TRUE.                 ! First-order regridded ice concentration, to be used producing atmos-to-ice fluxes (Met Office requirement)
! Currently no namelist entry to determine sending of multi-category ice fraction so use the thickness entry for now
         IF( TRIM( sn_snd_thick%clcat  ) == 'yes' ) ssnd(jps_fice)%nct  = nn_cats_cpl
         IF( TRIM( sn_snd_thick1%clcat ) == 'yes' ) ssnd(jps_fice1)%nct = nn_cats_cpl
      ENDIF

      IF(TRIM( sn_snd_ifrac%cldes )  == 'coupled') ssnd(jps_ficet)%laction = .TRUE.

      SELECT CASE ( TRIM( sn_snd_thick%cldes ) )
      CASE( 'none'         )       ! nothing to do
      CASE( 'ice and snow' )
         ssnd(jps_hice:jps_hsnw)%laction = .TRUE.
         IF( TRIM( sn_snd_thick%clcat ) == 'yes' ) THEN
            ssnd(jps_hice:jps_hsnw)%nct = nn_cats_cpl
         ENDIF
      CASE ( 'weighted ice and snow' )
         ssnd(jps_hice:jps_hsnw)%laction = .TRUE.
         IF( TRIM( sn_snd_thick%clcat ) == 'yes' ) ssnd(jps_hice:jps_hsnw)%nct = nn_cats_cpl
      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_thick%cldes' )
      END SELECT

      !                                                      ! ------------------------- !
      !                                                      !      Ice Meltponds        !
      !                                                      ! ------------------------- !
      ! Needed by Met Office
      ssnd(jps_a_p)%clname  = 'OPndFrc'
      ssnd(jps_ht_p)%clname = 'OPndTck'
      SELECT CASE ( TRIM( sn_snd_mpnd%cldes ) )
      CASE ( 'none' )
         ssnd(jps_a_p)%laction  = .FALSE.
         ssnd(jps_ht_p)%laction = .FALSE.
      CASE ( 'ice only' )
         ssnd(jps_a_p)%laction  = .TRUE.
         ssnd(jps_ht_p)%laction = .TRUE.
         IF( TRIM( sn_snd_mpnd%clcat ) == 'yes' ) THEN
            ssnd(jps_a_p)%nct  = nn_cats_cpl
            ssnd(jps_ht_p)%nct = nn_cats_cpl
         ELSE
            IF( nn_cats_cpl > 1 ) THEN
               CALL ctl_stop( 'sbc_cpl_init: use weighted ice option for sn_snd_mpnd%cldes if not exchanging category fields' )
            ENDIF
         ENDIF
      CASE ( 'weighted ice' )
         ssnd(jps_a_p)%laction  = .TRUE.
         ssnd(jps_ht_p)%laction = .TRUE.
         IF( TRIM( sn_snd_mpnd%clcat ) == 'yes' ) THEN
            ssnd(jps_a_p)%nct  = nn_cats_cpl
            ssnd(jps_ht_p)%nct = nn_cats_cpl
         ENDIF
      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_mpnd%cldes; '//sn_snd_mpnd%cldes )
      END SELECT

      !                                                      ! ------------------------- !
      !                                                      !      Surface current      !
      !                                                      ! ------------------------- !
      !        ocean currents              !            ice velocities
      ssnd(jps_ocx1)%clname = 'O_OCurx1'   ;   ssnd(jps_ivx1)%clname = 'O_IVelx1'
      ssnd(jps_ocy1)%clname = 'O_OCury1'   ;   ssnd(jps_ivy1)%clname = 'O_IVely1'
      ssnd(jps_ocz1)%clname = 'O_OCurz1'   ;   ssnd(jps_ivz1)%clname = 'O_IVelz1'
      ssnd(jps_ocxw)%clname = 'O_OCurxw'
      ssnd(jps_ocyw)%clname = 'O_OCuryw'
      !
      ssnd(jps_ocx1:jps_ivz1)%nsgn = -1.   ! vectors: change of the sign at the north fold

      IF( sn_snd_crt%clvgrd == 'U,V' ) THEN
         ssnd(jps_ocx1)%clgrid = 'U' ; ssnd(jps_ocy1)%clgrid = 'V'
      ELSE IF( sn_snd_crt%clvgrd /= 'T' ) THEN
         CALL ctl_stop( 'sn_snd_crt%clvgrd must be equal to T' )
      ENDIF
      ssnd(jps_ocx1:jps_ivz1)%laction = .TRUE.   ! default: all are send
      IF( TRIM( sn_snd_crt%clvref ) == 'spherical' )   ssnd( (/jps_ocz1, jps_ivz1/) )%laction = .FALSE.
      IF( TRIM( sn_snd_crt%clvor ) == 'eastward-northward' ) ssnd(jps_ocx1:jps_ivz1)%nsgn = 1.
      SELECT CASE( TRIM( sn_snd_crt%cldes ) )
      CASE( 'none'                 )   ;   ssnd(jps_ocx1:jps_ivz1)%laction = .FALSE.
      CASE( 'oce only'             )   ;   ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE.
      CASE( 'weighted oce and ice' )   !   nothing to do
      CASE( 'mixed oce-ice'        )   ;   ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE.
      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_crt%cldes' )
      END SELECT

      ssnd(jps_ocxw:jps_ocyw)%nsgn = -1.   ! vectors: change of the sign at the north fold

      IF( sn_snd_crtw%clvgrd == 'U,V' ) THEN
         ssnd(jps_ocxw)%clgrid = 'U' ; ssnd(jps_ocyw)%clgrid = 'V'
      ELSE IF( sn_snd_crtw%clvgrd /= 'T' ) THEN
         CALL ctl_stop( 'sn_snd_crtw%clvgrd must be equal to T' )
      ENDIF
      IF( TRIM( sn_snd_crtw%clvor ) == 'eastward-northward' ) ssnd(jps_ocxw:jps_ocyw)%nsgn = 1.
      SELECT CASE( TRIM( sn_snd_crtw%cldes ) )
         CASE( 'none'                 )   ; ssnd(jps_ocxw:jps_ocyw)%laction = .FALSE.
         CASE( 'oce only'             )   ; ssnd(jps_ocxw:jps_ocyw)%laction = .TRUE.
         CASE( 'weighted oce and ice' )   !   nothing to do
         CASE( 'mixed oce-ice'        )   ; ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE.
         CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_crtw%cldes' )
      END SELECT

      !                                                      ! ------------------------- !
      !                                                      !          CO2 flux         !
      !                                                      ! ------------------------- !
      ssnd(jps_co2)%clname = 'O_CO2FLX' ;  IF( TRIM(sn_snd_co2%cldes) == 'coupled' )    ssnd(jps_co2 )%laction = .TRUE.
      !

#if defined key_medusa 
      !                                                      ! ------------------------- !
      !                                                      !   MEDUSA output fields    !
      !                                                      ! ------------------------- !
      ! Surface dimethyl sulphide from Medusa
      ssnd(jps_bio_dms)%clname = 'OBioDMS'
      IF( TRIM(sn_snd_bio_dms%cldes) == 'medusa' )    ssnd(jps_bio_dms )%laction = .TRUE.

      ! Surface CO2 flux from Medusa
      ssnd(jps_bio_co2)%clname = 'OBioCO2'
      IF( TRIM(sn_snd_bio_co2%cldes) == 'medusa' )    ssnd(jps_bio_co2 )%laction = .TRUE.

      ! Surface chlorophyll from Medusa
      ssnd(jps_bio_chloro)%clname = 'OBioChlo'
      IF( TRIM(sn_snd_bio_chloro%cldes) == 'medusa' ) ssnd(jps_bio_chloro )%laction = .TRUE.
#endif


Guillaume Samson's avatar
Guillaume Samson committed
      !                                                      ! ------------------------- !
      !                                                      ! Sea surface freezing temp !
      !                                                      ! ------------------------- !
      ! needed by Met Office
      ssnd(jps_sstfrz)%clname = 'O_SSTFrz' ; IF( TRIM(sn_snd_sstfrz%cldes) == 'coupled' )  ssnd(jps_sstfrz)%laction = .TRUE.
      !
      !                                                      ! ------------------------- !
      !                                                      !    Ice conductivity       !
      !                                                      ! ------------------------- !
      ! needed by Met Office
      ! Note that ultimately we will move to passing an ocean effective conductivity as well so there
      ! will be some changes to the parts of the code which currently relate only to ice conductivity
      ssnd(jps_ttilyr )%clname = 'O_TtiLyr'
      SELECT CASE ( TRIM( sn_snd_ttilyr%cldes ) )
      CASE ( 'none' )
         ssnd(jps_ttilyr)%laction = .FALSE.
      CASE ( 'ice only' )
         ssnd(jps_ttilyr)%laction = .TRUE.
         IF( TRIM( sn_snd_ttilyr%clcat ) == 'yes' ) THEN
            ssnd(jps_ttilyr)%nct = nn_cats_cpl
         ELSE
            IF( nn_cats_cpl > 1 ) THEN
               CALL ctl_stop( 'sbc_cpl_init: use weighted ice option for sn_snd_ttilyr%cldes if not exchanging category fields' )
            ENDIF
         ENDIF
      CASE ( 'weighted ice' )
         ssnd(jps_ttilyr)%laction = .TRUE.
         IF( TRIM( sn_snd_ttilyr%clcat ) == 'yes' ) ssnd(jps_ttilyr)%nct = nn_cats_cpl
      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_ttilyr%cldes;'//sn_snd_ttilyr%cldes )
      END SELECT

      ssnd(jps_kice )%clname = 'OIceKn'
      SELECT CASE ( TRIM( sn_snd_cond%cldes ) )
      CASE ( 'none' )
         ssnd(jps_kice)%laction = .FALSE.
      CASE ( 'ice only' )
         ssnd(jps_kice)%laction = .TRUE.
         IF( TRIM( sn_snd_cond%clcat ) == 'yes' ) THEN
            ssnd(jps_kice)%nct = nn_cats_cpl
         ELSE
            IF( nn_cats_cpl > 1 ) THEN
               CALL ctl_stop( 'sbc_cpl_init: use weighted ice option for sn_snd_cond%cldes if not exchanging category fields' )
            ENDIF
         ENDIF
      CASE ( 'weighted ice' )
         ssnd(jps_kice)%laction = .TRUE.
         IF( TRIM( sn_snd_cond%clcat ) == 'yes' ) ssnd(jps_kice)%nct = nn_cats_cpl
      CASE default   ;   CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_cond%cldes;'//sn_snd_cond%cldes )
      END SELECT
      !
      !                                                      ! ------------------------- !
      !                                                      !     Sea surface height    !
      !                                                      ! ------------------------- !
      ssnd(jps_wlev)%clname = 'O_Wlevel' ;  IF( TRIM(sn_snd_wlev%cldes) == 'coupled' )   ssnd(jps_wlev)%laction = .TRUE.

      !                                                      ! ------------------------------- !
      !                                                      !   OCE-SAS coupling - snd by opa !
      !                                                      ! ------------------------------- !
      ssnd(jps_ssh   )%clname = 'O_SSHght'
      ssnd(jps_soce  )%clname = 'O_SSSal'
      ssnd(jps_e3t1st)%clname = 'O_E3T1st'
      ssnd(jps_fraqsr)%clname = 'O_FraQsr'
      !
      IF( nn_components == jp_iam_oce ) THEN
         ssnd(:)%laction = .FALSE.   ! force default definition in case of opa <-> sas coupling
         ssnd( (/jps_toce, jps_soce, jps_ssh, jps_fraqsr, jps_ocx1, jps_ocy1/) )%laction = .TRUE.
         ssnd( jps_e3t1st )%laction = .NOT.ln_linssh
         ! vector definition: not used but cleaner...
         ssnd(jps_ocx1)%clgrid  = 'U'        ! oce components given at U-point
         ssnd(jps_ocy1)%clgrid  = 'V'        !           and           V-point
         sn_snd_crt%clvgrd = 'U,V'
         sn_snd_crt%clvor = 'local grid'
         sn_snd_crt%clvref = 'spherical'
         !
         IF(lwp) THEN                        ! control print
            WRITE(numout,*)
            WRITE(numout,*)'  sent fields to SAS component '
            WRITE(numout,*)'               sea surface temperature (T before, Celsius) '
            WRITE(numout,*)'               sea surface salinity '
            WRITE(numout,*)'               surface currents U,V on local grid and spherical coordinates'
            WRITE(numout,*)'               sea surface height '
            WRITE(numout,*)'               thickness of first ocean T level '
            WRITE(numout,*)'               fraction of solar net radiation absorbed in the first ocean level'
            WRITE(numout,*)
         ENDIF
      ENDIF
      !                                                      ! ------------------------------- !
      !                                                      !   OCE-SAS coupling - snd by sas !
      !                                                      ! ------------------------------- !
      ssnd(jps_sflx  )%clname = 'I_SFLX'
      ssnd(jps_fice2 )%clname = 'IIceFrc'
      ssnd(jps_qsroce)%clname = 'I_QsrOce'
      ssnd(jps_qnsoce)%clname = 'I_QnsOce'
      ssnd(jps_oemp  )%clname = 'IOEvaMPr'
      ssnd(jps_otx1  )%clname = 'I_OTaux1'
      ssnd(jps_oty1  )%clname = 'I_OTauy1'
      ssnd(jps_rnf   )%clname = 'I_Runoff'
      ssnd(jps_taum  )%clname = 'I_TauMod'
      !
      IF( nn_components == jp_iam_sas ) THEN
         IF( .NOT. ln_cpl ) ssnd(:)%laction = .FALSE.   ! force default definition in case of opa <-> sas coupling
         ssnd( (/jps_qsroce, jps_qnsoce, jps_oemp, jps_fice2, jps_sflx, jps_otx1, jps_oty1, jps_taum/) )%laction = .TRUE.
         !
         ! Change first letter to couple with atmosphere if already coupled with sea_ice
         ! this is nedeed as each variable name used in the namcouple must be unique:
         ! for example O_SSTSST sent by OCE to SAS and therefore S_SSTSST sent by SAS to the Atmosphere
         DO jn = 1, jpsnd
            IF( ssnd(jn)%clname(1:1) == "O" ) ssnd(jn)%clname = "S"//ssnd(jn)%clname(2:LEN(ssnd(jn)%clname))
         END DO
         !
         IF(lwp) THEN                        ! control print
            WRITE(numout,*)
            IF( .NOT. ln_cpl ) THEN
               WRITE(numout,*)'  sent fields to OCE component '
            ELSE
               WRITE(numout,*)'  Additional sent fields to OCE component : '
            ENDIF
            WRITE(numout,*)'                  ice cover '
            WRITE(numout,*)'                  oce only EMP  '
            WRITE(numout,*)'                  salt flux  '
            WRITE(numout,*)'                  mixed oce-ice solar flux  '
            WRITE(numout,*)'                  mixed oce-ice non solar flux  '
            WRITE(numout,*)'                  wind stress U,V components'
            WRITE(numout,*)'                  wind stress module'
         ENDIF
      ENDIF

      ! Initialise 1D river outflow scheme 
      nn_cpl_river = 1 
      IF ( TRIM( sn_rcv_rnf%cldes ) == 'coupled1d' ) CALL cpl_rnf_1d_init   ! Coupled runoff using 1D array
      
      ! =================================================== !
      ! Allocate all parts of frcv used for received fields !
      ! =================================================== !
      DO jn = 1, jprcv

         IF ( srcv(jn)%laction ) THEN 
            SELECT CASE( srcv(jn)%dimensions )
            !
            CASE( 0 )   ! Scalar field
               ALLOCATE( frcv(jn)%z3(1,1,1) )
               
            CASE( 1 )   ! 1D field
               ALLOCATE( frcv(jn)%z3(nn_cpl_river,1,1) )
               
            CASE DEFAULT  ! 2D (or pseudo 3D) field.
               ALLOCATE( frcv(jn)%z3(jpi,jpj,srcv(jn)%nct) )
            END SELECT
         END IF

      END DO
      ! Allocate taum part of frcv which is used even when not received as coupling field
      IF ( .NOT. srcv(jpr_taum)%laction ) ALLOCATE( frcv(jpr_taum)%z3(jpi,jpj,srcv(jpr_taum)%nct) )
      ! Allocate w10m part of frcv which is used even when not received as coupling field
      IF ( .NOT. srcv(jpr_w10m)%laction ) ALLOCATE( frcv(jpr_w10m)%z3(jpi,jpj,srcv(jpr_w10m)%nct) )
      ! Allocate jpr_otx1 part of frcv which is used even when not received as coupling field
      IF ( .NOT. srcv(jpr_otx1)%laction ) ALLOCATE( frcv(jpr_otx1)%z3(jpi,jpj,srcv(jpr_otx1)%nct) )
      IF ( .NOT. srcv(jpr_oty1)%laction ) ALLOCATE( frcv(jpr_oty1)%z3(jpi,jpj,srcv(jpr_oty1)%nct) )
      ! Allocate itx1 and ity1 as they are used in sbc_cpl_ice_tau even if srcv(jpr_itx1)%laction = .FALSE.
      IF( k_ice /= 0 ) THEN
         IF ( .NOT. srcv(jpr_itx1)%laction ) ALLOCATE( frcv(jpr_itx1)%z3(jpi,jpj,srcv(jpr_itx1)%nct) )
         IF ( .NOT. srcv(jpr_ity1)%laction ) ALLOCATE( frcv(jpr_ity1)%z3(jpi,jpj,srcv(jpr_ity1)%nct) )
      END IF

Guillaume Samson's avatar
Guillaume Samson committed
      !
      ! ================================ !
      !   initialisation of the coupler  !
      ! ================================ !

      ! There's no point initialising the coupler if we've accumulated any errors in 
      ! coupling field definitions or settings. 
      IF (nstop > 0) CALL ctl_stop( 'STOP', 'sbc_cpl_init: Errors encountered in coupled field definitions' )

Guillaume Samson's avatar
Guillaume Samson committed
      CALL cpl_define(jprcv, jpsnd, nn_cplmodel)

      IF(ln_usecplmask) THEN
         xcplmask(:,:,:) = 0.
         CALL iom_open( 'cplmask', inum )
         CALL iom_get( inum, jpdom_unknown, 'cplmask', xcplmask(1:jpi,1:jpj,1:nn_cplmodel),   &
            &          kstart = (/ mig(1),mjg(1),1 /), kcount = (/ jpi,jpj,nn_cplmodel /) )
         CALL iom_close( inum )
      ELSE
         xcplmask(:,:,:) = 1.
      ENDIF
      xcplmask(:,:,0) = 1. - SUM( xcplmask(:,:,1:nn_cplmodel), dim = 3 )
      !
      IF( nn_coupled_iceshelf_fluxes .gt. 0 ) THEN 
          ! Crude masks to separate the Antarctic and Greenland icesheets. Obviously something 
          ! more complicated could be done if required. 
          greenland_icesheet_mask = 0.0 
          WHERE( gphit >= 0.0 ) greenland_icesheet_mask = 1.0 
          antarctica_icesheet_mask = 0.0 
          WHERE( gphit < 0.0 ) antarctica_icesheet_mask = 1.0 
  
          IF( .not. ln_rstart ) THEN 
             greenland_icesheet_mass = 0.0  
             greenland_icesheet_mass_rate_of_change = 0.0  
             greenland_icesheet_timelapsed = 0.0 
             antarctica_icesheet_mass = 0.0  
             antarctica_icesheet_mass_rate_of_change = 0.0  
             antarctica_icesheet_timelapsed = 0.0 
          ENDIF 
 
      ENDIF 
      !
      IF (ln_timing) CALL timing_stop('sbc_cpl_init')
Guillaume Samson's avatar
Guillaume Samson committed
      !
   END SUBROUTINE sbc_cpl_init


   SUBROUTINE sbc_cpl_rcv( kt, k_fsbc, k_ice, Kbb, Kmm )
      !!----------------------------------------------------------------------
      !!             ***  ROUTINE sbc_cpl_rcv  ***
      !!
      !! ** Purpose :   provide the stress over the ocean and, if no sea-ice,
      !!                provide the ocean heat and freshwater fluxes.
      !!
      !! ** Method  : - Receive all the atmospheric fields (stored in frcv array). called at each time step.
      !!                OASIS controls if there is something do receive or not. nrcvinfo contains the info
      !!                to know if the field was really received or not
      !!
      !!              --> If ocean stress was really received:
      !!
      !!                  - transform the received ocean stress vector from the received
      !!                 referential and grid into an atmosphere-ocean stress in
      !!                 the (i,j) ocean referencial and at the ocean velocity point.
      !!                    The received stress are :
      !!                     - defined by 3 components (if cartesian coordinate)
      !!                            or by 2 components (if spherical)
      !!                     - oriented along geographical   coordinate (if eastward-northward)
      !!                            or  along the local grid coordinate (if local grid)
      !!                     - given at U- and V-point, resp.   if received on 2 grids
      !!                            or at T-point               if received on 1 grid
      !!                    Therefore and if necessary, they are successively
      !!                  processed in order to obtain them
      !!                     first  as  2 components on the sphere
      !!                     second as  2 components oriented along the local grid
      !!                     third  as  2 components on the U,V grid
      !!
      !!              -->
      !!
      !!              - In 'ocean only' case, non solar and solar ocean heat fluxes
      !!             and total ocean freshwater fluxes
      !!
      !! ** Method  :   receive all fields from the atmosphere and transform
      !!              them into ocean surface boundary condition fields
      !!
      !! ** Action  :   update  utau, vtau   ocean stress at U,V grid
      !!                        taum         wind stress module at T-point
      !!                        wndm         wind speed  module at T-point over free ocean or leads in presence of sea-ice
      !!                        qns          non solar heat fluxes including emp heat content    (ocean only case)
      !!                                     and the latent heat flux of solid precip. melting
      !!                        qsr          solar ocean heat fluxes   (ocean only case)
      !!                        emp          upward mass flux [evap. - precip. (- runoffs) (- calving)] (ocean only case)
      !!----------------------------------------------------------------------
      USE zdf_oce,  ONLY :   ln_zdfswm
      !
      INTEGER, INTENT(in) ::   kt          ! ocean model time step index
      INTEGER, INTENT(in) ::   k_fsbc      ! frequency of sbc (-> ice model) computation
      INTEGER, INTENT(in) ::   k_ice       ! ice management in the sbc (=0/1/2/3)
      INTEGER, INTENT(in) ::   Kbb, Kmm    ! ocean model time level indices
      !!
      LOGICAL  ::   llnewtx, llnewtau      ! update wind stress components and module??
      INTEGER  ::   ji, jj, jn             ! dummy loop indices
      INTEGER  ::   isec                   ! number of seconds since nit000 (assuming rdt did not change since nit000)
      INTEGER  ::   ikchoix
      REAL(wp), DIMENSION(jpi,jpj) ::   ztx2, zty2
Guillaume Samson's avatar
Guillaume Samson committed
      REAL(wp) ::   zcumulneg, zcumulpos   ! temporary scalars
      REAL(wp) ::   zcoef                  ! temporary scalar
      LOGICAL  ::   ll_wrtstp              ! write diagnostics?
Guillaume Samson's avatar
Guillaume Samson committed
      REAL(wp) ::   zrhoa  = 1.22          ! Air density kg/m3
      REAL(wp) ::   zcdrag = 1.5e-3        ! drag coefficient
      REAL(wp) ::   zgreenland_icesheet_mass_in, zantarctica_icesheet_mass_in 
      REAL(wp) ::   zgreenland_icesheet_mass_b, zantarctica_icesheet_mass_b 
      REAL(wp) ::   zmask_sum, zepsilon    
Guillaume Samson's avatar
Guillaume Samson committed
      REAL(wp) ::   zzx, zzy               ! temporary variables
      REAL(wp) ::   r1_grau                ! = 1.e0 / (grav * rho0)
Guillaume Samson's avatar
Guillaume Samson committed
      REAL(wp), DIMENSION(jpi,jpj) ::   ztx, zty, zmsk, zemp, zqns, zqsr, zcloud_fra
      !!----------------------------------------------------------------------
      !
      !
      IF (ln_timing) CALL timing_start('sbc_cpl_rcv')
      !
      ll_wrtstp  = ( MOD( kt, sn_cfctl%ptimincr ) == 0 ) .OR. ( kt == nitend )
            !
Guillaume Samson's avatar
Guillaume Samson committed
      IF( kt == nit000 ) THEN
      !   cannot be done in the init phase when we use agrif as cpl_freq requires that oasis_enddef is done
         ncpl_qsr_freq = cpl_freq( 'O_QsrOce' ) + cpl_freq( 'O_QsrMix' ) + cpl_freq( 'I_QsrOce' ) + cpl_freq( 'I_QsrMix' )
         IF( ln_dm2dc .AND. ncpl_qsr_freq /= 86400 )   &
            &   CALL ctl_stop( 'sbc_cpl_rcv: diurnal cycle reconstruction (ln_dm2dc) needs daily couping for solar radiation' )

         IF ( ln_wave .AND. nn_components == 0 ) THEN
            ncpl_qsr_freq = 1;
            WRITE(numout,*) 'ncpl_qsr_freq is set to 1 when coupling NEMO with wave (without SAS) '
         ENDIF
      ENDIF
      !
      IF( ln_mixcpl )   zmsk(:,:) = 1. - xcplmask(:,:,0)
      !
      !                                                      ! ======================================================= !
      !                                                      ! Receive all the atmos. fields (including ice information)
      !                                                      ! ======================================================= !
      isec = ( kt - nit000 ) * NINT( rn_Dt )                      ! date of exchanges
      DO jn = 1, jprcv                                          ! received fields sent by the atmosphere
        IF( srcv(jn)%laction ) THEN  
 
          IF ( srcv(jn)%dimensions <= 1 ) THEN 
            CALL cpl_rcv_1d( jn, isec, frcv(jn)%z3, SIZE(frcv(jn)%z3), nrcvinfo(jn) ) 
          ELSE 

            CALL cpl_rcv( jn, isec, frcv(jn)%z3, xcplmask(:,:,1:nn_cplmodel), nrcvinfo(jn) ) 
          END IF 

        END IF 
Guillaume Samson's avatar
Guillaume Samson committed
      END DO

      !                                                      ! ========================= !
      IF( srcv(jpr_otx1)%laction ) THEN                      !  ocean stress components  !
         !                                                   ! ========================= !
         ! define frcv(jpr_otx1)%z3(:,:,1) and frcv(jpr_oty1)%z3(:,:,1): stress at U/V point along model grid
         ! => need to be done only when we receive the field
         IF(  nrcvinfo(jpr_otx1) == OASIS_Rcv ) THEN
            !
            IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN            ! 2 components on the sphere
               !                                                       ! (cartesian to spherical -> 3 to 2 components)
               !
               CALL geo2oce( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), frcv(jpr_otz1)%z3(:,:,1),   &
                  &          srcv(jpr_otx1)%clgrid, ztx, zty )
               frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:)   ! overwrite 1st comp. on the 1st grid
               frcv(jpr_oty1)%z3(:,:,1) = zty(:,:)   ! overwrite 2nd comp. on the 1st grid
               !
               IF( srcv(jpr_otx2)%laction ) THEN
                  CALL geo2oce( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), frcv(jpr_otz2)%z3(:,:,1),   &
                     &          srcv(jpr_otx2)%clgrid, ztx, zty )
                  frcv(jpr_otx2)%z3(:,:,1) = ztx(:,:)   ! overwrite 1st comp. on the 2nd grid
                  frcv(jpr_oty2)%z3(:,:,1) = zty(:,:)   ! overwrite 2nd comp. on the 2nd grid
               ENDIF
               !
            ENDIF
            !
            IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN   ! 2 components oriented along the local grid
               !                                                       ! (geographical to local grid -> rotate the components)
               IF( srcv(jpr_otx1)%clgrid == 'U' .AND. (.NOT. srcv(jpr_otx2)%laction) ) THEN
                  ! Temporary code for HadGEM3 - will be removed eventually.
                  ! Only applies when we have only taux on U grid and tauy on V grid

                  !RSRH these MUST be initialised because the halos are not explicitly set 
                  ! but they're passed to repcmo and used directly in calculations, so if 
                  ! they point at junk in memory then bad things will happen!
                  ! (You can prove this by running with preset NaNs). 
                  ztx(:,:)=0.0
                  zty(:,:)=0.0

                  DO_2D( 0, 0, 0, 0 )                                       
                          ztx(ji,jj)=0.25*vmask(ji,jj,1)                &
                             *(frcv(jpr_otx1)%z3(ji,jj,1)+frcv(jpr_otx1)%z3(ji-1,jj,1)    &
                             +frcv(jpr_otx1)%z3(ji,jj+1,1)+frcv(jpr_otx1)%z3(ji-1,jj+1,1))
                          zty(ji,jj)=0.25*umask(ji,jj,1)                &
                             *(frcv(jpr_oty1)%z3(ji,jj,1)+frcv(jpr_oty1)%z3(ji+1,jj,1)    &
                             +frcv(jpr_oty1)%z3(ji,jj-1,1)+frcv(jpr_oty1)%z3(ji+1,jj-1,1))
                  END_2D
	                       
                  ikchoix = 1
                  CALL repcmo (frcv(jpr_otx1)%z3(:,:,1),zty,ztx,frcv(jpr_oty1)%z3(:,:,1),ztx2,zty2,ikchoix)
                  CALL lbc_lnk ('jpr_otx1', ztx2,'U', -1. )
                  CALL lbc_lnk ('jpr_oty1', zty2,'V', -1. )
                  frcv(jpr_otx1)%z3(:,:,1)=ztx2(:,:)
                  frcv(jpr_oty1)%z3(:,:,1)=zty2(:,:)
Guillaume Samson's avatar
Guillaume Samson committed
               ELSE
                  CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->i', ztx )   
                  frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:)      ! overwrite 1st component on the 1st grid
                  IF( srcv(jpr_otx2)%laction ) THEN
                     CALL rot_rep( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), srcv(jpr_otx2)%clgrid, 'en->j', zty )   
                  ELSE
                     CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->j', zty )
                  ENDIF
                  frcv(jpr_oty1)%z3(:,:,1) = zty(:,:)      ! overwrite 2nd component on the 2nd grid 
Guillaume Samson's avatar
Guillaume Samson committed
               ENDIF
            ENDIF
            !
            IF( srcv(jpr_otx1)%clgrid == 'T' ) THEN
               DO_2D( 0, 0, 0, 0 )                                        ! T ==> (U,V)
                  frcv(jpr_otx1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_otx1)%z3(ji+1,jj  ,1) + frcv(jpr_otx1)%z3(ji,jj,1) )
                  frcv(jpr_oty1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_oty1)%z3(ji  ,jj+1,1) + frcv(jpr_oty1)%z3(ji,jj,1) )
               END_2D
               CALL lbc_lnk( 'sbccpl', frcv(jpr_otx1)%z3(:,:,1), 'U',  -1.0_wp, frcv(jpr_oty1)%z3(:,:,1), 'V',  -1.0_wp )
            ENDIF
            llnewtx = .TRUE.
         ELSE
            llnewtx = .FALSE.
         ENDIF
         !                                                   ! ========================= !
      ELSE                                                   !   No dynamical coupling   !
         !                                                   ! ========================= !
         frcv(jpr_otx1)%z3(:,:,1) = 0.e0                               ! here simply set to zero
         frcv(jpr_oty1)%z3(:,:,1) = 0.e0                               ! an external read in a file can be added instead
         llnewtx = .TRUE.
         !
      ENDIF
      !                                                      ! ========================= !
      !                                                      !    wind stress module     !   (taum)
      !                                                      ! ========================= !
      IF( .NOT. srcv(jpr_taum)%laction ) THEN                    ! compute wind stress module from its components if not received
         ! => need to be done only when otx1 was changed
         IF( llnewtx ) THEN
            DO_2D( 0, 0, 0, 0 )
               zzx = frcv(jpr_otx1)%z3(ji-1,jj  ,1) + frcv(jpr_otx1)%z3(ji,jj,1)
               zzy = frcv(jpr_oty1)%z3(ji  ,jj-1,1) + frcv(jpr_oty1)%z3(ji,jj,1)
               frcv(jpr_taum)%z3(ji,jj,1) = 0.5 * SQRT( zzx * zzx + zzy * zzy )
            END_2D
            CALL lbc_lnk( 'sbccpl', frcv(jpr_taum)%z3(:,:,1), 'T', 1.0_wp )
            llnewtau = .TRUE.
         ELSE
            llnewtau = .FALSE.
         ENDIF
      ELSE
         llnewtau = nrcvinfo(jpr_taum) == OASIS_Rcv
         ! Stress module can be negative when received (interpolation problem)
         IF( llnewtau ) THEN
            frcv(jpr_taum)%z3(:,:,1) = MAX( 0._wp, frcv(jpr_taum)%z3(:,:,1) )
         ENDIF
      ENDIF
      !
      !                                                      ! ========================= !
      !                                                      !      10 m wind speed      !   (wndm)
      !                                                      ! ========================= !
      IF( .NOT. srcv(jpr_w10m)%laction ) THEN                    ! compute wind spreed from wind stress module if not received
         ! => need to be done only when taumod was changed
         IF( llnewtau ) THEN
            zcoef = 1. / ( zrhoa * zcdrag )
            DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
               frcv(jpr_w10m)%z3(ji,jj,1) = SQRT( frcv(jpr_taum)%z3(ji,jj,1) * zcoef )
            END_2D
         ENDIF
      ENDIF
!!$      !                                                      ! ========================= !
!!$      SELECT CASE( TRIM( sn_rcv_clouds%cldes ) )             !       cloud fraction      !
!!$      !                                                      ! ========================= !
!!$      cloud_fra(:,:) = frcv(jpr_clfra)*z3(:,:,1)
!!$      END SELECT
!!$
      zcloud_fra(:,:) = pp_cldf   ! should be real cloud fraction instead (as in the bulk) but needs to be read from atm.
      IF( ln_mixcpl ) THEN
         cloud_fra(:,:) = cloud_fra(:,:) * xcplmask(:,:,0) + zcloud_fra(:,:)* zmsk(:,:)
      ELSE
         cloud_fra(:,:) = zcloud_fra(:,:)
      ENDIF
      !                                                      ! ========================= !
      ! u(v)tau and taum will be modified by ice model
      ! -> need to be reset before each call of the ice/fsbc
      IF( MOD( kt-1, k_fsbc ) == 0 ) THEN
         !
         IF( ln_mixcpl ) THEN
            utau(:,:) = utau(:,:) * xcplmask(:,:,0) + frcv(jpr_otx1)%z3(:,:,1) * zmsk(:,:)
            vtau(:,:) = vtau(:,:) * xcplmask(:,:,0) + frcv(jpr_oty1)%z3(:,:,1) * zmsk(:,:)
            taum(:,:) = taum(:,:) * xcplmask(:,:,0) + frcv(jpr_taum)%z3(:,:,1) * zmsk(:,:)
            wndm(:,:) = wndm(:,:) * xcplmask(:,:,0) + frcv(jpr_w10m)%z3(:,:,1) * zmsk(:,:)
         ELSE
            utau(:,:) = frcv(jpr_otx1)%z3(:,:,1)
            vtau(:,:) = frcv(jpr_oty1)%z3(:,:,1)
            taum(:,:) = frcv(jpr_taum)%z3(:,:,1)
            wndm(:,:) = frcv(jpr_w10m)%z3(:,:,1)
         ENDIF
         CALL iom_put( "taum_oce", taum )   ! output wind stress module
         !
      ENDIF

#if defined key_medusa
      IF (ln_medusa) THEN
        IF( srcv(jpr_atm_pco2)%laction) PCO2a_in_cpl(:,:) = frcv(jpr_atm_pco2)%z3(:,:,1)
        IF( srcv(jpr_atm_dust)%laction) Dust_in_cpl(:,:) = frcv(jpr_atm_dust)%z3(:,:,1)
      ENDIF
#endif
Guillaume Samson's avatar
Guillaume Samson committed
      !                                                      ! ================== !
      !                                                      ! atmosph. CO2 (ppm) !
      !                                                      ! ================== !
      IF( srcv(jpr_co2)%laction )   atm_co2(:,:) = frcv(jpr_co2)%z3(:,:,1)
      !
      !                                                      ! ========================= !
      !                                                      ! Mean Sea Level Pressure   !   (taum)
      !                                                      ! ========================= !
      IF( srcv(jpr_mslp)%laction ) THEN                    ! UKMO SHELF effect of atmospheric pressure on SSH
          IF( kt /= nit000 )   ssh_ibb(:,:) = ssh_ib(:,:)    !* Swap of ssh_ib fields

          r1_grau = 1.e0 / (grav * rho0)               !* constant for optimization
          ssh_ib(:,:) = - ( frcv(jpr_mslp)%z3(:,:,1) - rpref ) * r1_grau    ! equivalent ssh (inverse barometer)
          apr   (:,:) =     frcv(jpr_mslp)%z3(:,:,1)                         !atmospheric pressure

          IF( kt == nit000 ) ssh_ibb(:,:) = ssh_ib(:,:)  ! correct this later (read from restart if possible)
      ENDIF
      !
      IF( ln_sdw ) THEN  ! Stokes Drift correction activated
      !                                                      ! ========================= !
      !                                                      !       Stokes drift u      !
      !                                                      ! ========================= !
         IF( srcv(jpr_sdrftx)%laction ) ut0sd(:,:) = frcv(jpr_sdrftx)%z3(:,:,1)
      !
      !                                                      ! ========================= !
      !                                                      !       Stokes drift v      !
      !                                                      ! ========================= !
         IF( srcv(jpr_sdrfty)%laction ) vt0sd(:,:) = frcv(jpr_sdrfty)%z3(:,:,1)
      !
      !                                                      ! ========================= !
      !                                                      !      Wave mean period     !
      !                                                      ! ========================= !
         IF( srcv(jpr_wper)%laction ) wmp(:,:) = frcv(jpr_wper)%z3(:,:,1)
      !
      !                                                      ! ========================= !
      !                                                      !  Significant wave height  !
      !                                                      ! ========================= !
         IF( srcv(jpr_hsig)%laction ) hsw(:,:) = frcv(jpr_hsig)%z3(:,:,1)
      !
      !                                                      ! ========================= !
      !                                                      !    Vertical mixing Qiao   !
      !                                                      ! ========================= !
         IF( srcv(jpr_wnum)%laction .AND. ln_zdfswm ) wnum(:,:) = frcv(jpr_wnum)%z3(:,:,1)

         ! Calculate the 3D Stokes drift both in coupled and not fully uncoupled mode
         IF( srcv(jpr_sdrftx)%laction .OR. srcv(jpr_sdrfty)%laction .OR. &
             srcv(jpr_wper)%laction .OR. srcv(jpr_hsig)%laction )   THEN
            CALL sbc_stokes( Kmm )
         ENDIF
      ENDIF
      !                                                      ! ========================= !
      !                                                      ! Stress adsorbed by waves  !
      !                                                      ! ========================= !
      IF( srcv(jpr_wstrf)%laction .AND. ln_tauoc )  tauoc_wave(:,:) = frcv(jpr_wstrf)%z3(:,:,1)
      !
      !                                                      ! ========================= !
      !                                                      !   Wave drag coefficient   !
      !                                                      ! ========================= !
      IF( srcv(jpr_wdrag)%laction .AND. ln_cdgw )   cdn_wave(:,:) = frcv(jpr_wdrag)%z3(:,:,1)
      !
      !                                                      ! ========================= !
      !                                                      !   Chranock coefficient    !
      !                                                      ! ========================= !
      IF( srcv(jpr_charn)%laction .AND. ln_charn )  charn(:,:) = frcv(jpr_charn)%z3(:,:,1)
      !
      !                                                      ! ========================= !
      !                                                      ! net wave-supported stress !
      !                                                      ! ========================= !
      IF( srcv(jpr_tawx)%laction .AND. ln_taw )     tawx(:,:) = frcv(jpr_tawx)%z3(:,:,1)
      IF( srcv(jpr_tawy)%laction .AND. ln_taw )     tawy(:,:) = frcv(jpr_tawy)%z3(:,:,1)
      !
      !                                                      ! ========================= !
      !                                                      !wave to ocean momentum flux!
      !                                                      ! ========================= !
      IF( srcv(jpr_twox)%laction .AND. ln_taw )     twox(:,:) = frcv(jpr_twox)%z3(:,:,1)
      IF( srcv(jpr_twoy)%laction .AND. ln_taw )     twoy(:,:) = frcv(jpr_twoy)%z3(:,:,1)
      !
      !                                                      ! ========================= !
      !                                                      !    wave TKE flux at sfc   !
      !                                                      ! ========================= !
      IF( srcv(jpr_phioc)%laction .AND. ln_phioc )     phioc(:,:) = frcv(jpr_phioc)%z3(:,:,1)
      !
      !                                                      ! ========================= !
      !                                                      !      Bernoulli head       !
      !                                                      ! ========================= !
      IF( srcv(jpr_bhd)%laction .AND. ln_bern_srfc )   bhd_wave(:,:) = frcv(jpr_bhd)%z3(:,:,1)
      !
      !                                                      ! ========================= !
      !                                                      !   Stokes transport u dir  !
      !                                                      ! ========================= !
      IF( srcv(jpr_tusd)%laction .AND. ln_breivikFV_2016 )    tusd(:,:) = frcv(jpr_tusd)%z3(:,:,1)
      !
      !                                                      ! ========================= !
      !                                                      !   Stokes transport v dir  !
      !                                                      ! ========================= !
      IF( srcv(jpr_tvsd)%laction .AND. ln_breivikFV_2016 )     tvsd(:,:) = frcv(jpr_tvsd)%z3(:,:,1)
      !
      !  Fields received by SAS when OASIS coupling
      !  (arrays no more filled at sbcssm stage)
      !                                                      ! ================== !
      !                                                      !        SSS         !
      !                                                      ! ================== !
      IF( srcv(jpr_soce)%laction ) THEN                      ! received by sas in case of opa <-> sas coupling
         sss_m(:,:) = frcv(jpr_soce)%z3(:,:,1)
         CALL iom_put( 'sss_m', sss_m )
      ENDIF
      !
      !                                                      ! ================== !
      !                                                      !        SST         !
      !                                                      ! ================== !
      IF( srcv(jpr_toce)%laction ) THEN                      ! received by sas in case of opa <-> sas coupling
         sst_m(:,:) = frcv(jpr_toce)%z3(:,:,1)
         IF( srcv(jpr_soce)%laction .AND. l_useCT ) THEN    ! make sure that sst_m is the potential temperature
            sst_m(:,:) = eos_pt_from_ct( sst_m(:,:), sss_m(:,:) )
         ENDIF
      ENDIF
      !                                                      ! ================== !
      !                                                      !        SSH         !
      !                                                      ! ================== !
      IF( srcv(jpr_ssh )%laction ) THEN                      ! received by sas in case of opa <-> sas coupling
         ssh_m(:,:) = frcv(jpr_ssh )%z3(:,:,1)
         CALL iom_put( 'ssh_m', ssh_m )
      ENDIF
      !                                                      ! ================== !
      !                                                      !  surface currents  !
      !                                                      ! ================== !
      IF( srcv(jpr_ocx1)%laction ) THEN                      ! received by sas in case of opa <-> sas coupling
         ssu_m(:,:) = frcv(jpr_ocx1)%z3(:,:,1)
         uu(:,:,1,Kbb) = ssu_m(:,:)                          ! will be used in icestp in the call of ice_forcing_tau
         uu(:,:,1,Kmm) = ssu_m(:,:)                          ! will be used in sbc_cpl_snd if atmosphere coupling
         CALL iom_put( 'ssu_m', ssu_m )
      ENDIF
      IF( srcv(jpr_ocy1)%laction ) THEN
         ssv_m(:,:) = frcv(jpr_ocy1)%z3(:,:,1)
         vv(:,:,1,Kbb) = ssv_m(:,:)                          ! will be used in icestp in the call of ice_forcing_tau
         vv(:,:,1,Kmm) = ssv_m(:,:)                          ! will be used in sbc_cpl_snd if atmosphere coupling
         CALL iom_put( 'ssv_m', ssv_m )
      ENDIF
      !                                                      ! ======================== !
      !                                                      !  first T level thickness !
      !                                                      ! ======================== !
      IF( srcv(jpr_e3t1st )%laction ) THEN                   ! received by sas in case of opa <-> sas coupling
         e3t_m(:,:) = frcv(jpr_e3t1st )%z3(:,:,1)
         CALL iom_put( 'e3t_m', e3t_m(:,:) )
      ENDIF
      !                                                      ! ================================ !
      !                                                      !  fraction of solar net radiation !
      !                                                      ! ================================ !
      IF( srcv(jpr_fraqsr)%laction ) THEN                    ! received by sas in case of opa <-> sas coupling
         frq_m(:,:) = frcv(jpr_fraqsr)%z3(:,:,1)
         CALL iom_put( 'frq_m', frq_m )
      ENDIF

      !                                                      ! ========================= !
      IF( k_ice <= 1 .AND. MOD( kt-1, k_fsbc ) == 0 ) THEN   !  heat & freshwater fluxes ! (Ocean only case)
         !                                                   ! ========================= !
         !
         !                                                       ! total freshwater fluxes over the ocean (emp)
         IF( srcv(jpr_oemp)%laction .OR. srcv(jpr_rain)%laction ) THEN
            SELECT CASE( TRIM( sn_rcv_emp%cldes ) )                                    ! evaporation - precipitation
            CASE( 'conservative' )
               zemp(:,:) = frcv(jpr_tevp)%z3(:,:,1) - ( frcv(jpr_rain)%z3(:,:,1) + frcv(jpr_snow)%z3(:,:,1) )
            CASE( 'oce only', 'oce and ice' )
               zemp(:,:) = frcv(jpr_oemp)%z3(:,:,1)
            CASE default
               CALL ctl_stop( 'sbc_cpl_rcv: wrong definition of sn_rcv_emp%cldes' )
            END SELECT
         ELSE
            zemp(:,:) = 0._wp
         ENDIF
         !
         !                                                        ! runoffs and calving (added in emp)
         IF( srcv(jpr_rnf)%laction )     rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1)
         IF( srcv(jpr_cal)%laction )     zemp(:,:) = zemp(:,:) - frcv(jpr_cal)%z3(:,:,1)

         IF( srcv(jpr_icb)%laction )  THEN
             fwficb(:,:) = frcv(jpr_icb)%z3(:,:,1)
             rnf(:,:)    = rnf(:,:) + fwficb(:,:)   ! iceberg added to runfofs
         ENDIF
         !
         ! ice shelf fwf
         IF( srcv(jpr_isf)%laction )  THEN
            fwfisf_oasis(:,:) = frcv(jpr_isf)%z3(:,:,1)  ! fresh water flux from the isf to the ocean ( > 0 = melting )
         END IF

         IF( ln_mixcpl ) THEN   ;   emp(:,:) = emp(:,:) * xcplmask(:,:,0) + zemp(:,:) * zmsk(:,:)
         ELSE                   ;   emp(:,:) =                              zemp(:,:)
         ENDIF
         !
         !                                                       ! non solar heat flux over the ocean (qns)
         IF(      srcv(jpr_qnsoce)%laction ) THEN   ;   zqns(:,:) = frcv(jpr_qnsoce)%z3(:,:,1)
         ELSE IF( srcv(jpr_qnsmix)%laction ) THEN   ;   zqns(:,:) = frcv(jpr_qnsmix)%z3(:,:,1)
         ELSE                                       ;   zqns(:,:) = 0._wp
         ENDIF
         ! update qns over the free ocean with:
         IF( nn_components /= jp_iam_oce ) THEN
            zqns(:,:) =  zqns(:,:) - zemp(:,:) * sst_m(:,:) * rcp         ! remove heat content due to mass flux (assumed to be at SST)
            IF( srcv(jpr_snow  )%laction ) THEN
               zqns(:,:) = zqns(:,:) - frcv(jpr_snow)%z3(:,:,1) * rLfus   ! energy for melting solid precipitation over the free ocean
            ENDIF
         ENDIF
         !
         IF( srcv(jpr_icb)%laction )  zqns(:,:) = zqns(:,:) - frcv(jpr_icb)%z3(:,:,1) * rLfus ! remove heat content associated to iceberg melting
         !
         IF( ln_mixcpl ) THEN   
            qns(:,:) = qns(:,:) * xcplmask(:,:,0) + zqns(:,:) * zmsk(:,:)
         ELSE                   
            qns(:,:) =                              zqns(:,:)
Guillaume Samson's avatar
Guillaume Samson committed
         ENDIF

         !                                                       ! solar flux over the ocean          (qsr)
         IF     ( srcv(jpr_qsroce)%laction ) THEN   ;   zqsr(:,:) = frcv(jpr_qsroce)%z3(:,:,1)
         ELSE IF( srcv(jpr_qsrmix)%laction ) then   ;   zqsr(:,:) = frcv(jpr_qsrmix)%z3(:,:,1)
         ELSE                                       ;   zqsr(:,:) = 0._wp
         ENDIF
         IF( ln_dm2dc .AND. ln_cpl )   zqsr(:,:) = sbc_dcy( zqsr )   ! modify qsr to include the diurnal cycle
         IF( ln_mixcpl ) THEN   ;   qsr(:,:) = qsr(:,:) * xcplmask(:,:,0) + zqsr(:,:) * zmsk(:,:)
         ELSE                   ;   qsr(:,:) =                              zqsr(:,:)
         ENDIF
         !
         ! salt flux over the ocean (received by opa in case of opa <-> sas coupling)
         IF( srcv(jpr_sflx )%laction )   sfx(:,:) = frcv(jpr_sflx  )%z3(:,:,1)
         ! Ice cover  (received by opa in case of opa <-> sas coupling)
         IF( srcv(jpr_fice )%laction )   fr_i(:,:) = frcv(jpr_fice )%z3(:,:,1)
         !
      ENDIF

      zepsilon = rn_iceshelf_fluxes_tolerance

      IF( srcv(jpr_grnm)%laction .AND. nn_coupled_iceshelf_fluxes == 1 ) THEN
     
         ! This is a zero dimensional, single value field.
         zgreenland_icesheet_mass_in =  frcv(jpr_grnm)%z3(1,1,1)
           
         greenland_icesheet_timelapsed = greenland_icesheet_timelapsed + rdt         
         IF( ln_iceshelf_init_atmos .AND. kt == 1 ) THEN
            ! On the first timestep (of an NRUN) force the ocean to ignore the icesheet masses in the ocean restart
            ! and take them from the atmosphere to avoid problems with using inconsistent ocean and atmosphere restarts.
            zgreenland_icesheet_mass_b = zgreenland_icesheet_mass_in
            greenland_icesheet_mass = zgreenland_icesheet_mass_in
         ENDIF
         IF( ABS( zgreenland_icesheet_mass_in - greenland_icesheet_mass ) > zepsilon ) THEN
            zgreenland_icesheet_mass_b = greenland_icesheet_mass
           
            ! Only update the mass if it has increased.
            IF ( (zgreenland_icesheet_mass_in - greenland_icesheet_mass) > 0.0 ) THEN
               greenland_icesheet_mass = zgreenland_icesheet_mass_in
            ENDIF
           
            IF( zgreenland_icesheet_mass_b /= 0.0 ) &
           &     greenland_icesheet_mass_rate_of_change = ( greenland_icesheet_mass - zgreenland_icesheet_mass_b ) / greenland_icesheet_timelapsed 
            greenland_icesheet_timelapsed = 0.0_wp       
         ENDIF
         IF(lwp .AND. ll_wrtstp) THEN
            WRITE(numout,*) 'Greenland icesheet mass (kg) read in is ', zgreenland_icesheet_mass_in
            WRITE(numout,*) 'Greenland icesheet mass (kg) used is    ', greenland_icesheet_mass
            WRITE(numout,*) 'Greenland icesheet mass rate of change (kg/s) is ', greenland_icesheet_mass_rate_of_change
            WRITE(numout,*) 'Greenland icesheet seconds lapsed since last change is ', greenland_icesheet_timelapsed
         ENDIF
      ELSE IF ( nn_coupled_iceshelf_fluxes == 2 ) THEN
         greenland_icesheet_mass_rate_of_change = rn_greenland_total_fw_flux
      ENDIF
      !                                                        ! land ice masses : Antarctica
      IF( srcv(jpr_antm)%laction .AND. nn_coupled_iceshelf_fluxes == 1 ) THEN
         
         ! This is a zero dimensional, single value field.
         zantarctica_icesheet_mass_in = frcv(jpr_antm)%z3(1,1,1)
           
         antarctica_icesheet_timelapsed = antarctica_icesheet_timelapsed + rdt         
         IF( ln_iceshelf_init_atmos .AND. kt == 1 ) THEN
            ! On the first timestep (of an NRUN) force the ocean to ignore the icesheet masses in the ocean restart
            ! and take them from the atmosphere to avoid problems with using inconsistent ocean and atmosphere restarts.
            zantarctica_icesheet_mass_b = zantarctica_icesheet_mass_in
            antarctica_icesheet_mass = zantarctica_icesheet_mass_in
         ENDIF
         IF( ABS( zantarctica_icesheet_mass_in - antarctica_icesheet_mass ) > zepsilon ) THEN
            zantarctica_icesheet_mass_b = antarctica_icesheet_mass
           
            ! Only update the mass if it has increased.
            IF ( (zantarctica_icesheet_mass_in - antarctica_icesheet_mass) > 0.0 ) THEN
               antarctica_icesheet_mass = zantarctica_icesheet_mass_in
            END IF
           
            IF( zantarctica_icesheet_mass_b /= 0.0 ) &
          &      antarctica_icesheet_mass_rate_of_change = ( antarctica_icesheet_mass - zantarctica_icesheet_mass_b ) / antarctica_icesheet_timelapsed 
            antarctica_icesheet_timelapsed = 0.0_wp       
         ENDIF
         IF(lwp .AND. ll_wrtstp) THEN
            WRITE(numout,*) 'Antarctica icesheet mass (kg) read in is ', zantarctica_icesheet_mass_in
            WRITE(numout,*) 'Antarctica icesheet mass (kg) used is    ', antarctica_icesheet_mass
            WRITE(numout,*) 'Antarctica icesheet mass rate of change (kg/s) is ', antarctica_icesheet_mass_rate_of_change
            WRITE(numout,*) 'Antarctica icesheet seconds lapsed since last change is ', antarctica_icesheet_timelapsed
         ENDIF
      ELSE IF ( nn_coupled_iceshelf_fluxes == 2 ) THEN
         antarctica_icesheet_mass_rate_of_change = rn_antarctica_total_fw_flux
      ENDIF
Guillaume Samson's avatar
Guillaume Samson committed
      !
      IF (ln_timing) CALL timing_stop('sbc_cpl_rcv')
Guillaume Samson's avatar
Guillaume Samson committed
   END SUBROUTINE sbc_cpl_rcv


   SUBROUTINE sbc_cpl_ice_tau( p_taui, p_tauj )
      !!----------------------------------------------------------------------
      !!             ***  ROUTINE sbc_cpl_ice_tau  ***
      !!
      !! ** Purpose :   provide the stress over sea-ice in coupled mode
      !!
      !! ** Method  :   transform the received stress from the atmosphere into
      !!             an atmosphere-ice stress in the (i,j) ocean referencial
      !!             and at the velocity point of the sea-ice model:
      !!                'C'-grid : i- (j-) components given at U- (V-) point
      !!
      !!                The received stress are :
      !!                 - defined by 3 components (if cartesian coordinate)
      !!                        or by 2 components (if spherical)
      !!                 - oriented along geographical   coordinate (if eastward-northward)
      !!                        or  along the local grid coordinate (if local grid)
      !!                 - given at U- and V-point, resp.   if received on 2 grids
      !!                        or at a same point (T or I) if received on 1 grid
      !!                Therefore and if necessary, they are successively
      !!             processed in order to obtain them
      !!                 first  as  2 components on the sphere
      !!                 second as  2 components oriented along the local grid
      !!                 third  as  2 components on the ice grid point
      !!
      !!                Except in 'oce and ice' case, only one vector stress field
      !!             is received. It has already been processed in sbc_cpl_rcv
      !!             so that it is now defined as (i,j) components given at U-
      !!             and V-points, respectively.
      !!
      !! ** Action  :   return ptau_i, ptau_j, the stress over the ice
      !!----------------------------------------------------------------------
      REAL(wp), INTENT(inout), DIMENSION(:,:) ::   p_taui   ! i- & j-components of atmos-ice stress [N/m2]
      REAL(wp), INTENT(inout), DIMENSION(:,:) ::   p_tauj   ! at I-point (B-grid) or U & V-point (C-grid)
      !!
      INTEGER ::   ji, jj   ! dummy loop indices
      INTEGER ::   itx      ! index of taux over ice
      REAL(wp)                     ::   zztmp1, zztmp2
      REAL(wp), DIMENSION(jpi,jpj) ::   ztx, zty
      !!----------------------------------------------------------------------
      !
#if defined key_si3 || defined key_cice
      !
      IF( srcv(jpr_itx1)%laction ) THEN   ;   itx =  jpr_itx1
      ELSE                                ;   itx =  jpr_otx1
      ENDIF

      ! do something only if we just received the stress from atmosphere
      IF(  nrcvinfo(itx) == OASIS_Rcv ) THEN
         !                                                      ! ======================= !
         IF( srcv(jpr_itx1)%laction ) THEN                      !   ice stress received   !
            !                                                   ! ======================= !
            !
            IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN            ! 2 components on the sphere
               !                                                       ! (cartesian to spherical -> 3 to 2 components)
               CALL geo2oce(  frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), frcv(jpr_itz1)%z3(:,:,1),   &
                  &          srcv(jpr_itx1)%clgrid, ztx, zty )
               frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:)   ! overwrite 1st comp. on the 1st grid
               frcv(jpr_ity1)%z3(:,:,1) = zty(:,:)   ! overwrite 2nd comp. on the 1st grid
               !
               IF( srcv(jpr_itx2)%laction ) THEN
                  CALL geo2oce( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), frcv(jpr_itz2)%z3(:,:,1),   &
                     &          srcv(jpr_itx2)%clgrid, ztx, zty )
                  frcv(jpr_itx2)%z3(:,:,1) = ztx(:,:)   ! overwrite 1st comp. on the 2nd grid
                  frcv(jpr_ity2)%z3(:,:,1) = zty(:,:)   ! overwrite 2nd comp. on the 2nd grid
               ENDIF
               !
            ENDIF
            !
            IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN   ! 2 components oriented along the local grid
               !                                                       ! (geographical to local grid -> rotate the components)
               CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->i', ztx )
               IF( srcv(jpr_itx2)%laction ) THEN
                  CALL rot_rep( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), srcv(jpr_itx2)%clgrid, 'en->j', zty )
               ELSE
                  CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->j', zty )
               ENDIF
               frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:)      ! overwrite 1st component on the 1st grid
               frcv(jpr_ity1)%z3(:,:,1) = zty(:,:)      ! overwrite 2nd component on the 1st grid
            ENDIF
            !                                                   ! ======================= !
         ELSE                                                   !     use ocean stress    !
            !                                                   ! ======================= !
            frcv(jpr_itx1)%z3(:,:,1) = frcv(jpr_otx1)%z3(:,:,1)
            frcv(jpr_ity1)%z3(:,:,1) = frcv(jpr_oty1)%z3(:,:,1)
            !
         ENDIF
         !                                                      ! ======================= !
         !                                                      !     put on ice grid     !
         !                                                      ! ======================= !
         !
         !                                                  j+1   j     -----V---F
         ! ice stress on ice velocity point                              !       |
         ! (C-grid ==>(U,V))                                      j      |   T   U
         !                                                               |       |
         !                                                   j    j-1   -I-------|
         !                                               (for I)         |       |
         !                                                              i-1  i   i
         !                                                               i      i+1 (for I)
         SELECT CASE ( srcv(jpr_itx1)%clgrid )
         CASE( 'U' )
            p_taui(:,:) = frcv(jpr_itx1)%z3(:,:,1)                   ! (U,V) ==> (U,V)
            p_tauj(:,:) = frcv(jpr_ity1)%z3(:,:,1)
         CASE( 'T' )
            DO_2D( 0, 0, 0, 0 )                    ! T ==> (U,V)
               ! take care of the land-sea mask to avoid "pollution" of coastal stress. p[uv]taui used in frazil and  rheology
               zztmp1 = 0.5_wp * ( 2. - umask(ji,jj,1) ) * MAX( tmask(ji,jj,1),tmask(ji+1,jj  ,1) )
               zztmp2 = 0.5_wp * ( 2. - vmask(ji,jj,1) ) * MAX( tmask(ji,jj,1),tmask(ji  ,jj+1,1) )
               p_taui(ji,jj) = zztmp1 * ( frcv(jpr_itx1)%z3(ji+1,jj  ,1) + frcv(jpr_itx1)%z3(ji,jj,1) )
               p_tauj(ji,jj) = zztmp2 * ( frcv(jpr_ity1)%z3(ji  ,jj+1,1) + frcv(jpr_ity1)%z3(ji,jj,1) )
            END_2D
            CALL lbc_lnk( 'sbccpl', p_taui, 'U',  -1._wp, p_tauj, 'V',  -1._wp )
Guillaume Samson's avatar
Guillaume Samson committed
         END SELECT

      ENDIF
      !
#endif
      !
   END SUBROUTINE sbc_cpl_ice_tau


   SUBROUTINE sbc_cpl_ice_flx( kt, picefr, palbi, psst, pist, phs, phi )
      !!----------------------------------------------------------------------
      !!             ***  ROUTINE sbc_cpl_ice_flx  ***
      !!
      !! ** Purpose :   provide the heat and freshwater fluxes of the ocean-ice system
      !!
      !! ** Method  :   transform the fields received from the atmosphere into
      !!             surface heat and fresh water boundary condition for the
      !!             ice-ocean system. The following fields are provided:
      !!               * total non solar, solar and freshwater fluxes (qns_tot,
      !!             qsr_tot and emp_tot) (total means weighted ice-ocean flux)
      !!             NB: emp_tot include runoffs and calving.
      !!               * fluxes over ice (qns_ice, qsr_ice, emp_ice) where
      !!             emp_ice = sublimation - solid precipitation as liquid
      !!             precipitation are re-routed directly to the ocean and
      !!             calving directly enter the ocean (runoffs are read but included in trasbc.F90)
      !!               * solid precipitation (sprecip), used to add to qns_tot
      !!             the heat lost associated to melting solid precipitation
      !!             over the ocean fraction.
      !!               * heat content of rain, snow and evap can also be provided,
      !!             otherwise heat flux associated with these mass flux are
      !!             guessed (qemp_oce, qemp_ice)
      !!
      !!             - the fluxes have been separated from the stress as
      !!               (a) they are updated at each ice time step compare to
      !!               an update at each coupled time step for the stress, and
      !!               (b) the conservative computation of the fluxes over the
      !!               sea-ice area requires the knowledge of the ice fraction
      !!               after the ice advection and before the ice thermodynamics,
      !!               so that the stress is updated before the ice dynamics
      !!               while the fluxes are updated after it.
      !!
      !! ** Details
      !!             qns_tot = (1-a) * qns_oce + a * qns_ice               => provided
      !!                     + qemp_oce + qemp_ice                         => recalculated and added up to qns
      !!
      !!             qsr_tot = (1-a) * qsr_oce + a * qsr_ice               => provided
      !!
      !!             emp_tot = emp_oce + emp_ice                           => calving is provided and added to emp_tot (and emp_oce).
      !!                                                                      runoff (which includes rivers+icebergs) and iceshelf
      !!                                                                      are provided but not included in emp here. Only runoff will
      !!                                                                      be included in emp in other parts of NEMO code
      !!
      !! ** Note : In case of the ice-atm coupling with conduction fluxes (such as Jules interface for the Met-Office),
      !!              qsr_ice and qns_ice are not provided and they are not supposed to be used in the ice code.
      !!              However, by precaution we also "fake" qns_ice and qsr_ice this way:
      !!              qns_ice = qml_ice + qcn_ice ??
      !!              qsr_ice = qtr_ice_top ??
      !!
      !! ** Action  :   update at each nf_ice time step:
      !!                   qns_tot, qsr_tot  non-solar and solar total heat fluxes
      !!                   qns_ice, qsr_ice  non-solar and solar heat fluxes over the ice
      !!                   emp_tot           total evaporation - precipitation(liquid and solid) (-calving)
      !!                   emp_ice           ice sublimation - solid precipitation over the ice
      !!                   dqns_ice          d(non-solar heat flux)/d(Temperature) over the ice
      !!                   sprecip           solid precipitation over the ocean
      !!----------------------------------------------------------------------
      INTEGER,  INTENT(in)                                ::   kt         ! ocean model time step index (only for a_i_last_couple)
      REAL(wp), INTENT(in)   , DIMENSION(:,:)             ::   picefr     ! ice fraction                [0 to 1]
      !                                                   !!           ! optional arguments, used only in 'mixed oce-ice' case or for Met-Office coupling
      REAL(wp), INTENT(in)   , DIMENSION(:,:,:), OPTIONAL ::   palbi      ! all skies ice albedo
      REAL(wp), INTENT(in)   , DIMENSION(:,:  ), OPTIONAL ::   psst       ! sea surface temperature     [Celsius]
      REAL(wp), INTENT(inout), DIMENSION(:,:,:), OPTIONAL ::   pist       ! ice surface temperature     [Kelvin] => inout for Met-Office
      REAL(wp), INTENT(in)   , DIMENSION(:,:,:), OPTIONAL ::   phs        ! snow depth                  [m]
      REAL(wp), INTENT(in)   , DIMENSION(:,:,:), OPTIONAL ::   phi        ! ice thickness               [m]
      !
      INTEGER  ::   ji, jj, jl   ! dummy loop index
      REAL(wp), DIMENSION(jpi,jpj)     ::   zcptn, zcptrain, zcptsnw, ziceld, zmsk, zsnw
      REAL(wp), DIMENSION(jpi,jpj)     ::   zemp_tot, zemp_ice, zemp_oce, ztprecip, zsprecip  , zevap_oce, zdevap_ice
      REAL(wp), DIMENSION(jpi,jpj)     ::   zqns_tot, zqns_oce, zqsr_tot, zqsr_oce, zqprec_ice, zqemp_oce, zqemp_ice
      REAL(wp), DIMENSION(jpi,jpj)     ::   zevap_ice_total
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   zqns_ice, zqsr_ice, zdqns_ice, zqevap_ice, zevap_ice, zqtr_ice_top, ztsu
      REAL(wp), DIMENSION(jpi,jpj)     ::   ztri
      !!----------------------------------------------------------------------
      !
#if defined key_si3 || defined key_cice
Guillaume Samson's avatar
Guillaume Samson committed
      !
      IF( ln_mixcpl )   zmsk(:,:) = 1. - xcplmask(:,:,0)
      ziceld(:,:) = 1._wp - picefr(:,:)
      zcptn (:,:) = rcp * sst_m(:,:)


      !                                                      ! ========================= !
      SELECT CASE( TRIM( sn_rcv_iceflx%cldes ) )             !  ice topmelt and botmelt  !
      !                                                      ! ========================= !
      CASE ('coupled')
         IF (ln_scale_ice_flux) THEN
            WHERE( a_i(:,:,:) > 1.e-10_wp )
               qml_ice(:,:,:) = frcv(jpr_topm)%z3(:,:,:) * a_i_last_couple(:,:,:) / a_i(:,:,:)
               qcn_ice(:,:,:) = frcv(jpr_botm)%z3(:,:,:) * a_i_last_couple(:,:,:) / a_i(:,:,:)
            ELSEWHERE
               qml_ice(:,:,:) = 0.0_wp
               qcn_ice(:,:,:) = 0.0_wp
            END WHERE
         ELSE
            qml_ice(:,:,:) = frcv(jpr_topm)%z3(:,:,:)
            qcn_ice(:,:,:) = frcv(jpr_botm)%z3(:,:,:)
         ENDIF
      END SELECT


Guillaume Samson's avatar
Guillaume Samson committed
      !
      !                                                      ! ========================= !
      !                                                      !    freshwater budget      !   (emp_tot)
      !                                                      ! ========================= !
      !
      !                                                           ! solid Precipitation                                (sprecip)
      !                                                           ! liquid + solid Precipitation                       (tprecip)
      !                                                           ! total Evaporation - total Precipitation            (emp_tot)
      !                                                           ! sublimation - solid precipitation (cell average)   (emp_ice)
      SELECT CASE( TRIM( sn_rcv_emp%cldes ) )
      CASE( 'conservative' )   ! received fields: jpr_rain, jpr_snow, jpr_ievp, jpr_tevp
         zsprecip(:,:) =   frcv(jpr_snow)%z3(:,:,1)                  ! May need to ensure positive here
         ztprecip(:,:) =   frcv(jpr_rain)%z3(:,:,1) + zsprecip(:,:)  ! May need to ensure positive here
         IF (.not. ln_couple_ocean_evap ) THEN
            zemp_tot(:,:) =   frcv(jpr_tevp)%z3(:,:,1) - ztprecip(:,:)
         END IF
Guillaume Samson's avatar
Guillaume Samson committed
      CASE( 'oce and ice'   )   ! received fields: jpr_sbpr, jpr_semp, jpr_oemp, jpr_ievp
         zemp_tot(:,:) = ziceld(:,:) * frcv(jpr_oemp)%z3(:,:,1) + picefr(:,:) * frcv(jpr_sbpr)%z3(:,:,1)
         zemp_ice(:,:) = frcv(jpr_semp)%z3(:,:,1) * picefr(:,:)
         zsprecip(:,:) = frcv(jpr_ievp)%z3(:,:,1) - frcv(jpr_semp)%z3(:,:,1)
         ztprecip(:,:) = frcv(jpr_semp)%z3(:,:,1) - frcv(jpr_sbpr)%z3(:,:,1) + zsprecip(:,:)
      CASE( 'none'      )       ! Not available as for now: needs additional coding below when computing zevap_oce
      !                         ! since fields received are not defined with none option
         CALL ctl_stop( 'sbccpl/sbc_cpl_ice_flx: some fields are not defined. Change sn_rcv_emp value in namelist namsbc_cpl' )
      CASE default              ! Default
         CALL ctl_stop( 'sbccpl/sbc_cpl_ice_flx: some fields are not defined. Change sn_rcv_emp value in namelist namsbc_cpl' )
Guillaume Samson's avatar
Guillaume Samson committed
      END SELECT

      ! --- evaporation over ice (kg/m2/s) --- !
      IF (ln_scale_ice_flux) THEN ! typically met-office requirements
         IF (sn_rcv_emp%clcat == 'yes') THEN
            WHERE( a_i(:,:,:) > 1.e-10 )  ; zevap_ice(:,:,:) = frcv(jpr_ievp)%z3(:,:,:) * a_i_last_couple(:,:,:) / a_i(:,:,:)
            ELSEWHERE                     ; zevap_ice(:,:,:) = 0._wp
            END WHERE
            WHERE( picefr(:,:) > 1.e-10 ) ; zevap_ice_total(:,:) = SUM( zevap_ice(:,:,:) * a_i(:,:,:), dim=3 ) / picefr(:,:)
            ELSEWHERE                     ; zevap_ice_total(:,:) = 0._wp
            END WHERE
         ELSE
            WHERE( picefr(:,:) > 1.e-10 ) ; zevap_ice(:,:,1) = frcv(jpr_ievp)%z3(:,:,1) * SUM( a_i_last_couple, dim=3 ) / picefr(:,:)
            ELSEWHERE                     ; zevap_ice(:,:,1) = 0._wp
            END WHERE
            zevap_ice_total(:,:) = zevap_ice(:,:,1)
            DO jl = 2, jpl
               zevap_ice(:,:,jl) = zevap_ice(:,:,1)
            ENDDO
         ENDIF
      ELSE
         IF (sn_rcv_emp%clcat == 'yes') THEN
            zevap_ice(:,:,1:jpl) = frcv(jpr_ievp)%z3(:,:,1:jpl)
            WHERE( picefr(:,:) > 1.e-10 ) ; zevap_ice_total(:,:) = SUM( zevap_ice(:,:,:) * a_i(:,:,:), dim=3 ) / picefr(:,:)
            ELSEWHERE                     ; zevap_ice_total(:,:) = 0._wp
            END WHERE
         ELSE
            zevap_ice(:,:,1) = frcv(jpr_ievp)%z3(:,:,1)
            zevap_ice_total(:,:) = zevap_ice(:,:,1)
            DO jl = 2, jpl
               zevap_ice(:,:,jl) = zevap_ice(:,:,1)
            ENDDO
         ENDIF
      ENDIF

      IF ( TRIM( sn_rcv_emp%cldes ) == 'conservative' ) THEN
         ! For conservative case zemp_ice has not been defined yet. Do it now.
         zemp_ice(:,:) = zevap_ice_total(:,:) * picefr(:,:) - frcv(jpr_snow)%z3(:,:,1) * picefr(:,:)
      ENDIF

      ! zsnw = snow fraction over ice after wind blowing (=picefr if no blowing)
      zsnw(:,:) = 0._wp   ;   CALL ice_var_snwblow( ziceld, zsnw )

      ! --- evaporation minus precipitation corrected (because of wind blowing on snow) --- !
      zemp_ice(:,:) = zemp_ice(:,:) + zsprecip(:,:) * ( picefr(:,:) - zsnw(:,:) )  ! emp_ice = A * sublimation - zsnw * sprecip

      IF ( ln_couple_ocean_evap ) THEN
         zemp_oce(:,:) = frcv(jpr_tevp)%z3(:,:,1) - frcv(jpr_rain)%z3(:,:,1) & !Ocean evap minus rain (as all rain goes straight to ocean in GC5)
                        & - zsprecip(:,:) * ( 1._wp - zsnw(:,:) )        !subtract snow in leads after correction for blowing snow
         zemp_tot(:,:) = zemp_oce(:,:) + zemp_ice(:,:)
         zevap_oce(:,:) = frcv(jpr_tevp)%z3(:,:,1)
      ELSE
         zemp_oce(:,:) = zemp_tot(:,:) - zemp_ice(:,:)                                ! emp_oce = emp_tot - emp_ice

         ! --- evaporation over ocean (used later for qemp) --- !
         zevap_oce(:,:) = frcv(jpr_tevp)%z3(:,:,1) - zevap_ice_total(:,:) * picefr(:,:)
      END IF
Guillaume Samson's avatar
Guillaume Samson committed

      ! since the sensitivity of evap to temperature (devap/dT) is not prescribed by the atmosphere, we set it to 0
      ! therefore, sublimation is not redistributed over the ice categories when no subgrid scale fluxes are provided by atm.
      zdevap_ice(:,:) = 0._wp

      ! --- Continental fluxes --- !
Loading
Loading full blame...