Newer
Older
MODULE sbccpl
!!======================================================================
!! *** MODULE sbccpl ***
!! Surface Boundary Condition : momentum, heat and freshwater fluxes in coupled mode
!!======================================================================
!! History : 2.0 ! 2007-06 (R. Redler, N. Keenlyside, W. Park) Original code split into flxmod & taumod
!! 3.0 ! 2008-02 (G. Madec, C Talandier) surface module
!! 3.1 ! 2009_02 (G. Madec, S. Masson, E. Maisonave, A. Caubel) generic coupled interface
!! 3.4 ! 2011_11 (C. Harris) more flexibility + multi-category fields
!! 4.2 ! 2020-12 (G. Madec, E. Clementi) wave coupling updates
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! namsbc_cpl : coupled formulation namlist
!! sbc_cpl_init : initialisation of the coupled exchanges
!! sbc_cpl_rcv : receive fields from the atmosphere over the ocean (ocean only)
!! receive stress from the atmosphere over the ocean (ocean-ice case)
!! sbc_cpl_ice_tau : receive stress from the atmosphere over ice
!! sbc_cpl_ice_flx : receive fluxes from the atmosphere over ice
!! sbc_cpl_snd : send fields to the atmosphere
!!----------------------------------------------------------------------
USE dom_oce ! ocean space and time domain
USE sbc_oce ! Surface boundary condition: ocean fields
USE trc_oce ! share SMS/Ocean variables
USE sbc_ice ! Surface boundary condition: ice fields
USE sbcapr ! Stochastic param. : ???
USE sbcdcy ! surface boundary condition: diurnal cycle
USE sbcwave ! surface boundary condition: waves
USE phycst ! physical constants
USE isf_oce , ONLY : l_isfoasis, fwfisf_oasis ! ice shelf boundary condition
#if defined key_si3
USE ice ! ice variables
#endif
USE cpl_oasis3 ! OASIS3 coupling
USE geo2ocean !
USE oce
#if defined key_medusa
USE oce , ONLY: CO2Flux_out_cpl, DMS_out_cpl, chloro_out_cpl, &
PCO2a_in_cpl, Dust_in_cpl
#endif
USE ocealb !
USE eosbn2 !
USE sbcrnf , ONLY : l_rnfcpl
USE cpl_rnf_1d, ONLY: nn_cpl_river, cpl_rnf_1d_init, cpl_rnf_1d_to_2d ! Variables used in 1D river outflow
#if defined key_medusa
USE par_trc , ONLY : ln_medusa
#endif
#if defined key_cice
USE ice_domain_size, only: ncat
#endif
#if defined key_si3
USE icevar ! for CALL ice_var_snwblow
#endif
!
USE in_out_manager ! I/O manager
USE iom ! NetCDF library
USE lib_mpp ! distribued memory computing library
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
#if defined key_oasis3
USE mod_oasis, ONLY : OASIS_Sent, OASIS_ToRest, OASIS_SentOut, OASIS_ToRestOut
#endif

Guillaume Samson
committed
USE sbc_phy, ONLY : pp_cldf, rpref
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
IMPLICIT NONE
PRIVATE
PUBLIC sbc_cpl_init ! routine called by sbcmod.F90
PUBLIC sbc_cpl_rcv ! routine called by icestp.F90
PUBLIC sbc_cpl_snd ! routine called by step.F90
PUBLIC sbc_cpl_ice_tau ! routine called by icestp.F90
PUBLIC sbc_cpl_ice_flx ! routine called by icestp.F90
PUBLIC sbc_cpl_alloc ! routine called in sbcice_cice.F90
INTEGER, PARAMETER :: jpr_otx1 = 1 ! 3 atmosphere-ocean stress components on grid 1
INTEGER, PARAMETER :: jpr_oty1 = 2 !
INTEGER, PARAMETER :: jpr_otz1 = 3 !
INTEGER, PARAMETER :: jpr_otx2 = 4 ! 3 atmosphere-ocean stress components on grid 2
INTEGER, PARAMETER :: jpr_oty2 = 5 !
INTEGER, PARAMETER :: jpr_otz2 = 6 !
INTEGER, PARAMETER :: jpr_itx1 = 7 ! 3 atmosphere-ice stress components on grid 1
INTEGER, PARAMETER :: jpr_ity1 = 8 !
INTEGER, PARAMETER :: jpr_itz1 = 9 !
INTEGER, PARAMETER :: jpr_itx2 = 10 ! 3 atmosphere-ice stress components on grid 2
INTEGER, PARAMETER :: jpr_ity2 = 11 !
INTEGER, PARAMETER :: jpr_itz2 = 12 !
INTEGER, PARAMETER :: jpr_qsroce = 13 ! Qsr above the ocean
INTEGER, PARAMETER :: jpr_qsrice = 14 ! Qsr above the ice
INTEGER, PARAMETER :: jpr_qsrmix = 15
INTEGER, PARAMETER :: jpr_qnsoce = 16 ! Qns above the ocean
INTEGER, PARAMETER :: jpr_qnsice = 17 ! Qns above the ice
INTEGER, PARAMETER :: jpr_qnsmix = 18
INTEGER, PARAMETER :: jpr_rain = 19 ! total liquid precipitation (rain)
INTEGER, PARAMETER :: jpr_snow = 20 ! solid precipitation over the ocean (snow)
INTEGER, PARAMETER :: jpr_tevp = 21 ! total evaporation
INTEGER, PARAMETER :: jpr_ievp = 22 ! solid evaporation (sublimation)
INTEGER, PARAMETER :: jpr_sbpr = 23 ! sublimation - liquid precipitation - solid precipitation
INTEGER, PARAMETER :: jpr_semp = 24 ! solid freshwater budget (sublimation - snow)
INTEGER, PARAMETER :: jpr_oemp = 25 ! ocean freshwater budget (evap - precip)
INTEGER, PARAMETER :: jpr_w10m = 26 ! 10m wind
INTEGER, PARAMETER :: jpr_dqnsdt = 27 ! d(Q non solar)/d(temperature)
INTEGER, PARAMETER :: jpr_rnf = 28 ! runoffs
INTEGER, PARAMETER :: jpr_cal = 29 ! calving
INTEGER, PARAMETER :: jpr_taum = 30 ! wind stress module
INTEGER, PARAMETER :: jpr_co2 = 31
INTEGER, PARAMETER :: jpr_topm = 32 ! topmeltn
INTEGER, PARAMETER :: jpr_botm = 33 ! botmeltn
INTEGER, PARAMETER :: jpr_sflx = 34 ! salt flux
INTEGER, PARAMETER :: jpr_toce = 35 ! ocean temperature
INTEGER, PARAMETER :: jpr_soce = 36 ! ocean salinity
INTEGER, PARAMETER :: jpr_ocx1 = 37 ! ocean current on grid 1
INTEGER, PARAMETER :: jpr_ocy1 = 38 !
INTEGER, PARAMETER :: jpr_ssh = 39 ! sea surface height
INTEGER, PARAMETER :: jpr_fice = 40 ! ice fraction
INTEGER, PARAMETER :: jpr_e3t1st = 41 ! first T level thickness
INTEGER, PARAMETER :: jpr_fraqsr = 42 ! fraction of solar net radiation absorbed in the first ocean level
INTEGER, PARAMETER :: jpr_mslp = 43 ! mean sea level pressure
!** surface wave coupling **
INTEGER, PARAMETER :: jpr_hsig = 44 ! Hsig
INTEGER, PARAMETER :: jpr_phioc = 45 ! Wave=>ocean energy flux
INTEGER, PARAMETER :: jpr_sdrftx = 46 ! Stokes drift on grid 1
INTEGER, PARAMETER :: jpr_sdrfty = 47 ! Stokes drift on grid 2
INTEGER, PARAMETER :: jpr_wper = 48 ! Mean wave period
INTEGER, PARAMETER :: jpr_wnum = 49 ! Mean wavenumber
INTEGER, PARAMETER :: jpr_wstrf = 50 ! Stress fraction adsorbed by waves
INTEGER, PARAMETER :: jpr_wdrag = 51 ! Neutral surface drag coefficient
INTEGER, PARAMETER :: jpr_charn = 52 ! Chranock coefficient
INTEGER, PARAMETER :: jpr_twox = 53 ! wave to ocean momentum flux
INTEGER, PARAMETER :: jpr_twoy = 54 ! wave to ocean momentum flux
INTEGER, PARAMETER :: jpr_tawx = 55 ! net wave-supported stress
INTEGER, PARAMETER :: jpr_tawy = 56 ! net wave-supported stress
INTEGER, PARAMETER :: jpr_bhd = 57 ! Bernoulli head. waves' induced surface pressure
INTEGER, PARAMETER :: jpr_tusd = 58 ! zonal stokes transport
INTEGER, PARAMETER :: jpr_tvsd = 59 ! meridional stokes tranmport
INTEGER, PARAMETER :: jpr_isf = 60
INTEGER, PARAMETER :: jpr_icb = 61
INTEGER, PARAMETER :: jpr_ts_ice = 62 ! Sea ice surface temp
!!INTEGER, PARAMETER :: jpr_qtrice = 63 ! Transmitted solar thru sea-ice
INTEGER, PARAMETER :: jpr_grnm = 63 ! Greenland ice mass
INTEGER, PARAMETER :: jpr_antm = 64 ! Antarctic ice mass
INTEGER, PARAMETER :: jpr_rnf_1d = 65 ! 1D river runoff
INTEGER, PARAMETER :: jpr_qtr = 66 ! Transmitted solar
#if defined key_medusa
INTEGER, PARAMETER :: jpr_atm_pco2 = 67 ! Incoming atm pCO2 flux
INTEGER, PARAMETER :: jpr_atm_dust = 68 ! Incoming atm aggregate dust
INTEGER, PARAMETER :: jprcv = 69 ! total number of fields received
#else
INTEGER, PARAMETER :: jprcv = 66 ! total number of fields received
#endif
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
INTEGER, PARAMETER :: jps_fice = 1 ! ice fraction sent to the atmosphere
INTEGER, PARAMETER :: jps_toce = 2 ! ocean temperature
INTEGER, PARAMETER :: jps_tice = 3 ! ice temperature
INTEGER, PARAMETER :: jps_tmix = 4 ! mixed temperature (ocean+ice)
INTEGER, PARAMETER :: jps_albice = 5 ! ice albedo
INTEGER, PARAMETER :: jps_albmix = 6 ! mixed albedo
INTEGER, PARAMETER :: jps_hice = 7 ! ice thickness
INTEGER, PARAMETER :: jps_hsnw = 8 ! snow thickness
INTEGER, PARAMETER :: jps_ocx1 = 9 ! ocean current on grid 1
INTEGER, PARAMETER :: jps_ocy1 = 10 !
INTEGER, PARAMETER :: jps_ocz1 = 11 !
INTEGER, PARAMETER :: jps_ivx1 = 12 ! ice current on grid 1
INTEGER, PARAMETER :: jps_ivy1 = 13 !
INTEGER, PARAMETER :: jps_ivz1 = 14 !
INTEGER, PARAMETER :: jps_co2 = 15
INTEGER, PARAMETER :: jps_soce = 16 ! ocean salinity
INTEGER, PARAMETER :: jps_ssh = 17 ! sea surface height
INTEGER, PARAMETER :: jps_qsroce = 18 ! Qsr above the ocean
INTEGER, PARAMETER :: jps_qnsoce = 19 ! Qns above the ocean
INTEGER, PARAMETER :: jps_oemp = 20 ! ocean freshwater budget (evap - precip)
INTEGER, PARAMETER :: jps_sflx = 21 ! salt flux
INTEGER, PARAMETER :: jps_otx1 = 22 ! 2 atmosphere-ocean stress components on grid 1
INTEGER, PARAMETER :: jps_oty1 = 23 !
INTEGER, PARAMETER :: jps_rnf = 24 ! runoffs
INTEGER, PARAMETER :: jps_taum = 25 ! wind stress module
INTEGER, PARAMETER :: jps_fice2 = 26 ! ice fraction sent to OCE (by SAS when doing SAS-OCE coupling)
INTEGER, PARAMETER :: jps_e3t1st = 27 ! first level depth (vvl)
INTEGER, PARAMETER :: jps_fraqsr = 28 ! fraction of solar net radiation absorbed in the first ocean level
INTEGER, PARAMETER :: jps_ficet = 29 ! total ice fraction
INTEGER, PARAMETER :: jps_ocxw = 30 ! currents on grid 1
INTEGER, PARAMETER :: jps_ocyw = 31 ! currents on grid 2
INTEGER, PARAMETER :: jps_wlev = 32 ! water level
INTEGER, PARAMETER :: jps_fice1 = 33 ! first-order ice concentration (for semi-implicit coupling of atmos-ice fluxes)
INTEGER, PARAMETER :: jps_a_p = 34 ! meltpond area fraction
INTEGER, PARAMETER :: jps_ht_p = 35 ! meltpond thickness
INTEGER, PARAMETER :: jps_kice = 36 ! sea ice effective conductivity
INTEGER, PARAMETER :: jps_sstfrz = 37 ! sea surface freezing temperature
INTEGER, PARAMETER :: jps_ttilyr = 38 ! sea ice top layer temp
#if defined key_medusa
INTEGER, PARAMETER :: jps_bio_co2 = 39 ! MEDUSA air-sea CO2 flux
INTEGER, PARAMETER :: jps_bio_dms = 40 ! MEDUSA DMS surface concentration
INTEGER, PARAMETER :: jps_bio_chloro = 41 ! MEDUSA chlorophyll surface concentration
INTEGER, PARAMETER :: jpsnd = 41 ! total number of fields sent
#else
INTEGER, PARAMETER :: jpsnd = 38 ! total number of fields sent
#if ! defined key_oasis3
! Dummy variables to enable compilation when oasis3 is not being used
INTEGER :: OASIS_Sent = -1
INTEGER :: OASIS_SentOut = -1
INTEGER :: OASIS_ToRest = -1
INTEGER :: OASIS_ToRestOut = -1
#endif
! !!** namelist namsbc_cpl **
TYPE :: FLD_C !
CHARACTER(len = 32) :: cldes ! desciption of the coupling strategy
CHARACTER(len = 32) :: clcat ! multiple ice categories strategy
CHARACTER(len = 32) :: clvref ! reference of vector ('spherical' or 'cartesian')
CHARACTER(len = 32) :: clvor ! orientation of vector fields ('eastward-northward' or 'local grid')
CHARACTER(len = 32) :: clvgrd ! grids on which is located the vector fields
END TYPE FLD_C
! ! Send to the atmosphere
TYPE(FLD_C) :: sn_snd_temp , sn_snd_alb , sn_snd_thick, sn_snd_crt , sn_snd_co2, &
& sn_snd_thick1, sn_snd_cond, sn_snd_mpnd , sn_snd_sstfrz, sn_snd_ttilyr
! ! Received from the atmosphere
#if defined key_medusa
TYPE(FLD_C) :: sn_snd_bio_co2, sn_snd_bio_dms, sn_snd_bio_chloro
#endif
TYPE(FLD_C) :: sn_rcv_w10m, sn_rcv_taumod, sn_rcv_tau, sn_rcv_tauw, sn_rcv_dqnsdt, sn_rcv_qsr, &
TYPE(FLD_C) :: sn_rcv_cal, sn_rcv_iceflx, sn_rcv_co2, sn_rcv_mslp, sn_rcv_icb, sn_rcv_isf, &
sn_rcv_grnm, sn_rcv_antm
#if defined key_medusa
TYPE(FLD_C) :: sn_rcv_atm_pco2, sn_rcv_atm_dust
#endif
! Send to waves
TYPE(FLD_C) :: sn_snd_ifrac, sn_snd_crtw, sn_snd_wlev
TYPE(FLD_C) :: sn_rcv_hsig, sn_rcv_phioc, sn_rcv_sdrfx, sn_rcv_sdrfy, sn_rcv_wper, sn_rcv_wnum, &
& sn_rcv_wstrf, sn_rcv_wdrag, sn_rcv_charn, sn_rcv_taw, sn_rcv_bhd, sn_rcv_tusd, sn_rcv_tvsd
! Received from waves
TYPE(FLD_C) :: sn_rcv_tauwoc, sn_rcv_wfreq
! Transmitted solar
TYPE(FLD_C) :: sn_rcv_qtr
! ! Other namelist parameters
!! TYPE(FLD_C) :: sn_rcv_qtrice
INTEGER :: nn_cplmodel ! Maximum number of models to/from which NEMO is potentialy sending/receiving data
LOGICAL :: ln_usecplmask ! use a coupling mask file to merge data received from several models
! -> file cplmask.nc with the float variable called cplmask (jpi,jpj,nn_cplmodel)
LOGICAL :: ln_scale_ice_flux ! use ice fluxes that are already "ice weighted" ( i.e. multiplied ice concentration)
LOGICAL :: ln_couple_ocean_evap ! Do we couple total (ocean+sea ice) evaporation (FALSE)
! or ocean only evaporation (TRUE)
TYPE :: DYNARR
REAL(wp), POINTER, DIMENSION(:,:,:) :: z3
END TYPE DYNARR
TYPE( DYNARR ), SAVE, DIMENSION(jprcv) :: frcv ! all fields recieved from the atmosphere
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: alb_oce_mix ! ocean albedo sent to atmosphere (mix clear/overcast sky)
INTEGER , ALLOCATABLE, SAVE, DIMENSION(:) :: nrcvinfo ! OASIS info argument
!! Substitution
# include "do_loop_substitute.h90"

sparonuz
committed
# include "single_precision_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)

Guillaume Samson
committed
!! $Id: sbccpl.F90 15551 2021-11-28 20:19:36Z gsamson $
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
INTEGER FUNCTION sbc_cpl_alloc()
!!----------------------------------------------------------------------
!! *** FUNCTION sbc_cpl_alloc ***
!!----------------------------------------------------------------------
INTEGER :: ierr(4)
!!----------------------------------------------------------------------
ierr(:) = 0
!
ALLOCATE( alb_oce_mix(jpi,jpj), nrcvinfo(jprcv), STAT=ierr(1) )
#if ! defined key_si3 && ! defined key_cice
ALLOCATE( a_i(jpi,jpj,1) , STAT=ierr(2) ) ! used in sbcice_if.F90 (done here as there is no sbc_ice_if_init)
#endif
ALLOCATE( xcplmask(jpi,jpj,0:nn_cplmodel) , STAT=ierr(3) )
!
IF( .NOT. ln_apr_dyn ) ALLOCATE( ssh_ib(jpi,jpj), ssh_ibb(jpi,jpj), apr(jpi, jpj), STAT=ierr(4) )
sbc_cpl_alloc = MAXVAL( ierr )
CALL mpp_sum ( 'sbccpl', sbc_cpl_alloc )
IF( sbc_cpl_alloc > 0 ) CALL ctl_warn('sbc_cpl_alloc: allocation of arrays failed')
!
END FUNCTION sbc_cpl_alloc
SUBROUTINE sbc_cpl_init( k_ice )
!!----------------------------------------------------------------------
!! *** ROUTINE sbc_cpl_init ***
!!
!! ** Purpose : Initialisation of send and received information from
!! the atmospheric component
!!
!! ** Method : * Read namsbc_cpl namelist
!! * define the receive interface
!! * define the send interface
!! * initialise the OASIS coupler
!!----------------------------------------------------------------------
INTEGER, INTENT(in) :: k_ice ! ice management in the sbc (=0/1/2/3)
!
INTEGER :: jn ! dummy loop index
INTEGER :: ios, inum ! Local integer
REAL(wp), DIMENSION(jpi,jpj) :: zacs, zaos
!!
NAMELIST/namsbc_cpl/ nn_cplmodel , ln_usecplmask, nn_cats_cpl , ln_scale_ice_flux, &
& sn_snd_temp , sn_snd_alb , sn_snd_thick, sn_snd_crt , sn_snd_co2 , &
& sn_snd_ttilyr, sn_snd_cond , sn_snd_mpnd , sn_snd_sstfrz, sn_snd_thick1, &
& sn_snd_ifrac , sn_snd_crtw , sn_snd_wlev , sn_rcv_hsig , sn_rcv_phioc , &
& sn_rcv_w10m , sn_rcv_taumod, sn_rcv_tau , sn_rcv_dqnsdt, sn_rcv_qsr , &
& sn_rcv_sdrfx , sn_rcv_sdrfy , sn_rcv_wper , sn_rcv_wnum , sn_rcv_wstrf , &
& sn_rcv_charn , sn_rcv_taw , sn_rcv_bhd , sn_rcv_tusd , sn_rcv_tvsd, &
& sn_rcv_wdrag , sn_rcv_qns , sn_rcv_emp , sn_rcv_rnf , sn_rcv_cal , &
& sn_rcv_iceflx, sn_rcv_co2 , sn_rcv_icb , sn_rcv_isf , sn_rcv_ts_ice, & !!, sn_rcv_qtrice
& sn_rcv_mslp, &
sn_rcv_grnm , sn_rcv_antm , &
& nn_coupled_iceshelf_fluxes , ln_iceshelf_init_atmos , &
& rn_greenland_total_fw_flux , rn_greenland_calving_fraction , &
& rn_antarctica_total_fw_flux , rn_antarctica_calving_fraction , &
#if defined key_medusa
& rn_iceshelf_fluxes_tolerance, &
! Add MEDUSA related fields to namelist
sn_snd_bio_co2 , sn_snd_bio_dms, sn_snd_bio_chloro, &
& sn_rcv_atm_pco2, sn_rcv_atm_dust
#else
& rn_iceshelf_fluxes_tolerance
#endif
!!---------------------------------------------------------------------
!
! ================================ !
! Namelist informations !
! ================================ !
!
IF (ln_timing) CALL timing_start('sbc_cpl_init')
READ ( numnam_ref, namsbc_cpl, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_cpl in reference namelist' )
!
READ ( numnam_cfg, namsbc_cpl, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_cpl in configuration namelist' )
IF(lwm) WRITE ( numond, namsbc_cpl )
!
IF(lwp) THEN ! control print
WRITE(numout,*)
WRITE(numout,*)'sbc_cpl_init : namsbc_cpl namelist '
WRITE(numout,*)'~~~~~~~~~~~~'
ENDIF
IF( lwp .AND. ln_cpl ) THEN ! control print
WRITE(numout,*)' nn_cplmodel = ', nn_cplmodel
WRITE(numout,*)' ln_usecplmask = ', ln_usecplmask
WRITE(numout,*)' ln_scale_ice_flux = ', ln_scale_ice_flux
WRITE(numout,*)' ln_couple_ocean_evap = ', ln_couple_ocean_evap
WRITE(numout,*)' nn_cats_cpl = ', nn_cats_cpl
WRITE(numout,*)' received fields (mutiple ice categogies)'
WRITE(numout,*)' 10m wind module = ', TRIM(sn_rcv_w10m%cldes ), ' (', TRIM(sn_rcv_w10m%clcat ), ')'
WRITE(numout,*)' stress module = ', TRIM(sn_rcv_taumod%cldes), ' (', TRIM(sn_rcv_taumod%clcat), ')'
WRITE(numout,*)' surface stress = ', TRIM(sn_rcv_tau%cldes ), ' (', TRIM(sn_rcv_tau%clcat ), ')'
WRITE(numout,*)' - referential = ', sn_rcv_tau%clvref
WRITE(numout,*)' - orientation = ', sn_rcv_tau%clvor
WRITE(numout,*)' - mesh = ', sn_rcv_tau%clvgrd
WRITE(numout,*)' non-solar heat flux sensitivity = ', TRIM(sn_rcv_dqnsdt%cldes), ' (', TRIM(sn_rcv_dqnsdt%clcat), ')'
WRITE(numout,*)' solar heat flux = ', TRIM(sn_rcv_qsr%cldes ), ' (', TRIM(sn_rcv_qsr%clcat ), ')'
WRITE(numout,*)' non-solar heat flux = ', TRIM(sn_rcv_qns%cldes ), ' (', TRIM(sn_rcv_qns%clcat ), ')'
WRITE(numout,*)' freshwater budget = ', TRIM(sn_rcv_emp%cldes ), ' (', TRIM(sn_rcv_emp%clcat ), ')'
WRITE(numout,*)' runoffs = ', TRIM(sn_rcv_rnf%cldes ), ' (', TRIM(sn_rcv_rnf%clcat ), ')'
WRITE(numout,*)' calving = ', TRIM(sn_rcv_cal%cldes ), ' (', TRIM(sn_rcv_cal%clcat ), ')'
WRITE(numout,*)' Greenland ice mass = ', TRIM(sn_rcv_grnm%cldes ), ' (', TRIM(sn_rcv_grnm%clcat ), ')'
WRITE(numout,*)' Antarctica ice mass = ', TRIM(sn_rcv_antm%cldes ), ' (', TRIM(sn_rcv_antm%clcat ), ')'
WRITE(numout,*)' iceberg = ', TRIM(sn_rcv_icb%cldes ), ' (', TRIM(sn_rcv_icb%clcat ), ')'
WRITE(numout,*)' ice shelf = ', TRIM(sn_rcv_isf%cldes ), ' (', TRIM(sn_rcv_isf%clcat ), ')'
WRITE(numout,*)' sea ice heat fluxes = ', TRIM(sn_rcv_iceflx%cldes), ' (', TRIM(sn_rcv_iceflx%clcat), ')'
WRITE(numout,*)' transmitted solar = ', TRIM(sn_rcv_qtr%cldes ), ' (', TRIM(sn_rcv_qtr%clcat ), ')'
WRITE(numout,*)' atm co2 = ', TRIM(sn_rcv_co2%cldes ), ' (', TRIM(sn_rcv_co2%clcat ), ')'
WRITE(numout,*)' Sea ice surface skin temperature= ', TRIM(sn_rcv_ts_ice%cldes), ' (', TRIM(sn_rcv_ts_ice%clcat), ')'
WRITE(numout,*)' surface waves:'
WRITE(numout,*)' significant wave heigth = ', TRIM(sn_rcv_hsig%cldes ), ' (', TRIM(sn_rcv_hsig%clcat ), ')'
WRITE(numout,*)' wave to oce energy flux = ', TRIM(sn_rcv_phioc%cldes ), ' (', TRIM(sn_rcv_phioc%clcat ), ')'
WRITE(numout,*)' Surface Stokes drift grid u = ', TRIM(sn_rcv_sdrfx%cldes ), ' (', TRIM(sn_rcv_sdrfx%clcat ), ')'
WRITE(numout,*)' Surface Stokes drift grid v = ', TRIM(sn_rcv_sdrfy%cldes ), ' (', TRIM(sn_rcv_sdrfy%clcat ), ')'
WRITE(numout,*)' Mean wave period = ', TRIM(sn_rcv_wper%cldes ), ' (', TRIM(sn_rcv_wper%clcat ), ')'
WRITE(numout,*)' Mean wave number = ', TRIM(sn_rcv_wnum%cldes ), ' (', TRIM(sn_rcv_wnum%clcat ), ')'
WRITE(numout,*)' Stress frac adsorbed by waves = ', TRIM(sn_rcv_wstrf%cldes ), ' (', TRIM(sn_rcv_wstrf%clcat ), ')'
WRITE(numout,*)' Neutral surf drag coefficient = ', TRIM(sn_rcv_wdrag%cldes ), ' (', TRIM(sn_rcv_wdrag%clcat ), ')'
WRITE(numout,*)' Charnock coefficient = ', TRIM(sn_rcv_charn%cldes ), ' (', TRIM(sn_rcv_charn%clcat ), ')'
WRITE(numout,*)' sent fields (multiple ice categories)'
WRITE(numout,*)' surface temperature = ', TRIM(sn_snd_temp%cldes ), ' (', TRIM(sn_snd_temp%clcat ), ')'
WRITE(numout,*)' top ice layer temperature = ', TRIM(sn_snd_ttilyr%cldes), ' (', TRIM(sn_snd_ttilyr%clcat), ')'
WRITE(numout,*)' albedo = ', TRIM(sn_snd_alb%cldes ), ' (', TRIM(sn_snd_alb%clcat ), ')'
WRITE(numout,*)' ice/snow thickness = ', TRIM(sn_snd_thick%cldes ), ' (', TRIM(sn_snd_thick%clcat ), ')'
WRITE(numout,*)' total ice fraction = ', TRIM(sn_snd_ifrac%cldes ), ' (', TRIM(sn_snd_ifrac%clcat ), ')'
WRITE(numout,*)' surface current = ', TRIM(sn_snd_crt%cldes ), ' (', TRIM(sn_snd_crt%clcat ), ')'
WRITE(numout,*)' - referential = ', sn_snd_crt%clvref
WRITE(numout,*)' - orientation = ', sn_snd_crt%clvor
WRITE(numout,*)' - mesh = ', sn_snd_crt%clvgrd
#if defined key_medusa
WRITE(numout,*)' bio co2 flux = ', TRIM(sn_snd_bio_co2%cldes),' (', TRIM(sn_snd_bio_co2%clcat), ')'
WRITE(numout,*)' bio dms flux = ', TRIM(sn_snd_bio_dms%cldes),' (', TRIM(sn_snd_bio_dms%clcat), ')'
WRITE(numout,*)' bio dms chlorophyll = ', TRIM(sn_snd_bio_chloro%cldes), ' (', TRIM(sn_snd_bio_chloro%clcat), ')'
#endif
WRITE(numout,*)' oce co2 flux = ', TRIM(sn_snd_co2%cldes ), ' (', TRIM(sn_snd_co2%clcat ), ')'
WRITE(numout,*)' ice effective conductivity = ', TRIM(sn_snd_cond%cldes ), ' (', TRIM(sn_snd_cond%clcat ), ')'
WRITE(numout,*)' meltponds fraction and depth = ', TRIM(sn_snd_mpnd%cldes ), ' (', TRIM(sn_snd_mpnd%clcat ), ')'
WRITE(numout,*)' sea surface freezing temp = ', TRIM(sn_snd_sstfrz%cldes), ' (', TRIM(sn_snd_sstfrz%clcat), ')'
WRITE(numout,*)' water level = ', TRIM(sn_snd_wlev%cldes ), ' (', TRIM(sn_snd_wlev%clcat ), ')'
WRITE(numout,*)' mean sea level pressure = ', TRIM(sn_rcv_mslp%cldes ), ' (', TRIM(sn_rcv_mslp%clcat ), ')'
WRITE(numout,*)' surface current to waves = ', TRIM(sn_snd_crtw%cldes ), ' (', TRIM(sn_snd_crtw%clcat ), ')'
WRITE(numout,*)' - referential = ', sn_snd_crtw%clvref
WRITE(numout,*)' - orientation = ', sn_snd_crtw%clvor
WRITE(numout,*)' - mesh = ', sn_snd_crtw%clvgrd
#if defined key_medusa
WRITE(numout,*)' atm pco2 = ', TRIM(sn_rcv_atm_pco2%cldes),'(', TRIM(sn_rcv_atm_pco2%clcat ), ')'
WRITE(numout,*)' atm dust = ', TRIM(sn_rcv_atm_dust%cldes),'(', TRIM(sn_rcv_atm_dust%clcat),')'
#endif
WRITE(numout,*)' nn_coupled_iceshelf_fluxes = ', nn_coupled_iceshelf_fluxes
WRITE(numout,*)' ln_iceshelf_init_atmos = ', ln_iceshelf_init_atmos
WRITE(numout,*)' rn_greenland_total_fw_flux = ', rn_greenland_total_fw_flux
WRITE(numout,*)' rn_antarctica_total_fw_flux = ', rn_antarctica_total_fw_flux
WRITE(numout,*)' rn_greenland_calving_fraction = ', rn_greenland_calving_fraction
WRITE(numout,*)' rn_antarctica_calving_fraction = ', rn_antarctica_calving_fraction
WRITE(numout,*)' rn_iceshelf_fluxes_tolerance = ', rn_iceshelf_fluxes_tolerance
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
ENDIF
IF( lwp .AND. ln_wave) THEN ! control print
WRITE(numout,*)' surface waves:'
WRITE(numout,*)' Significant wave heigth = ', TRIM(sn_rcv_hsig%cldes ), ' (', TRIM(sn_rcv_hsig%clcat ), ')'
WRITE(numout,*)' Wave to oce energy flux = ', TRIM(sn_rcv_phioc%cldes ), ' (', TRIM(sn_rcv_phioc%clcat ), ')'
WRITE(numout,*)' Surface Stokes drift grid u = ', TRIM(sn_rcv_sdrfx%cldes ), ' (', TRIM(sn_rcv_sdrfx%clcat ), ')'
WRITE(numout,*)' Surface Stokes drift grid v = ', TRIM(sn_rcv_sdrfy%cldes ), ' (', TRIM(sn_rcv_sdrfy%clcat ), ')'
WRITE(numout,*)' Mean wave period = ', TRIM(sn_rcv_wper%cldes ), ' (', TRIM(sn_rcv_wper%clcat ), ')'
WRITE(numout,*)' Mean wave number = ', TRIM(sn_rcv_wnum%cldes ), ' (', TRIM(sn_rcv_wnum%clcat ), ')'
WRITE(numout,*)' Stress frac adsorbed by waves = ', TRIM(sn_rcv_wstrf%cldes ), ' (', TRIM(sn_rcv_wstrf%clcat ), ')'
WRITE(numout,*)' Neutral surf drag coefficient = ', TRIM(sn_rcv_wdrag%cldes ), ' (', TRIM(sn_rcv_wdrag%clcat ), ')'
WRITE(numout,*)' Charnock coefficient = ', TRIM(sn_rcv_charn%cldes ), ' (', TRIM(sn_rcv_charn%clcat ), ')'
WRITE(numout,*)' Transport associated to Stokes drift grid u = ', TRIM(sn_rcv_tusd%cldes ), ' (', TRIM(sn_rcv_tusd%clcat ), ')'
WRITE(numout,*)' Transport associated to Stokes drift grid v = ', TRIM(sn_rcv_tvsd%cldes ), ' (', TRIM(sn_rcv_tvsd%clcat ), ')'
WRITE(numout,*)' Bernouilli pressure head = ', TRIM(sn_rcv_bhd%cldes ), ' (', TRIM(sn_rcv_bhd%clcat ), ')'
WRITE(numout,*)'Wave to ocean momentum flux and Net wave-supported stress = ', TRIM(sn_rcv_taw%cldes ), ' (', TRIM(sn_rcv_taw%clcat ), ')'
WRITE(numout,*)' Surface current to waves = ', TRIM(sn_snd_crtw%cldes ), ' (', TRIM(sn_snd_crtw%clcat ), ')'
WRITE(numout,*)' - referential = ', sn_snd_crtw%clvref
WRITE(numout,*)' - orientation = ', sn_snd_crtw%clvor
WRITE(numout,*)' - mesh = ', sn_snd_crtw%clvgrd
ENDIF
! ! allocate sbccpl arrays
IF( sbc_cpl_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_cpl_alloc : unable to allocate arrays' )
! ================================ !
! Define the receive interface !
! ================================ !
nrcvinfo(:) = OASIS_idle ! needed by nrcvinfo(jpr_otx1) if we do not receive ocean stress
! for each field: define the OASIS name (srcv(:)%clname)
! define receive or not from the namelist parameters (srcv(:)%laction)
! define the north fold type of lbc (srcv(:)%nsgn)
! default definitions of srcv
srcv(:)%laction = .FALSE.
srcv(:)%clgrid = 'T'
srcv(:)%nsgn = 1.
srcv(:)%nct = 1
srcv(:)%dimensions = 2
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
! ! ------------------------- !
! ! ice and ocean wind stress !
! ! ------------------------- !
! ! Name
srcv(jpr_otx1)%clname = 'O_OTaux1' ! 1st ocean component on grid ONE (T or U)
srcv(jpr_oty1)%clname = 'O_OTauy1' ! 2nd - - - -
srcv(jpr_otz1)%clname = 'O_OTauz1' ! 3rd - - - -
srcv(jpr_otx2)%clname = 'O_OTaux2' ! 1st ocean component on grid TWO (V)
srcv(jpr_oty2)%clname = 'O_OTauy2' ! 2nd - - - -
srcv(jpr_otz2)%clname = 'O_OTauz2' ! 3rd - - - -
!
srcv(jpr_itx1)%clname = 'O_ITaux1' ! 1st ice component on grid ONE (T, F, I or U)
srcv(jpr_ity1)%clname = 'O_ITauy1' ! 2nd - - - -
srcv(jpr_itz1)%clname = 'O_ITauz1' ! 3rd - - - -
srcv(jpr_itx2)%clname = 'O_ITaux2' ! 1st ice component on grid TWO (V)
srcv(jpr_ity2)%clname = 'O_ITauy2' ! 2nd - - - -
srcv(jpr_itz2)%clname = 'O_ITauz2' ! 3rd - - - -
!
! Vectors: change of sign at north fold ONLY if on the local grid
IF( TRIM( sn_rcv_tau%cldes ) == 'oce only' .OR. TRIM( sn_rcv_tau%cldes ) == 'oce and ice' &
.OR. TRIM( sn_rcv_tau%cldes ) == 'mixed oce-ice' ) THEN ! avoid working with the atmospheric fields if they are not coupled
!
IF( TRIM( sn_rcv_tau%clvor ) == 'local grid' ) srcv(jpr_otx1:jpr_itz2)%nsgn = -1.
! ! Set grid and action
SELECT CASE( TRIM( sn_rcv_tau%clvgrd ) ) ! 'T', 'U,V', 'U,V,I', 'U,V,F', 'T,I', 'T,F', or 'T,U,V'
CASE( 'T' )
srcv(jpr_otx1:jpr_itz2)%clgrid = 'T' ! oce and ice components given at T-point
srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1
srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1
CASE( 'U,V' )
srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point
srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point
srcv(jpr_itx1:jpr_itz1)%clgrid = 'U' ! ice components given at U-point
srcv(jpr_itx2:jpr_itz2)%clgrid = 'V' ! and V-point
srcv(jpr_otx1:jpr_itz2)%laction = .TRUE. ! receive oce and ice components on both grid 1 & 2
CASE( 'U,V,T' )
srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point
srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point
srcv(jpr_itx1:jpr_itz1)%clgrid = 'T' ! ice components given at T-point
srcv(jpr_otx1:jpr_otz2)%laction = .TRUE. ! receive oce components on grid 1 & 2
srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 only
CASE( 'U,V,I' )
srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point
srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point
srcv(jpr_itx1:jpr_itz1)%clgrid = 'I' ! ice components given at I-point
srcv(jpr_otx1:jpr_otz2)%laction = .TRUE. ! receive oce components on grid 1 & 2
srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 only
CASE( 'U,V,F' )
srcv(jpr_otx1:jpr_otz1)%clgrid = 'U' ! oce components given at U-point
srcv(jpr_otx2:jpr_otz2)%clgrid = 'V' ! and V-point
srcv(jpr_itx1:jpr_itz1)%clgrid = 'F' ! ice components given at F-point
!srcv(jpr_otx1:jpr_otz2)%laction = .TRUE. ! receive oce components on grid 1 & 2
! Currently needed for HadGEM3 - but shouldn't affect anyone else for the moment
srcv(jpr_otx1)%laction = .TRUE.
srcv(jpr_oty1)%laction = .TRUE.
!
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1 only
CASE( 'T,I' )
srcv(jpr_otx1:jpr_itz2)%clgrid = 'T' ! oce and ice components given at T-point
srcv(jpr_itx1:jpr_itz1)%clgrid = 'I' ! ice components given at I-point
srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1
srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1
CASE( 'T,F' )
srcv(jpr_otx1:jpr_itz2)%clgrid = 'T' ! oce and ice components given at T-point
srcv(jpr_itx1:jpr_itz1)%clgrid = 'F' ! ice components given at F-point
srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1
srcv(jpr_itx1:jpr_itz1)%laction = .TRUE. ! receive ice components on grid 1
CASE( 'T,U,V' )
srcv(jpr_otx1:jpr_otz1)%clgrid = 'T' ! oce components given at T-point
srcv(jpr_itx1:jpr_itz1)%clgrid = 'U' ! ice components given at U-point
srcv(jpr_itx2:jpr_itz2)%clgrid = 'V' ! and V-point
srcv(jpr_otx1:jpr_otz1)%laction = .TRUE. ! receive oce components on grid 1 only
srcv(jpr_itx1:jpr_itz2)%laction = .TRUE. ! receive ice components on grid 1 & 2
CASE default
CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_tau%clvgrd' )
END SELECT
!
IF( TRIM( sn_rcv_tau%clvref ) == 'spherical' ) & ! spherical: 3rd component not received
& srcv( (/jpr_otz1, jpr_otz2, jpr_itz1, jpr_itz2/) )%laction = .FALSE.
!
IF( TRIM( sn_rcv_tau%clvor ) == 'local grid' ) THEN ! already on local grid -> no need of the second grid
srcv(jpr_otx2:jpr_otz2)%laction = .FALSE.
srcv(jpr_itx2:jpr_itz2)%laction = .FALSE.
srcv(jpr_oty1)%clgrid = srcv(jpr_oty2)%clgrid ! not needed but cleaner...
srcv(jpr_ity1)%clgrid = srcv(jpr_ity2)%clgrid ! not needed but cleaner...
ENDIF
!
IF( TRIM( sn_rcv_tau%cldes ) /= 'oce and ice' ) THEN ! 'oce and ice' case ocean stress on ocean mesh used
srcv(jpr_itx1:jpr_itz2)%laction = .FALSE. ! ice components not received
srcv(jpr_itx1)%clgrid = 'U' ! ocean stress used after its transformation
srcv(jpr_ity1)%clgrid = 'V' ! i.e. it is always at U- & V-points for i- & j-comp. resp.
ENDIF
ENDIF
! ! ------------------------- !
! ! freshwater budget ! E-P
! ! ------------------------- !
! we suppose that atmosphere modele do not make the difference between precipiration (liquide or solid)
! over ice of free ocean within the same atmospheric cell.cd
srcv(jpr_rain)%clname = 'OTotRain' ! Rain = liquid precipitation
srcv(jpr_snow)%clname = 'OTotSnow' ! Snow = solid precipitation
srcv(jpr_tevp)%clname = 'OTotEvap' ! total evaporation (over oce + ice sublimation)
srcv(jpr_ievp)%clname = 'OIceEvap' ! evaporation over ice = sublimation
srcv(jpr_sbpr)%clname = 'OSubMPre' ! sublimation - liquid precipitation - solid precipitation
srcv(jpr_semp)%clname = 'OISubMSn' ! ice solid water budget = sublimation - solid precipitation
srcv(jpr_oemp)%clname = 'OOEvaMPr' ! ocean water budget = ocean Evap - ocean precip
SELECT CASE( TRIM( sn_rcv_emp%cldes ) )
CASE( 'none' ) ! nothing to do
CASE( 'oce only' ) ; srcv(jpr_oemp)%laction = .TRUE.
CASE( 'conservative' )
srcv( (/jpr_rain, jpr_snow, jpr_ievp, jpr_tevp/) )%laction = .TRUE.
IF( k_ice <= 1 ) srcv(jpr_ievp)%laction = .FALSE.
CASE( 'oce and ice' ) ; srcv( (/jpr_ievp, jpr_sbpr, jpr_semp, jpr_oemp/) )%laction = .TRUE.
CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_emp%cldes' )
END SELECT
!
! ! ------------------------- !
! ! Runoffs & Calving !
! ! ------------------------- !
srcv(jpr_rnf )%clname = 'O_Runoff'
srcv(jpr_rnf_1d )%clname = 'ORunff1D'
IF( TRIM( sn_rcv_rnf%cldes ) == 'coupled' .OR. TRIM( sn_rcv_rnf%cldes ) == 'coupled1d' ) THEN
IF( TRIM( sn_rcv_rnf%cldes ) == 'coupled' ) srcv(jpr_rnf)%laction = .TRUE.
IF( TRIM( sn_rcv_rnf%cldes ) == 'coupled1d' ) THEN
srcv(jpr_rnf_1d)%laction = .TRUE.
srcv(jpr_rnf_1d)%dimensions = 1 ! 1D field passed through coupler
END IF
l_rnfcpl = .TRUE. ! -> no need to read runoffs in sbcrnf
ln_rnf = nn_components /= jp_iam_sas ! -> force to go through sbcrnf if not sas
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' runoffs received from oasis -> force ln_rnf = ', ln_rnf
ENDIF
!
srcv(jpr_cal )%clname = 'OCalving'
IF( TRIM( sn_rcv_cal%cldes ) == 'coupled' ) srcv(jpr_cal)%laction = .TRUE.
srcv(jpr_grnm )%clname = 'OGrnmass'
IF( TRIM( sn_rcv_grnm%cldes ) == 'coupled' ) THEN
srcv(jpr_grnm)%laction = .TRUE.
srcv(jpr_grnm)%dimensions = 0 ! Scalar field
ENDIF
srcv(jpr_antm )%clname = 'OAntmass'
IF( TRIM( sn_rcv_antm%cldes ) == 'coupled' ) THEN
srcv(jpr_antm)%laction = .TRUE.
srcv(jpr_antm)%dimensions = 0 ! Scalar field
ENDIF
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
srcv(jpr_isf)%clname = 'OIcshelf' ; IF( TRIM( sn_rcv_isf%cldes) == 'coupled' ) srcv(jpr_isf)%laction = .TRUE.
srcv(jpr_icb)%clname = 'OIceberg' ; IF( TRIM( sn_rcv_icb%cldes) == 'coupled' ) srcv(jpr_icb)%laction = .TRUE.
IF( srcv(jpr_isf)%laction ) THEN
l_isfoasis = .TRUE. ! -> isf fwf comes from oasis
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' iceshelf received from oasis '
ENDIF
!
!
! ! ------------------------- !
! ! non solar radiation ! Qns
! ! ------------------------- !
srcv(jpr_qnsoce)%clname = 'O_QnsOce'
srcv(jpr_qnsice)%clname = 'O_QnsIce'
srcv(jpr_qnsmix)%clname = 'O_QnsMix'
SELECT CASE( TRIM( sn_rcv_qns%cldes ) )
CASE( 'none' ) ! nothing to do
CASE( 'oce only' ) ; srcv( jpr_qnsoce )%laction = .TRUE.
CASE( 'conservative' ) ; srcv( (/jpr_qnsice, jpr_qnsmix/) )%laction = .TRUE.
CASE( 'oce and ice' ) ; srcv( (/jpr_qnsice, jpr_qnsoce/) )%laction = .TRUE.
CASE( 'mixed oce-ice' ) ; srcv( jpr_qnsmix )%laction = .TRUE.
CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_qns%cldes' )
END SELECT
IF( TRIM( sn_rcv_qns%cldes ) == 'mixed oce-ice' .AND. nn_cats_cpl > 1 ) &
CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qns%cldes not currently allowed to be mixed oce-ice for multi-category ice' )
!
! ! ------------------------- !
! ! solar radiation ! Qsr
! ! ------------------------- !
srcv(jpr_qsroce)%clname = 'O_QsrOce'
srcv(jpr_qsrice)%clname = 'O_QsrIce'
srcv(jpr_qsrmix)%clname = 'O_QsrMix'
SELECT CASE( TRIM( sn_rcv_qsr%cldes ) )
CASE( 'none' ) ! nothing to do
CASE( 'oce only' ) ; srcv( jpr_qsroce )%laction = .TRUE.
CASE( 'conservative' ) ; srcv( (/jpr_qsrice, jpr_qsrmix/) )%laction = .TRUE.
CASE( 'oce and ice' ) ; srcv( (/jpr_qsrice, jpr_qsroce/) )%laction = .TRUE.
CASE( 'mixed oce-ice' ) ; srcv( jpr_qsrmix )%laction = .TRUE.
CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_rcv_qsr%cldes' )
END SELECT
IF( TRIM( sn_rcv_qsr%cldes ) == 'mixed oce-ice' .AND. nn_cats_cpl > 1 ) &
CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qsr%cldes not currently allowed to be mixed oce-ice for multi-category ice' )
!
! ! ------------------------- !
! ! non solar sensitivity ! d(Qns)/d(T)
! ! ------------------------- !
srcv(jpr_dqnsdt)%clname = 'O_dQnsdT'
IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'coupled' ) srcv(jpr_dqnsdt)%laction = .TRUE.
!
! non solar sensitivity mandatory for mixed oce-ice solar radiation coupling technique
IF( TRIM( sn_rcv_dqnsdt%cldes ) == 'none' .AND. TRIM( sn_rcv_qns%cldes ) == 'mixed oce-ice' ) &
& CALL ctl_stop( 'sbc_cpl_init: namsbc_cpl namelist mismatch between sn_rcv_qns%cldes and sn_rcv_dqnsdt%cldes' )
!
! ! ------------------------- !
! ! 10m wind module !
! ! ------------------------- !
srcv(jpr_w10m)%clname = 'O_Wind10' ; IF( TRIM(sn_rcv_w10m%cldes ) == 'coupled' ) srcv(jpr_w10m)%laction = .TRUE.
!
! ! ------------------------- !
! ! wind stress module !
! ! ------------------------- !
srcv(jpr_taum)%clname = 'O_TauMod' ; IF( TRIM(sn_rcv_taumod%cldes) == 'coupled' ) srcv(jpr_taum)%laction = .TRUE.
!
! ! ------------------------- !
! ! Atmospheric CO2 !
! ! ------------------------- !
srcv(jpr_co2 )%clname = 'O_AtmCO2'
IF( TRIM(sn_rcv_co2%cldes ) == 'coupled' ) THEN
srcv(jpr_co2 )%laction = .TRUE.
l_co2cpl = .TRUE.
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' Atmospheric pco2 received from oasis '
IF(lwp) WRITE(numout,*)
ENDIF
#if defined key_medusa
! ! --------------------------------------- !
! ! Incoming CO2 and DUST fluxes for MEDUSA !
! ! --------------------------------------- !
srcv(jpr_atm_pco2)%clname = 'OATMPCO2'
IF (TRIM(sn_rcv_atm_pco2%cldes) == 'medusa') THEN
srcv(jpr_atm_pco2)%laction = .TRUE.
END IF
srcv(jpr_atm_dust)%clname = 'OATMDUST'
IF (TRIM(sn_rcv_atm_dust%cldes) == 'medusa') THEN
srcv(jpr_atm_dust)%laction = .TRUE.
END IF
#endif
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
!
! ! ------------------------- !
! ! Mean Sea Level Pressure !
! ! ------------------------- !
srcv(jpr_mslp)%clname = 'O_MSLP' ; IF( TRIM(sn_rcv_mslp%cldes ) == 'coupled' ) srcv(jpr_mslp)%laction = .TRUE.
!
! ! --------------------------------- !
! ! ice topmelt and conduction flux !
! ! --------------------------------- !
srcv(jpr_topm )%clname = 'OTopMlt'
srcv(jpr_botm )%clname = 'OBotMlt'
IF( TRIM(sn_rcv_iceflx%cldes) == 'coupled' ) THEN
IF( TRIM( sn_rcv_iceflx%clcat ) == 'yes' ) THEN
srcv(jpr_topm:jpr_botm)%nct = nn_cats_cpl
ELSE
CALL ctl_stop( 'sbc_cpl_init: sn_rcv_iceflx%clcat should always be set to yes currently' )
ENDIF
srcv(jpr_topm:jpr_botm)%laction = .TRUE.
ENDIF
!! ! ! --------------------------- !
!! ! ! transmitted solar thru ice !
!! ! ! --------------------------- !
!! srcv(jpr_qtrice)%clname = 'OQtr'
!! IF( TRIM(sn_rcv_qtrice%cldes) == 'coupled' ) THEN
!! IF ( TRIM( sn_rcv_qtrice%clcat ) == 'yes' ) THEN
!! srcv(jpr_qtrice)%nct = nn_cats_cpl
!! ELSE
!! CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qtrice%clcat should always be set to yes currently' )
!! ENDIF
!! srcv(jpr_qtrice)%laction = .TRUE.
!! ENDIF
! ! ------------------------- !
! ! transmitted solar !
! ! ------------------------- !
srcv(jpr_qtr )%clname = 'OQtr'
IF( TRIM(sn_rcv_qtr%cldes) == 'coupled' ) THEN
IF ( TRIM( sn_rcv_qtr%clcat ) == 'yes' ) THEN
srcv(jpr_qtr)%nct = nn_cats_cpl
ELSE
CALL ctl_stop( 'sbc_cpl_init: sn_rcv_qtr%clcat should always be set to yes currently' )
ENDIF
srcv(jpr_qtr)%laction = .TRUE.
ENDIF
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
! ! ------------------------- !
! ! ice skin temperature !
! ! ------------------------- !
srcv(jpr_ts_ice)%clname = 'OTsfIce' ! needed by Met Office
IF( TRIM( sn_rcv_ts_ice%cldes ) == 'ice' ) srcv(jpr_ts_ice)%laction = .TRUE.
IF( TRIM( sn_rcv_ts_ice%clcat ) == 'yes' ) srcv(jpr_ts_ice)%nct = nn_cats_cpl
IF( TRIM( sn_rcv_emp%clcat ) == 'yes' ) srcv(jpr_ievp)%nct = nn_cats_cpl
#if defined key_si3
IF( ln_cndflx .AND. .NOT.ln_cndemulate ) THEN
IF( .NOT.srcv(jpr_ts_ice)%laction ) &
& CALL ctl_stop( 'sbc_cpl_init: srcv(jpr_ts_ice)%laction should be set to true when ln_cndflx=T' )
ENDIF
#endif
! ! ------------------------- !
! ! Wave breaking !
! ! ------------------------- !
srcv(jpr_hsig)%clname = 'O_Hsigwa' ! significant wave height
IF( TRIM(sn_rcv_hsig%cldes ) == 'coupled' ) THEN
srcv(jpr_hsig)%laction = .TRUE.
cpl_hsig = .TRUE.
ENDIF
srcv(jpr_phioc)%clname = 'O_PhiOce' ! wave to ocean energy
IF( TRIM(sn_rcv_phioc%cldes ) == 'coupled' ) THEN
srcv(jpr_phioc)%laction = .TRUE.
cpl_phioc = .TRUE.
ENDIF
srcv(jpr_sdrftx)%clname = 'O_Sdrfx' ! Stokes drift in the u direction
IF( TRIM(sn_rcv_sdrfx%cldes ) == 'coupled' ) THEN
srcv(jpr_sdrftx)%laction = .TRUE.
cpl_sdrftx = .TRUE.
ENDIF
srcv(jpr_sdrfty)%clname = 'O_Sdrfy' ! Stokes drift in the v direction
IF( TRIM(sn_rcv_sdrfy%cldes ) == 'coupled' ) THEN
srcv(jpr_sdrfty)%laction = .TRUE.
cpl_sdrfty = .TRUE.
ENDIF
srcv(jpr_wper)%clname = 'O_WPer' ! mean wave period
IF( TRIM(sn_rcv_wper%cldes ) == 'coupled' ) THEN
srcv(jpr_wper)%laction = .TRUE.
cpl_wper = .TRUE.
ENDIF
srcv(jpr_wnum)%clname = 'O_WNum' ! mean wave number
IF( TRIM(sn_rcv_wnum%cldes ) == 'coupled' ) THEN
srcv(jpr_wnum)%laction = .TRUE.
cpl_wnum = .TRUE.
ENDIF
srcv(jpr_wstrf)%clname = 'O_WStrf' ! stress fraction adsorbed by the wave
IF( TRIM(sn_rcv_wstrf%cldes ) == 'coupled' ) THEN
srcv(jpr_wstrf)%laction = .TRUE.
cpl_wstrf = .TRUE.
ENDIF
srcv(jpr_wdrag)%clname = 'O_WDrag' ! neutral surface drag coefficient
IF( TRIM(sn_rcv_wdrag%cldes ) == 'coupled' ) THEN
srcv(jpr_wdrag)%laction = .TRUE.
cpl_wdrag = .TRUE.
ENDIF
srcv(jpr_charn)%clname = 'O_Charn' ! Chranock coefficient
IF( TRIM(sn_rcv_charn%cldes ) == 'coupled' ) THEN
srcv(jpr_charn)%laction = .TRUE.
cpl_charn = .TRUE.
ENDIF
srcv(jpr_bhd)%clname = 'O_Bhd' ! Bernoulli head. waves' induced surface pressure
IF( TRIM(sn_rcv_bhd%cldes ) == 'coupled' ) THEN
srcv(jpr_bhd)%laction = .TRUE.
cpl_bhd = .TRUE.
ENDIF
srcv(jpr_tusd)%clname = 'O_Tusd' ! zonal stokes transport
IF( TRIM(sn_rcv_tusd%cldes ) == 'coupled' ) THEN
srcv(jpr_tusd)%laction = .TRUE.
cpl_tusd = .TRUE.
ENDIF
srcv(jpr_tvsd)%clname = 'O_Tvsd' ! meridional stokes tranmport
IF( TRIM(sn_rcv_tvsd%cldes ) == 'coupled' ) THEN
srcv(jpr_tvsd)%laction = .TRUE.
cpl_tvsd = .TRUE.
ENDIF
srcv(jpr_twox)%clname = 'O_Twox' ! wave to ocean momentum flux in the u direction
srcv(jpr_twoy)%clname = 'O_Twoy' ! wave to ocean momentum flux in the v direction
srcv(jpr_tawx)%clname = 'O_Tawx' ! Net wave-supported stress in the u direction
srcv(jpr_tawy)%clname = 'O_Tawy' ! Net wave-supported stress in the v direction
IF( TRIM(sn_rcv_taw%cldes ) == 'coupled' ) THEN
srcv(jpr_twox)%laction = .TRUE.
srcv(jpr_twoy)%laction = .TRUE.
srcv(jpr_tawx)%laction = .TRUE.
srcv(jpr_tawy)%laction = .TRUE.
cpl_taw = .TRUE.
ENDIF
!
! ! ------------------------------- !
! ! OCE-SAS coupling - rcv by opa !
! ! ------------------------------- !
srcv(jpr_sflx)%clname = 'O_SFLX'
srcv(jpr_fice)%clname = 'RIceFrc'
!
IF( nn_components == jp_iam_oce ) THEN ! OCE coupled to SAS via OASIS: force received field by OCE (sent by SAS)
srcv(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling
srcv(:)%clgrid = 'T' ! force default definition in case of opa <-> sas coupling
srcv(:)%nsgn = 1. ! force default definition in case of opa <-> sas coupling
srcv( (/jpr_qsroce, jpr_qnsoce, jpr_oemp, jpr_sflx, jpr_fice, jpr_otx1, jpr_oty1, jpr_taum/) )%laction = .TRUE.
srcv(jpr_otx1)%clgrid = 'U' ! oce components given at U-point
srcv(jpr_oty1)%clgrid = 'V' ! and V-point
! Vectors: change of sign at north fold ONLY if on the local grid
srcv( (/jpr_otx1,jpr_oty1/) )%nsgn = -1.
sn_rcv_tau%clvgrd = 'U,V'
sn_rcv_tau%clvor = 'local grid'
sn_rcv_tau%clvref = 'spherical'
sn_rcv_emp%cldes = 'oce only'
!
IF(lwp) THEN ! control print
WRITE(numout,*)
WRITE(numout,*)' Special conditions for SAS-OCE coupling '
WRITE(numout,*)' OCE component '
WRITE(numout,*)
WRITE(numout,*)' received fields from SAS component '
WRITE(numout,*)' ice cover '
WRITE(numout,*)' oce only EMP '
WRITE(numout,*)' salt flux '
WRITE(numout,*)' mixed oce-ice solar flux '
WRITE(numout,*)' mixed oce-ice non solar flux '
WRITE(numout,*)' wind stress U,V on local grid and sperical coordinates '
WRITE(numout,*)' wind stress module'
WRITE(numout,*)
ENDIF
ENDIF
! ! -------------------------------- !
! ! OCE-SAS coupling - rcv by sas !
! ! -------------------------------- !
srcv(jpr_toce )%clname = 'I_SSTSST'
srcv(jpr_soce )%clname = 'I_SSSal'
srcv(jpr_ocx1 )%clname = 'I_OCurx1'
srcv(jpr_ocy1 )%clname = 'I_OCury1'
srcv(jpr_ssh )%clname = 'I_SSHght'
srcv(jpr_e3t1st)%clname = 'I_E3T1st'
srcv(jpr_fraqsr)%clname = 'I_FraQsr'
!
IF( nn_components == jp_iam_sas ) THEN
IF( .NOT. ln_cpl ) srcv(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling
IF( .NOT. ln_cpl ) srcv(:)%clgrid = 'T' ! force default definition in case of opa <-> sas coupling
IF( .NOT. ln_cpl ) srcv(:)%nsgn = 1. ! force default definition in case of opa <-> sas coupling
srcv( (/jpr_toce, jpr_soce, jpr_ssh, jpr_fraqsr, jpr_ocx1, jpr_ocy1/) )%laction = .TRUE.
srcv( jpr_e3t1st )%laction = .NOT.ln_linssh
srcv(jpr_ocx1)%clgrid = 'U' ! oce components given at U-point
srcv(jpr_ocy1)%clgrid = 'V' ! and V-point
! Vectors: change of sign at north fold ONLY if on the local grid
srcv(jpr_ocx1:jpr_ocy1)%nsgn = -1.
! Change first letter to couple with atmosphere if already coupled OCE
! this is nedeed as each variable name used in the namcouple must be unique:
! for example O_Runoff received by OCE from SAS and therefore S_Runoff received by SAS from the Atmosphere
DO jn = 1, jprcv
IF( srcv(jn)%clname(1:1) == "O" ) srcv(jn)%clname = "S"//srcv(jn)%clname(2:LEN(srcv(jn)%clname))
END DO
!
IF(lwp) THEN ! control print
WRITE(numout,*)
WRITE(numout,*)' Special conditions for SAS-OCE coupling '
WRITE(numout,*)' SAS component '
WRITE(numout,*)
IF( .NOT. ln_cpl ) THEN
WRITE(numout,*)' received fields from OCE component '
ELSE
WRITE(numout,*)' Additional received fields from OCE component : '
ENDIF
WRITE(numout,*)' sea surface temperature (Celsius) '
WRITE(numout,*)' sea surface salinity '
WRITE(numout,*)' surface currents '
WRITE(numout,*)' sea surface height '
WRITE(numout,*)' thickness of first ocean T level '
WRITE(numout,*)' fraction of solar net radiation absorbed in the first ocean level'
WRITE(numout,*)
ENDIF
ENDIF
! ================================ !
! Define the send interface !
! ================================ !
! for each field: define the OASIS name (ssnd(:)%clname)
! define send or not from the namelist parameters (ssnd(:)%laction)
! define the north fold type of lbc (ssnd(:)%nsgn)
! default definitions of nsnd
ssnd(:)%laction = .FALSE.
ssnd(:)%clgrid = 'T'
ssnd(:)%nsgn = 1.
ssnd(:)%nct = 1
ssnd(:)%dimensions = 2
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
! ! ------------------------- !
! ! Surface temperature !
! ! ------------------------- !
ssnd(jps_toce)%clname = 'O_SSTSST'
ssnd(jps_tice)%clname = 'O_TepIce'
ssnd(jps_ttilyr)%clname = 'O_TtiLyr'
ssnd(jps_tmix)%clname = 'O_TepMix'
SELECT CASE( TRIM( sn_snd_temp%cldes ) )
CASE( 'none' ) ! nothing to do
CASE( 'oce only' ) ; ssnd( jps_toce )%laction = .TRUE.
CASE( 'oce and ice' , 'weighted oce and ice' , 'oce and weighted ice' )
ssnd( (/jps_toce, jps_tice/) )%laction = .TRUE.
IF( TRIM( sn_snd_temp%clcat ) == 'yes' ) ssnd(jps_tice)%nct = nn_cats_cpl
CASE( 'mixed oce-ice' ) ; ssnd( jps_tmix )%laction = .TRUE.
CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_temp%cldes' )
END SELECT
! ! ------------------------- !
! ! Albedo !
! ! ------------------------- !
ssnd(jps_albice)%clname = 'O_AlbIce'
ssnd(jps_albmix)%clname = 'O_AlbMix'
SELECT CASE( TRIM( sn_snd_alb%cldes ) )
CASE( 'none' ) ! nothing to do
CASE( 'ice' , 'weighted ice' ) ; ssnd(jps_albice)%laction = .TRUE.
CASE( 'mixed oce-ice' ) ; ssnd(jps_albmix)%laction = .TRUE.
CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_alb%cldes' )
END SELECT
!
! Need to calculate oceanic albedo if
! 1. sending mixed oce-ice albedo or
! 2. receiving mixed oce-ice solar radiation
IF( TRIM ( sn_snd_alb%cldes ) == 'mixed oce-ice' .OR. TRIM ( sn_rcv_qsr%cldes ) == 'mixed oce-ice' ) THEN
CALL oce_alb( zaos, zacs )
! Due to lack of information on nebulosity : mean clear/overcast sky
alb_oce_mix(:,:) = ( zacs(:,:) + zaos(:,:) ) * 0.5
ENDIF
! ! ------------------------- !
! ! Ice fraction & Thickness !
! ! ------------------------- !
ssnd(jps_fice)%clname = 'OIceFrc'
ssnd(jps_ficet)%clname = 'OIceFrcT'
ssnd(jps_hice)%clname = 'OIceTck'
ssnd(jps_a_p)%clname = 'OPndFrc'
ssnd(jps_ht_p)%clname = 'OPndTck'
ssnd(jps_hsnw)%clname = 'OSnwTck'
ssnd(jps_fice1)%clname = 'OIceFrd'
IF( k_ice /= 0 ) THEN
ssnd(jps_fice)%laction = .TRUE. ! if ice treated in the ocean (even in climato case)
ssnd(jps_fice1)%laction = .TRUE. ! First-order regridded ice concentration, to be used producing atmos-to-ice fluxes (Met Office requirement)
! Currently no namelist entry to determine sending of multi-category ice fraction so use the thickness entry for now
IF( TRIM( sn_snd_thick%clcat ) == 'yes' ) ssnd(jps_fice)%nct = nn_cats_cpl
IF( TRIM( sn_snd_thick1%clcat ) == 'yes' ) ssnd(jps_fice1)%nct = nn_cats_cpl
ENDIF
IF(TRIM( sn_snd_ifrac%cldes ) == 'coupled') ssnd(jps_ficet)%laction = .TRUE.
SELECT CASE ( TRIM( sn_snd_thick%cldes ) )
CASE( 'none' ) ! nothing to do
CASE( 'ice and snow' )
ssnd(jps_hice:jps_hsnw)%laction = .TRUE.
IF( TRIM( sn_snd_thick%clcat ) == 'yes' ) THEN
ssnd(jps_hice:jps_hsnw)%nct = nn_cats_cpl
ENDIF
CASE ( 'weighted ice and snow' )
ssnd(jps_hice:jps_hsnw)%laction = .TRUE.
IF( TRIM( sn_snd_thick%clcat ) == 'yes' ) ssnd(jps_hice:jps_hsnw)%nct = nn_cats_cpl
CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_thick%cldes' )
END SELECT
! ! ------------------------- !
! ! Ice Meltponds !
! ! ------------------------- !
! Needed by Met Office
ssnd(jps_a_p)%clname = 'OPndFrc'
ssnd(jps_ht_p)%clname = 'OPndTck'
SELECT CASE ( TRIM( sn_snd_mpnd%cldes ) )
CASE ( 'none' )
ssnd(jps_a_p)%laction = .FALSE.
ssnd(jps_ht_p)%laction = .FALSE.
CASE ( 'ice only' )
ssnd(jps_a_p)%laction = .TRUE.
ssnd(jps_ht_p)%laction = .TRUE.
IF( TRIM( sn_snd_mpnd%clcat ) == 'yes' ) THEN
ssnd(jps_a_p)%nct = nn_cats_cpl
ssnd(jps_ht_p)%nct = nn_cats_cpl
ELSE
IF( nn_cats_cpl > 1 ) THEN
CALL ctl_stop( 'sbc_cpl_init: use weighted ice option for sn_snd_mpnd%cldes if not exchanging category fields' )
ENDIF
ENDIF
CASE ( 'weighted ice' )
ssnd(jps_a_p)%laction = .TRUE.
ssnd(jps_ht_p)%laction = .TRUE.
IF( TRIM( sn_snd_mpnd%clcat ) == 'yes' ) THEN
ssnd(jps_a_p)%nct = nn_cats_cpl
ssnd(jps_ht_p)%nct = nn_cats_cpl
ENDIF
CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_mpnd%cldes; '//sn_snd_mpnd%cldes )
END SELECT
! ! ------------------------- !
! ! Surface current !
! ! ------------------------- !
! ocean currents ! ice velocities
ssnd(jps_ocx1)%clname = 'O_OCurx1' ; ssnd(jps_ivx1)%clname = 'O_IVelx1'
ssnd(jps_ocy1)%clname = 'O_OCury1' ; ssnd(jps_ivy1)%clname = 'O_IVely1'
ssnd(jps_ocz1)%clname = 'O_OCurz1' ; ssnd(jps_ivz1)%clname = 'O_IVelz1'
ssnd(jps_ocxw)%clname = 'O_OCurxw'
ssnd(jps_ocyw)%clname = 'O_OCuryw'
!
ssnd(jps_ocx1:jps_ivz1)%nsgn = -1. ! vectors: change of the sign at the north fold
IF( sn_snd_crt%clvgrd == 'U,V' ) THEN
ssnd(jps_ocx1)%clgrid = 'U' ; ssnd(jps_ocy1)%clgrid = 'V'
ELSE IF( sn_snd_crt%clvgrd /= 'T' ) THEN
CALL ctl_stop( 'sn_snd_crt%clvgrd must be equal to T' )
ENDIF
ssnd(jps_ocx1:jps_ivz1)%laction = .TRUE. ! default: all are send
IF( TRIM( sn_snd_crt%clvref ) == 'spherical' ) ssnd( (/jps_ocz1, jps_ivz1/) )%laction = .FALSE.
IF( TRIM( sn_snd_crt%clvor ) == 'eastward-northward' ) ssnd(jps_ocx1:jps_ivz1)%nsgn = 1.
SELECT CASE( TRIM( sn_snd_crt%cldes ) )
CASE( 'none' ) ; ssnd(jps_ocx1:jps_ivz1)%laction = .FALSE.
CASE( 'oce only' ) ; ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE.
CASE( 'weighted oce and ice' ) ! nothing to do
CASE( 'mixed oce-ice' ) ; ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE.
CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_crt%cldes' )
END SELECT
ssnd(jps_ocxw:jps_ocyw)%nsgn = -1. ! vectors: change of the sign at the north fold
IF( sn_snd_crtw%clvgrd == 'U,V' ) THEN
ssnd(jps_ocxw)%clgrid = 'U' ; ssnd(jps_ocyw)%clgrid = 'V'
ELSE IF( sn_snd_crtw%clvgrd /= 'T' ) THEN
CALL ctl_stop( 'sn_snd_crtw%clvgrd must be equal to T' )
ENDIF
IF( TRIM( sn_snd_crtw%clvor ) == 'eastward-northward' ) ssnd(jps_ocxw:jps_ocyw)%nsgn = 1.
SELECT CASE( TRIM( sn_snd_crtw%cldes ) )
CASE( 'none' ) ; ssnd(jps_ocxw:jps_ocyw)%laction = .FALSE.
CASE( 'oce only' ) ; ssnd(jps_ocxw:jps_ocyw)%laction = .TRUE.
CASE( 'weighted oce and ice' ) ! nothing to do
CASE( 'mixed oce-ice' ) ; ssnd(jps_ivx1:jps_ivz1)%laction = .FALSE.
CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_crtw%cldes' )
END SELECT
! ! ------------------------- !
! ! CO2 flux !
! ! ------------------------- !
ssnd(jps_co2)%clname = 'O_CO2FLX' ; IF( TRIM(sn_snd_co2%cldes) == 'coupled' ) ssnd(jps_co2 )%laction = .TRUE.
!
#if defined key_medusa
! ! ------------------------- !
! ! MEDUSA output fields !
! ! ------------------------- !
! Surface dimethyl sulphide from Medusa
ssnd(jps_bio_dms)%clname = 'OBioDMS'
IF( TRIM(sn_snd_bio_dms%cldes) == 'medusa' ) ssnd(jps_bio_dms )%laction = .TRUE.
! Surface CO2 flux from Medusa
ssnd(jps_bio_co2)%clname = 'OBioCO2'
IF( TRIM(sn_snd_bio_co2%cldes) == 'medusa' ) ssnd(jps_bio_co2 )%laction = .TRUE.
! Surface chlorophyll from Medusa
ssnd(jps_bio_chloro)%clname = 'OBioChlo'
IF( TRIM(sn_snd_bio_chloro%cldes) == 'medusa' ) ssnd(jps_bio_chloro )%laction = .TRUE.
#endif
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
! ! ------------------------- !
! ! Sea surface freezing temp !
! ! ------------------------- !
! needed by Met Office
ssnd(jps_sstfrz)%clname = 'O_SSTFrz' ; IF( TRIM(sn_snd_sstfrz%cldes) == 'coupled' ) ssnd(jps_sstfrz)%laction = .TRUE.
!
! ! ------------------------- !
! ! Ice conductivity !
! ! ------------------------- !
! needed by Met Office
! Note that ultimately we will move to passing an ocean effective conductivity as well so there
! will be some changes to the parts of the code which currently relate only to ice conductivity
ssnd(jps_ttilyr )%clname = 'O_TtiLyr'
SELECT CASE ( TRIM( sn_snd_ttilyr%cldes ) )
CASE ( 'none' )
ssnd(jps_ttilyr)%laction = .FALSE.
CASE ( 'ice only' )
ssnd(jps_ttilyr)%laction = .TRUE.
IF( TRIM( sn_snd_ttilyr%clcat ) == 'yes' ) THEN
ssnd(jps_ttilyr)%nct = nn_cats_cpl
ELSE
IF( nn_cats_cpl > 1 ) THEN
CALL ctl_stop( 'sbc_cpl_init: use weighted ice option for sn_snd_ttilyr%cldes if not exchanging category fields' )
ENDIF
ENDIF
CASE ( 'weighted ice' )
ssnd(jps_ttilyr)%laction = .TRUE.
IF( TRIM( sn_snd_ttilyr%clcat ) == 'yes' ) ssnd(jps_ttilyr)%nct = nn_cats_cpl
CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_ttilyr%cldes;'//sn_snd_ttilyr%cldes )
END SELECT
ssnd(jps_kice )%clname = 'OIceKn'
SELECT CASE ( TRIM( sn_snd_cond%cldes ) )
CASE ( 'none' )
ssnd(jps_kice)%laction = .FALSE.
CASE ( 'ice only' )
ssnd(jps_kice)%laction = .TRUE.
IF( TRIM( sn_snd_cond%clcat ) == 'yes' ) THEN
ssnd(jps_kice)%nct = nn_cats_cpl
ELSE
IF( nn_cats_cpl > 1 ) THEN
CALL ctl_stop( 'sbc_cpl_init: use weighted ice option for sn_snd_cond%cldes if not exchanging category fields' )
ENDIF
ENDIF
CASE ( 'weighted ice' )
ssnd(jps_kice)%laction = .TRUE.
IF( TRIM( sn_snd_cond%clcat ) == 'yes' ) ssnd(jps_kice)%nct = nn_cats_cpl
CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_cond%cldes;'//sn_snd_cond%cldes )
END SELECT
!
! ! ------------------------- !
! ! Sea surface height !
! ! ------------------------- !
ssnd(jps_wlev)%clname = 'O_Wlevel' ; IF( TRIM(sn_snd_wlev%cldes) == 'coupled' ) ssnd(jps_wlev)%laction = .TRUE.
! ! ------------------------------- !
! ! OCE-SAS coupling - snd by opa !
! ! ------------------------------- !
ssnd(jps_ssh )%clname = 'O_SSHght'
ssnd(jps_soce )%clname = 'O_SSSal'
ssnd(jps_e3t1st)%clname = 'O_E3T1st'
ssnd(jps_fraqsr)%clname = 'O_FraQsr'
!
IF( nn_components == jp_iam_oce ) THEN
ssnd(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling
ssnd( (/jps_toce, jps_soce, jps_ssh, jps_fraqsr, jps_ocx1, jps_ocy1/) )%laction = .TRUE.
ssnd( jps_e3t1st )%laction = .NOT.ln_linssh
! vector definition: not used but cleaner...
ssnd(jps_ocx1)%clgrid = 'U' ! oce components given at U-point
ssnd(jps_ocy1)%clgrid = 'V' ! and V-point
sn_snd_crt%clvgrd = 'U,V'
sn_snd_crt%clvor = 'local grid'
sn_snd_crt%clvref = 'spherical'
!
IF(lwp) THEN ! control print
WRITE(numout,*)
WRITE(numout,*)' sent fields to SAS component '
WRITE(numout,*)' sea surface temperature (T before, Celsius) '
WRITE(numout,*)' sea surface salinity '
WRITE(numout,*)' surface currents U,V on local grid and spherical coordinates'
WRITE(numout,*)' sea surface height '
WRITE(numout,*)' thickness of first ocean T level '
WRITE(numout,*)' fraction of solar net radiation absorbed in the first ocean level'
WRITE(numout,*)
ENDIF
ENDIF
! ! ------------------------------- !
! ! OCE-SAS coupling - snd by sas !
! ! ------------------------------- !
ssnd(jps_sflx )%clname = 'I_SFLX'
ssnd(jps_fice2 )%clname = 'IIceFrc'
ssnd(jps_qsroce)%clname = 'I_QsrOce'
ssnd(jps_qnsoce)%clname = 'I_QnsOce'
ssnd(jps_oemp )%clname = 'IOEvaMPr'
ssnd(jps_otx1 )%clname = 'I_OTaux1'
ssnd(jps_oty1 )%clname = 'I_OTauy1'
ssnd(jps_rnf )%clname = 'I_Runoff'
ssnd(jps_taum )%clname = 'I_TauMod'
!
IF( nn_components == jp_iam_sas ) THEN
IF( .NOT. ln_cpl ) ssnd(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling
ssnd( (/jps_qsroce, jps_qnsoce, jps_oemp, jps_fice2, jps_sflx, jps_otx1, jps_oty1, jps_taum/) )%laction = .TRUE.
!
! Change first letter to couple with atmosphere if already coupled with sea_ice
! this is nedeed as each variable name used in the namcouple must be unique:
! for example O_SSTSST sent by OCE to SAS and therefore S_SSTSST sent by SAS to the Atmosphere
DO jn = 1, jpsnd
IF( ssnd(jn)%clname(1:1) == "O" ) ssnd(jn)%clname = "S"//ssnd(jn)%clname(2:LEN(ssnd(jn)%clname))
END DO
!
IF(lwp) THEN ! control print
WRITE(numout,*)
IF( .NOT. ln_cpl ) THEN
WRITE(numout,*)' sent fields to OCE component '
ELSE
WRITE(numout,*)' Additional sent fields to OCE component : '
ENDIF
WRITE(numout,*)' ice cover '
WRITE(numout,*)' oce only EMP '
WRITE(numout,*)' salt flux '
WRITE(numout,*)' mixed oce-ice solar flux '
WRITE(numout,*)' mixed oce-ice non solar flux '
WRITE(numout,*)' wind stress U,V components'
WRITE(numout,*)' wind stress module'
ENDIF
ENDIF
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
! Initialise 1D river outflow scheme
nn_cpl_river = 1
IF ( TRIM( sn_rcv_rnf%cldes ) == 'coupled1d' ) CALL cpl_rnf_1d_init ! Coupled runoff using 1D array
! =================================================== !
! Allocate all parts of frcv used for received fields !
! =================================================== !
DO jn = 1, jprcv
IF ( srcv(jn)%laction ) THEN
SELECT CASE( srcv(jn)%dimensions )
!
CASE( 0 ) ! Scalar field
ALLOCATE( frcv(jn)%z3(1,1,1) )
CASE( 1 ) ! 1D field
ALLOCATE( frcv(jn)%z3(nn_cpl_river,1,1) )
CASE DEFAULT ! 2D (or pseudo 3D) field.
ALLOCATE( frcv(jn)%z3(jpi,jpj,srcv(jn)%nct) )
END SELECT
END IF
END DO
! Allocate taum part of frcv which is used even when not received as coupling field
IF ( .NOT. srcv(jpr_taum)%laction ) ALLOCATE( frcv(jpr_taum)%z3(jpi,jpj,srcv(jpr_taum)%nct) )
! Allocate w10m part of frcv which is used even when not received as coupling field
IF ( .NOT. srcv(jpr_w10m)%laction ) ALLOCATE( frcv(jpr_w10m)%z3(jpi,jpj,srcv(jpr_w10m)%nct) )
! Allocate jpr_otx1 part of frcv which is used even when not received as coupling field
IF ( .NOT. srcv(jpr_otx1)%laction ) ALLOCATE( frcv(jpr_otx1)%z3(jpi,jpj,srcv(jpr_otx1)%nct) )
IF ( .NOT. srcv(jpr_oty1)%laction ) ALLOCATE( frcv(jpr_oty1)%z3(jpi,jpj,srcv(jpr_oty1)%nct) )
! Allocate itx1 and ity1 as they are used in sbc_cpl_ice_tau even if srcv(jpr_itx1)%laction = .FALSE.
IF( k_ice /= 0 ) THEN
IF ( .NOT. srcv(jpr_itx1)%laction ) ALLOCATE( frcv(jpr_itx1)%z3(jpi,jpj,srcv(jpr_itx1)%nct) )
IF ( .NOT. srcv(jpr_ity1)%laction ) ALLOCATE( frcv(jpr_ity1)%z3(jpi,jpj,srcv(jpr_ity1)%nct) )
END IF
!
! ================================ !
! initialisation of the coupler !
! ================================ !
! There's no point initialising the coupler if we've accumulated any errors in
! coupling field definitions or settings.
IF (nstop > 0) CALL ctl_stop( 'STOP', 'sbc_cpl_init: Errors encountered in coupled field definitions' )
CALL cpl_define(jprcv, jpsnd, nn_cplmodel)
IF(ln_usecplmask) THEN
xcplmask(:,:,:) = 0.
CALL iom_open( 'cplmask', inum )
CALL iom_get( inum, jpdom_unknown, 'cplmask', xcplmask(1:jpi,1:jpj,1:nn_cplmodel), &
& kstart = (/ mig(1),mjg(1),1 /), kcount = (/ jpi,jpj,nn_cplmodel /) )
CALL iom_close( inum )
ELSE
xcplmask(:,:,:) = 1.
ENDIF
xcplmask(:,:,0) = 1. - SUM( xcplmask(:,:,1:nn_cplmodel), dim = 3 )
!
IF( nn_coupled_iceshelf_fluxes .gt. 0 ) THEN
! Crude masks to separate the Antarctic and Greenland icesheets. Obviously something
! more complicated could be done if required.
greenland_icesheet_mask = 0.0
WHERE( gphit >= 0.0 ) greenland_icesheet_mask = 1.0
antarctica_icesheet_mask = 0.0
WHERE( gphit < 0.0 ) antarctica_icesheet_mask = 1.0
IF( .not. ln_rstart ) THEN
greenland_icesheet_mass = 0.0
greenland_icesheet_mass_rate_of_change = 0.0
greenland_icesheet_timelapsed = 0.0
antarctica_icesheet_mass = 0.0
antarctica_icesheet_mass_rate_of_change = 0.0
antarctica_icesheet_timelapsed = 0.0
ENDIF
ENDIF
!
IF (ln_timing) CALL timing_stop('sbc_cpl_init')
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
!
END SUBROUTINE sbc_cpl_init
SUBROUTINE sbc_cpl_rcv( kt, k_fsbc, k_ice, Kbb, Kmm )
!!----------------------------------------------------------------------
!! *** ROUTINE sbc_cpl_rcv ***
!!
!! ** Purpose : provide the stress over the ocean and, if no sea-ice,
!! provide the ocean heat and freshwater fluxes.
!!
!! ** Method : - Receive all the atmospheric fields (stored in frcv array). called at each time step.
!! OASIS controls if there is something do receive or not. nrcvinfo contains the info
!! to know if the field was really received or not
!!
!! --> If ocean stress was really received:
!!
!! - transform the received ocean stress vector from the received
!! referential and grid into an atmosphere-ocean stress in
!! the (i,j) ocean referencial and at the ocean velocity point.
!! The received stress are :
!! - defined by 3 components (if cartesian coordinate)
!! or by 2 components (if spherical)
!! - oriented along geographical coordinate (if eastward-northward)
!! or along the local grid coordinate (if local grid)
!! - given at U- and V-point, resp. if received on 2 grids
!! or at T-point if received on 1 grid
!! Therefore and if necessary, they are successively
!! processed in order to obtain them
!! first as 2 components on the sphere
!! second as 2 components oriented along the local grid
!! third as 2 components on the U,V grid
!!
!! -->
!!
!! - In 'ocean only' case, non solar and solar ocean heat fluxes
!! and total ocean freshwater fluxes
!!
!! ** Method : receive all fields from the atmosphere and transform
!! them into ocean surface boundary condition fields
!!
!! ** Action : update utau, vtau ocean stress at U,V grid
!! taum wind stress module at T-point
!! wndm wind speed module at T-point over free ocean or leads in presence of sea-ice
!! qns non solar heat fluxes including emp heat content (ocean only case)
!! and the latent heat flux of solid precip. melting
!! qsr solar ocean heat fluxes (ocean only case)
!! emp upward mass flux [evap. - precip. (- runoffs) (- calving)] (ocean only case)
!!----------------------------------------------------------------------
USE zdf_oce, ONLY : ln_zdfswm
!
INTEGER, INTENT(in) :: kt ! ocean model time step index
INTEGER, INTENT(in) :: k_fsbc ! frequency of sbc (-> ice model) computation
INTEGER, INTENT(in) :: k_ice ! ice management in the sbc (=0/1/2/3)
INTEGER, INTENT(in) :: Kbb, Kmm ! ocean model time level indices
!!
LOGICAL :: llnewtx, llnewtau ! update wind stress components and module??
INTEGER :: ji, jj, jn ! dummy loop indices
INTEGER :: isec ! number of seconds since nit000 (assuming rdt did not change since nit000)
INTEGER :: ikchoix
REAL(wp), DIMENSION(jpi,jpj) :: ztx2, zty2
REAL(wp) :: zcumulneg, zcumulpos ! temporary scalars
REAL(wp) :: zcoef ! temporary scalar
LOGICAL :: ll_wrtstp ! write diagnostics?
REAL(wp) :: zrhoa = 1.22 ! Air density kg/m3
REAL(wp) :: zcdrag = 1.5e-3 ! drag coefficient
REAL(wp) :: zgreenland_icesheet_mass_in, zantarctica_icesheet_mass_in
REAL(wp) :: zgreenland_icesheet_mass_b, zantarctica_icesheet_mass_b
REAL(wp) :: zmask_sum, zepsilon

Guillaume Samson
committed
REAL(wp) :: r1_grau ! = 1.e0 / (grav * rho0)
REAL(wp), DIMENSION(jpi,jpj) :: ztx, zty, zmsk, zemp, zqns, zqsr, zcloud_fra
!!----------------------------------------------------------------------
!
!
IF (ln_timing) CALL timing_start('sbc_cpl_rcv')
!
ll_wrtstp = ( MOD( kt, sn_cfctl%ptimincr ) == 0 ) .OR. ( kt == nitend )
!
IF( kt == nit000 ) THEN
! cannot be done in the init phase when we use agrif as cpl_freq requires that oasis_enddef is done
ncpl_qsr_freq = cpl_freq( 'O_QsrOce' ) + cpl_freq( 'O_QsrMix' ) + cpl_freq( 'I_QsrOce' ) + cpl_freq( 'I_QsrMix' )
IF( ln_dm2dc .AND. ncpl_qsr_freq /= 86400 ) &
& CALL ctl_stop( 'sbc_cpl_rcv: diurnal cycle reconstruction (ln_dm2dc) needs daily couping for solar radiation' )
IF ( ln_wave .AND. nn_components == 0 ) THEN
ncpl_qsr_freq = 1;
WRITE(numout,*) 'ncpl_qsr_freq is set to 1 when coupling NEMO with wave (without SAS) '
ENDIF
ENDIF
!
IF( ln_mixcpl ) zmsk(:,:) = 1. - xcplmask(:,:,0)
!
! ! ======================================================= !
! ! Receive all the atmos. fields (including ice information)
! ! ======================================================= !
isec = ( kt - nit000 ) * NINT( rn_Dt ) ! date of exchanges
DO jn = 1, jprcv ! received fields sent by the atmosphere
IF( srcv(jn)%laction ) THEN
IF ( srcv(jn)%dimensions <= 1 ) THEN
CALL cpl_rcv_1d( jn, isec, frcv(jn)%z3, SIZE(frcv(jn)%z3), nrcvinfo(jn) )
ELSE
CALL cpl_rcv( jn, isec, frcv(jn)%z3, xcplmask(:,:,1:nn_cplmodel), nrcvinfo(jn) )
END IF
END IF
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
END DO
! ! ========================= !
IF( srcv(jpr_otx1)%laction ) THEN ! ocean stress components !
! ! ========================= !
! define frcv(jpr_otx1)%z3(:,:,1) and frcv(jpr_oty1)%z3(:,:,1): stress at U/V point along model grid
! => need to be done only when we receive the field
IF( nrcvinfo(jpr_otx1) == OASIS_Rcv ) THEN
!
IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN ! 2 components on the sphere
! ! (cartesian to spherical -> 3 to 2 components)
!
CALL geo2oce( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), frcv(jpr_otz1)%z3(:,:,1), &
& srcv(jpr_otx1)%clgrid, ztx, zty )
frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 1st grid
frcv(jpr_oty1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 1st grid
!
IF( srcv(jpr_otx2)%laction ) THEN
CALL geo2oce( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), frcv(jpr_otz2)%z3(:,:,1), &
& srcv(jpr_otx2)%clgrid, ztx, zty )
frcv(jpr_otx2)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 2nd grid
frcv(jpr_oty2)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 2nd grid
ENDIF
!
ENDIF
!
IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN ! 2 components oriented along the local grid
! ! (geographical to local grid -> rotate the components)
IF( srcv(jpr_otx1)%clgrid == 'U' .AND. (.NOT. srcv(jpr_otx2)%laction) ) THEN
! Temporary code for HadGEM3 - will be removed eventually.
! Only applies when we have only taux on U grid and tauy on V grid
!RSRH these MUST be initialised because the halos are not explicitly set
! but they're passed to repcmo and used directly in calculations, so if
! they point at junk in memory then bad things will happen!
! (You can prove this by running with preset NaNs).
ztx(:,:)=0.0
zty(:,:)=0.0
DO_2D( 0, 0, 0, 0 )
ztx(ji,jj)=0.25*vmask(ji,jj,1) &
*(frcv(jpr_otx1)%z3(ji,jj,1)+frcv(jpr_otx1)%z3(ji-1,jj,1) &
+frcv(jpr_otx1)%z3(ji,jj+1,1)+frcv(jpr_otx1)%z3(ji-1,jj+1,1))
zty(ji,jj)=0.25*umask(ji,jj,1) &
*(frcv(jpr_oty1)%z3(ji,jj,1)+frcv(jpr_oty1)%z3(ji+1,jj,1) &
+frcv(jpr_oty1)%z3(ji,jj-1,1)+frcv(jpr_oty1)%z3(ji+1,jj-1,1))
END_2D
ikchoix = 1
CALL repcmo (frcv(jpr_otx1)%z3(:,:,1),zty,ztx,frcv(jpr_oty1)%z3(:,:,1),ztx2,zty2,ikchoix)
CALL lbc_lnk ('jpr_otx1', ztx2,'U', -1. )
CALL lbc_lnk ('jpr_oty1', zty2,'V', -1. )
frcv(jpr_otx1)%z3(:,:,1)=ztx2(:,:)
frcv(jpr_oty1)%z3(:,:,1)=zty2(:,:)
CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->i', ztx )
frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st component on the 1st grid
IF( srcv(jpr_otx2)%laction ) THEN
CALL rot_rep( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), srcv(jpr_otx2)%clgrid, 'en->j', zty )
ELSE
CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->j', zty )
ENDIF
frcv(jpr_oty1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd component on the 2nd grid
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
ENDIF
ENDIF
!
IF( srcv(jpr_otx1)%clgrid == 'T' ) THEN
DO_2D( 0, 0, 0, 0 ) ! T ==> (U,V)
frcv(jpr_otx1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_otx1)%z3(ji+1,jj ,1) + frcv(jpr_otx1)%z3(ji,jj,1) )
frcv(jpr_oty1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_oty1)%z3(ji ,jj+1,1) + frcv(jpr_oty1)%z3(ji,jj,1) )
END_2D
CALL lbc_lnk( 'sbccpl', frcv(jpr_otx1)%z3(:,:,1), 'U', -1.0_wp, frcv(jpr_oty1)%z3(:,:,1), 'V', -1.0_wp )
ENDIF
llnewtx = .TRUE.
ELSE
llnewtx = .FALSE.
ENDIF
! ! ========================= !
ELSE ! No dynamical coupling !
! ! ========================= !
frcv(jpr_otx1)%z3(:,:,1) = 0.e0 ! here simply set to zero
frcv(jpr_oty1)%z3(:,:,1) = 0.e0 ! an external read in a file can be added instead
llnewtx = .TRUE.
!
ENDIF
! ! ========================= !
! ! wind stress module ! (taum)
! ! ========================= !
IF( .NOT. srcv(jpr_taum)%laction ) THEN ! compute wind stress module from its components if not received
! => need to be done only when otx1 was changed
IF( llnewtx ) THEN
DO_2D( 0, 0, 0, 0 )
zzx = frcv(jpr_otx1)%z3(ji-1,jj ,1) + frcv(jpr_otx1)%z3(ji,jj,1)
zzy = frcv(jpr_oty1)%z3(ji ,jj-1,1) + frcv(jpr_oty1)%z3(ji,jj,1)
frcv(jpr_taum)%z3(ji,jj,1) = 0.5 * SQRT( zzx * zzx + zzy * zzy )
END_2D
CALL lbc_lnk( 'sbccpl', frcv(jpr_taum)%z3(:,:,1), 'T', 1.0_wp )
llnewtau = .TRUE.
ELSE
llnewtau = .FALSE.
ENDIF
ELSE
llnewtau = nrcvinfo(jpr_taum) == OASIS_Rcv
! Stress module can be negative when received (interpolation problem)
IF( llnewtau ) THEN
frcv(jpr_taum)%z3(:,:,1) = MAX( 0._wp, frcv(jpr_taum)%z3(:,:,1) )
ENDIF
ENDIF
!
! ! ========================= !
! ! 10 m wind speed ! (wndm)
! ! ========================= !
IF( .NOT. srcv(jpr_w10m)%laction ) THEN ! compute wind spreed from wind stress module if not received
! => need to be done only when taumod was changed
IF( llnewtau ) THEN
zcoef = 1. / ( zrhoa * zcdrag )
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
frcv(jpr_w10m)%z3(ji,jj,1) = SQRT( frcv(jpr_taum)%z3(ji,jj,1) * zcoef )
END_2D
ENDIF
ENDIF
!!$ ! ! ========================= !
!!$ SELECT CASE( TRIM( sn_rcv_clouds%cldes ) ) ! cloud fraction !
!!$ ! ! ========================= !
!!$ cloud_fra(:,:) = frcv(jpr_clfra)*z3(:,:,1)
!!$ END SELECT
!!$
zcloud_fra(:,:) = pp_cldf ! should be real cloud fraction instead (as in the bulk) but needs to be read from atm.
IF( ln_mixcpl ) THEN
cloud_fra(:,:) = cloud_fra(:,:) * xcplmask(:,:,0) + zcloud_fra(:,:)* zmsk(:,:)
ELSE
cloud_fra(:,:) = zcloud_fra(:,:)
ENDIF
! ! ========================= !
! u(v)tau and taum will be modified by ice model
! -> need to be reset before each call of the ice/fsbc
IF( MOD( kt-1, k_fsbc ) == 0 ) THEN
!
IF( ln_mixcpl ) THEN
utau(:,:) = utau(:,:) * xcplmask(:,:,0) + frcv(jpr_otx1)%z3(:,:,1) * zmsk(:,:)
vtau(:,:) = vtau(:,:) * xcplmask(:,:,0) + frcv(jpr_oty1)%z3(:,:,1) * zmsk(:,:)
taum(:,:) = taum(:,:) * xcplmask(:,:,0) + frcv(jpr_taum)%z3(:,:,1) * zmsk(:,:)
wndm(:,:) = wndm(:,:) * xcplmask(:,:,0) + frcv(jpr_w10m)%z3(:,:,1) * zmsk(:,:)
ELSE
utau(:,:) = frcv(jpr_otx1)%z3(:,:,1)
vtau(:,:) = frcv(jpr_oty1)%z3(:,:,1)
taum(:,:) = frcv(jpr_taum)%z3(:,:,1)
wndm(:,:) = frcv(jpr_w10m)%z3(:,:,1)
ENDIF
CALL iom_put( "taum_oce", taum ) ! output wind stress module
!
ENDIF
#if defined key_medusa
IF (ln_medusa) THEN
IF( srcv(jpr_atm_pco2)%laction) PCO2a_in_cpl(:,:) = frcv(jpr_atm_pco2)%z3(:,:,1)
IF( srcv(jpr_atm_dust)%laction) Dust_in_cpl(:,:) = frcv(jpr_atm_dust)%z3(:,:,1)
ENDIF
#endif
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
! ! ================== !
! ! atmosph. CO2 (ppm) !
! ! ================== !
IF( srcv(jpr_co2)%laction ) atm_co2(:,:) = frcv(jpr_co2)%z3(:,:,1)
!
! ! ========================= !
! ! Mean Sea Level Pressure ! (taum)
! ! ========================= !
IF( srcv(jpr_mslp)%laction ) THEN ! UKMO SHELF effect of atmospheric pressure on SSH
IF( kt /= nit000 ) ssh_ibb(:,:) = ssh_ib(:,:) !* Swap of ssh_ib fields
r1_grau = 1.e0 / (grav * rho0) !* constant for optimization
ssh_ib(:,:) = - ( frcv(jpr_mslp)%z3(:,:,1) - rpref ) * r1_grau ! equivalent ssh (inverse barometer)
apr (:,:) = frcv(jpr_mslp)%z3(:,:,1) !atmospheric pressure
IF( kt == nit000 ) ssh_ibb(:,:) = ssh_ib(:,:) ! correct this later (read from restart if possible)
ENDIF
!
IF( ln_sdw ) THEN ! Stokes Drift correction activated
! ! ========================= !
! ! Stokes drift u !
! ! ========================= !
IF( srcv(jpr_sdrftx)%laction ) ut0sd(:,:) = frcv(jpr_sdrftx)%z3(:,:,1)
!
! ! ========================= !
! ! Stokes drift v !
! ! ========================= !
IF( srcv(jpr_sdrfty)%laction ) vt0sd(:,:) = frcv(jpr_sdrfty)%z3(:,:,1)
!
! ! ========================= !
! ! Wave mean period !
! ! ========================= !
IF( srcv(jpr_wper)%laction ) wmp(:,:) = frcv(jpr_wper)%z3(:,:,1)
!
! ! ========================= !
! ! Significant wave height !
! ! ========================= !
IF( srcv(jpr_hsig)%laction ) hsw(:,:) = frcv(jpr_hsig)%z3(:,:,1)
!
! ! ========================= !
! ! Vertical mixing Qiao !
! ! ========================= !
IF( srcv(jpr_wnum)%laction .AND. ln_zdfswm ) wnum(:,:) = frcv(jpr_wnum)%z3(:,:,1)
! Calculate the 3D Stokes drift both in coupled and not fully uncoupled mode
IF( srcv(jpr_sdrftx)%laction .OR. srcv(jpr_sdrfty)%laction .OR. &
srcv(jpr_wper)%laction .OR. srcv(jpr_hsig)%laction ) THEN
CALL sbc_stokes( Kmm )
ENDIF
ENDIF
! ! ========================= !
! ! Stress adsorbed by waves !
! ! ========================= !
IF( srcv(jpr_wstrf)%laction .AND. ln_tauoc ) tauoc_wave(:,:) = frcv(jpr_wstrf)%z3(:,:,1)
!
! ! ========================= !
! ! Wave drag coefficient !
! ! ========================= !
IF( srcv(jpr_wdrag)%laction .AND. ln_cdgw ) cdn_wave(:,:) = frcv(jpr_wdrag)%z3(:,:,1)
!
! ! ========================= !
! ! Chranock coefficient !
! ! ========================= !
IF( srcv(jpr_charn)%laction .AND. ln_charn ) charn(:,:) = frcv(jpr_charn)%z3(:,:,1)
!
! ! ========================= !
! ! net wave-supported stress !
! ! ========================= !
IF( srcv(jpr_tawx)%laction .AND. ln_taw ) tawx(:,:) = frcv(jpr_tawx)%z3(:,:,1)
IF( srcv(jpr_tawy)%laction .AND. ln_taw ) tawy(:,:) = frcv(jpr_tawy)%z3(:,:,1)
!
! ! ========================= !
! !wave to ocean momentum flux!
! ! ========================= !
IF( srcv(jpr_twox)%laction .AND. ln_taw ) twox(:,:) = frcv(jpr_twox)%z3(:,:,1)
IF( srcv(jpr_twoy)%laction .AND. ln_taw ) twoy(:,:) = frcv(jpr_twoy)%z3(:,:,1)
!
! ! ========================= !
! ! wave TKE flux at sfc !
! ! ========================= !
IF( srcv(jpr_phioc)%laction .AND. ln_phioc ) phioc(:,:) = frcv(jpr_phioc)%z3(:,:,1)
!
! ! ========================= !
! ! Bernoulli head !
! ! ========================= !
IF( srcv(jpr_bhd)%laction .AND. ln_bern_srfc ) bhd_wave(:,:) = frcv(jpr_bhd)%z3(:,:,1)
!
! ! ========================= !
! ! Stokes transport u dir !
! ! ========================= !
IF( srcv(jpr_tusd)%laction .AND. ln_breivikFV_2016 ) tusd(:,:) = frcv(jpr_tusd)%z3(:,:,1)
!
! ! ========================= !
! ! Stokes transport v dir !
! ! ========================= !
IF( srcv(jpr_tvsd)%laction .AND. ln_breivikFV_2016 ) tvsd(:,:) = frcv(jpr_tvsd)%z3(:,:,1)
!
! Fields received by SAS when OASIS coupling
! (arrays no more filled at sbcssm stage)
! ! ================== !
! ! SSS !
! ! ================== !
IF( srcv(jpr_soce)%laction ) THEN ! received by sas in case of opa <-> sas coupling
sss_m(:,:) = frcv(jpr_soce)%z3(:,:,1)
CALL iom_put( 'sss_m', sss_m )
ENDIF
!
! ! ================== !
! ! SST !
! ! ================== !
IF( srcv(jpr_toce)%laction ) THEN ! received by sas in case of opa <-> sas coupling
sst_m(:,:) = frcv(jpr_toce)%z3(:,:,1)
IF( srcv(jpr_soce)%laction .AND. l_useCT ) THEN ! make sure that sst_m is the potential temperature
sst_m(:,:) = eos_pt_from_ct( sst_m(:,:), sss_m(:,:) )
ENDIF
ENDIF
! ! ================== !
! ! SSH !
! ! ================== !
IF( srcv(jpr_ssh )%laction ) THEN ! received by sas in case of opa <-> sas coupling
ssh_m(:,:) = frcv(jpr_ssh )%z3(:,:,1)
CALL iom_put( 'ssh_m', ssh_m )
ENDIF
! ! ================== !
! ! surface currents !
! ! ================== !
IF( srcv(jpr_ocx1)%laction ) THEN ! received by sas in case of opa <-> sas coupling
ssu_m(:,:) = frcv(jpr_ocx1)%z3(:,:,1)
uu(:,:,1,Kbb) = ssu_m(:,:) ! will be used in icestp in the call of ice_forcing_tau
uu(:,:,1,Kmm) = ssu_m(:,:) ! will be used in sbc_cpl_snd if atmosphere coupling
CALL iom_put( 'ssu_m', ssu_m )
ENDIF
IF( srcv(jpr_ocy1)%laction ) THEN
ssv_m(:,:) = frcv(jpr_ocy1)%z3(:,:,1)
vv(:,:,1,Kbb) = ssv_m(:,:) ! will be used in icestp in the call of ice_forcing_tau
vv(:,:,1,Kmm) = ssv_m(:,:) ! will be used in sbc_cpl_snd if atmosphere coupling
CALL iom_put( 'ssv_m', ssv_m )
ENDIF
! ! ======================== !
! ! first T level thickness !
! ! ======================== !
IF( srcv(jpr_e3t1st )%laction ) THEN ! received by sas in case of opa <-> sas coupling
e3t_m(:,:) = frcv(jpr_e3t1st )%z3(:,:,1)
CALL iom_put( 'e3t_m', e3t_m(:,:) )
ENDIF
! ! ================================ !
! ! fraction of solar net radiation !
! ! ================================ !
IF( srcv(jpr_fraqsr)%laction ) THEN ! received by sas in case of opa <-> sas coupling
frq_m(:,:) = frcv(jpr_fraqsr)%z3(:,:,1)
CALL iom_put( 'frq_m', frq_m )
ENDIF
! ! ========================= !
IF( k_ice <= 1 .AND. MOD( kt-1, k_fsbc ) == 0 ) THEN ! heat & freshwater fluxes ! (Ocean only case)
! ! ========================= !
!
! ! total freshwater fluxes over the ocean (emp)
IF( srcv(jpr_oemp)%laction .OR. srcv(jpr_rain)%laction ) THEN
SELECT CASE( TRIM( sn_rcv_emp%cldes ) ) ! evaporation - precipitation
CASE( 'conservative' )
zemp(:,:) = frcv(jpr_tevp)%z3(:,:,1) - ( frcv(jpr_rain)%z3(:,:,1) + frcv(jpr_snow)%z3(:,:,1) )
CASE( 'oce only', 'oce and ice' )
zemp(:,:) = frcv(jpr_oemp)%z3(:,:,1)
CASE default
CALL ctl_stop( 'sbc_cpl_rcv: wrong definition of sn_rcv_emp%cldes' )
END SELECT
ELSE
zemp(:,:) = 0._wp
ENDIF
!
! ! runoffs and calving (added in emp)
IF( srcv(jpr_rnf)%laction ) rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1)
IF( srcv(jpr_cal)%laction ) zemp(:,:) = zemp(:,:) - frcv(jpr_cal)%z3(:,:,1)
IF( srcv(jpr_icb)%laction ) THEN
fwficb(:,:) = frcv(jpr_icb)%z3(:,:,1)
rnf(:,:) = rnf(:,:) + fwficb(:,:) ! iceberg added to runfofs
ENDIF
!
! ice shelf fwf
IF( srcv(jpr_isf)%laction ) THEN
fwfisf_oasis(:,:) = frcv(jpr_isf)%z3(:,:,1) ! fresh water flux from the isf to the ocean ( > 0 = melting )
END IF
IF( ln_mixcpl ) THEN ; emp(:,:) = emp(:,:) * xcplmask(:,:,0) + zemp(:,:) * zmsk(:,:)
ELSE ; emp(:,:) = zemp(:,:)
ENDIF
!
! ! non solar heat flux over the ocean (qns)
IF( srcv(jpr_qnsoce)%laction ) THEN ; zqns(:,:) = frcv(jpr_qnsoce)%z3(:,:,1)
ELSE IF( srcv(jpr_qnsmix)%laction ) THEN ; zqns(:,:) = frcv(jpr_qnsmix)%z3(:,:,1)
ELSE ; zqns(:,:) = 0._wp
ENDIF
! update qns over the free ocean with:
IF( nn_components /= jp_iam_oce ) THEN
zqns(:,:) = zqns(:,:) - zemp(:,:) * sst_m(:,:) * rcp ! remove heat content due to mass flux (assumed to be at SST)
IF( srcv(jpr_snow )%laction ) THEN
zqns(:,:) = zqns(:,:) - frcv(jpr_snow)%z3(:,:,1) * rLfus ! energy for melting solid precipitation over the free ocean
ENDIF
ENDIF
!
IF( srcv(jpr_icb)%laction ) zqns(:,:) = zqns(:,:) - frcv(jpr_icb)%z3(:,:,1) * rLfus ! remove heat content associated to iceberg melting
!
IF( ln_mixcpl ) THEN
qns(:,:) = qns(:,:) * xcplmask(:,:,0) + zqns(:,:) * zmsk(:,:)
ELSE
qns(:,:) = zqns(:,:)
ENDIF
! ! solar flux over the ocean (qsr)
IF ( srcv(jpr_qsroce)%laction ) THEN ; zqsr(:,:) = frcv(jpr_qsroce)%z3(:,:,1)
ELSE IF( srcv(jpr_qsrmix)%laction ) then ; zqsr(:,:) = frcv(jpr_qsrmix)%z3(:,:,1)
ELSE ; zqsr(:,:) = 0._wp
ENDIF
IF( ln_dm2dc .AND. ln_cpl ) zqsr(:,:) = sbc_dcy( zqsr ) ! modify qsr to include the diurnal cycle
IF( ln_mixcpl ) THEN ; qsr(:,:) = qsr(:,:) * xcplmask(:,:,0) + zqsr(:,:) * zmsk(:,:)
ELSE ; qsr(:,:) = zqsr(:,:)
ENDIF
!
! salt flux over the ocean (received by opa in case of opa <-> sas coupling)
IF( srcv(jpr_sflx )%laction ) sfx(:,:) = frcv(jpr_sflx )%z3(:,:,1)
! Ice cover (received by opa in case of opa <-> sas coupling)
IF( srcv(jpr_fice )%laction ) fr_i(:,:) = frcv(jpr_fice )%z3(:,:,1)
!
ENDIF
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
zepsilon = rn_iceshelf_fluxes_tolerance
IF( srcv(jpr_grnm)%laction .AND. nn_coupled_iceshelf_fluxes == 1 ) THEN
! This is a zero dimensional, single value field.
zgreenland_icesheet_mass_in = frcv(jpr_grnm)%z3(1,1,1)
greenland_icesheet_timelapsed = greenland_icesheet_timelapsed + rdt
IF( ln_iceshelf_init_atmos .AND. kt == 1 ) THEN
! On the first timestep (of an NRUN) force the ocean to ignore the icesheet masses in the ocean restart
! and take them from the atmosphere to avoid problems with using inconsistent ocean and atmosphere restarts.
zgreenland_icesheet_mass_b = zgreenland_icesheet_mass_in
greenland_icesheet_mass = zgreenland_icesheet_mass_in
ENDIF
IF( ABS( zgreenland_icesheet_mass_in - greenland_icesheet_mass ) > zepsilon ) THEN
zgreenland_icesheet_mass_b = greenland_icesheet_mass
! Only update the mass if it has increased.
IF ( (zgreenland_icesheet_mass_in - greenland_icesheet_mass) > 0.0 ) THEN
greenland_icesheet_mass = zgreenland_icesheet_mass_in
ENDIF
IF( zgreenland_icesheet_mass_b /= 0.0 ) &
& greenland_icesheet_mass_rate_of_change = ( greenland_icesheet_mass - zgreenland_icesheet_mass_b ) / greenland_icesheet_timelapsed
greenland_icesheet_timelapsed = 0.0_wp
ENDIF
IF(lwp .AND. ll_wrtstp) THEN
WRITE(numout,*) 'Greenland icesheet mass (kg) read in is ', zgreenland_icesheet_mass_in
WRITE(numout,*) 'Greenland icesheet mass (kg) used is ', greenland_icesheet_mass
WRITE(numout,*) 'Greenland icesheet mass rate of change (kg/s) is ', greenland_icesheet_mass_rate_of_change
WRITE(numout,*) 'Greenland icesheet seconds lapsed since last change is ', greenland_icesheet_timelapsed
ENDIF
ELSE IF ( nn_coupled_iceshelf_fluxes == 2 ) THEN
greenland_icesheet_mass_rate_of_change = rn_greenland_total_fw_flux
ENDIF
! ! land ice masses : Antarctica
IF( srcv(jpr_antm)%laction .AND. nn_coupled_iceshelf_fluxes == 1 ) THEN
! This is a zero dimensional, single value field.
zantarctica_icesheet_mass_in = frcv(jpr_antm)%z3(1,1,1)
antarctica_icesheet_timelapsed = antarctica_icesheet_timelapsed + rdt
IF( ln_iceshelf_init_atmos .AND. kt == 1 ) THEN
! On the first timestep (of an NRUN) force the ocean to ignore the icesheet masses in the ocean restart
! and take them from the atmosphere to avoid problems with using inconsistent ocean and atmosphere restarts.
zantarctica_icesheet_mass_b = zantarctica_icesheet_mass_in
antarctica_icesheet_mass = zantarctica_icesheet_mass_in
ENDIF
IF( ABS( zantarctica_icesheet_mass_in - antarctica_icesheet_mass ) > zepsilon ) THEN
zantarctica_icesheet_mass_b = antarctica_icesheet_mass
! Only update the mass if it has increased.
IF ( (zantarctica_icesheet_mass_in - antarctica_icesheet_mass) > 0.0 ) THEN
antarctica_icesheet_mass = zantarctica_icesheet_mass_in
END IF
IF( zantarctica_icesheet_mass_b /= 0.0 ) &
& antarctica_icesheet_mass_rate_of_change = ( antarctica_icesheet_mass - zantarctica_icesheet_mass_b ) / antarctica_icesheet_timelapsed
antarctica_icesheet_timelapsed = 0.0_wp
ENDIF
IF(lwp .AND. ll_wrtstp) THEN
WRITE(numout,*) 'Antarctica icesheet mass (kg) read in is ', zantarctica_icesheet_mass_in
WRITE(numout,*) 'Antarctica icesheet mass (kg) used is ', antarctica_icesheet_mass
WRITE(numout,*) 'Antarctica icesheet mass rate of change (kg/s) is ', antarctica_icesheet_mass_rate_of_change
WRITE(numout,*) 'Antarctica icesheet seconds lapsed since last change is ', antarctica_icesheet_timelapsed
ENDIF
ELSE IF ( nn_coupled_iceshelf_fluxes == 2 ) THEN
antarctica_icesheet_mass_rate_of_change = rn_antarctica_total_fw_flux
ENDIF
IF (ln_timing) CALL timing_stop('sbc_cpl_rcv')
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
END SUBROUTINE sbc_cpl_rcv
SUBROUTINE sbc_cpl_ice_tau( p_taui, p_tauj )
!!----------------------------------------------------------------------
!! *** ROUTINE sbc_cpl_ice_tau ***
!!
!! ** Purpose : provide the stress over sea-ice in coupled mode
!!
!! ** Method : transform the received stress from the atmosphere into
!! an atmosphere-ice stress in the (i,j) ocean referencial
!! and at the velocity point of the sea-ice model:
!! 'C'-grid : i- (j-) components given at U- (V-) point
!!
!! The received stress are :
!! - defined by 3 components (if cartesian coordinate)
!! or by 2 components (if spherical)
!! - oriented along geographical coordinate (if eastward-northward)
!! or along the local grid coordinate (if local grid)
!! - given at U- and V-point, resp. if received on 2 grids
!! or at a same point (T or I) if received on 1 grid
!! Therefore and if necessary, they are successively
!! processed in order to obtain them
!! first as 2 components on the sphere
!! second as 2 components oriented along the local grid
!! third as 2 components on the ice grid point
!!
!! Except in 'oce and ice' case, only one vector stress field
!! is received. It has already been processed in sbc_cpl_rcv
!! so that it is now defined as (i,j) components given at U-
!! and V-points, respectively.
!!
!! ** Action : return ptau_i, ptau_j, the stress over the ice
!!----------------------------------------------------------------------
REAL(wp), INTENT(inout), DIMENSION(:,:) :: p_taui ! i- & j-components of atmos-ice stress [N/m2]
REAL(wp), INTENT(inout), DIMENSION(:,:) :: p_tauj ! at I-point (B-grid) or U & V-point (C-grid)
!!
INTEGER :: ji, jj ! dummy loop indices
INTEGER :: itx ! index of taux over ice
REAL(wp) :: zztmp1, zztmp2
REAL(wp), DIMENSION(jpi,jpj) :: ztx, zty
!!----------------------------------------------------------------------
!
#if defined key_si3 || defined key_cice
!
IF( srcv(jpr_itx1)%laction ) THEN ; itx = jpr_itx1
ELSE ; itx = jpr_otx1
ENDIF
! do something only if we just received the stress from atmosphere
IF( nrcvinfo(itx) == OASIS_Rcv ) THEN
! ! ======================= !
IF( srcv(jpr_itx1)%laction ) THEN ! ice stress received !
! ! ======================= !
!
IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN ! 2 components on the sphere
! ! (cartesian to spherical -> 3 to 2 components)
CALL geo2oce( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), frcv(jpr_itz1)%z3(:,:,1), &
& srcv(jpr_itx1)%clgrid, ztx, zty )
frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 1st grid
frcv(jpr_ity1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 1st grid
!
IF( srcv(jpr_itx2)%laction ) THEN
CALL geo2oce( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), frcv(jpr_itz2)%z3(:,:,1), &
& srcv(jpr_itx2)%clgrid, ztx, zty )
frcv(jpr_itx2)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 2nd grid
frcv(jpr_ity2)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 2nd grid
ENDIF
!
ENDIF
!
IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN ! 2 components oriented along the local grid
! ! (geographical to local grid -> rotate the components)
CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->i', ztx )
IF( srcv(jpr_itx2)%laction ) THEN
CALL rot_rep( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), srcv(jpr_itx2)%clgrid, 'en->j', zty )
ELSE
CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->j', zty )
ENDIF
frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st component on the 1st grid
frcv(jpr_ity1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd component on the 1st grid
ENDIF
! ! ======================= !
ELSE ! use ocean stress !
! ! ======================= !
frcv(jpr_itx1)%z3(:,:,1) = frcv(jpr_otx1)%z3(:,:,1)
frcv(jpr_ity1)%z3(:,:,1) = frcv(jpr_oty1)%z3(:,:,1)
!
ENDIF
! ! ======================= !
! ! put on ice grid !
! ! ======================= !
!
! j+1 j -----V---F
! ice stress on ice velocity point ! |
! (C-grid ==>(U,V)) j | T U
! | |
! j j-1 -I-------|
! (for I) | |
! i-1 i i
! i i+1 (for I)
SELECT CASE ( srcv(jpr_itx1)%clgrid )
CASE( 'U' )
p_taui(:,:) = frcv(jpr_itx1)%z3(:,:,1) ! (U,V) ==> (U,V)
p_tauj(:,:) = frcv(jpr_ity1)%z3(:,:,1)
CASE( 'T' )
DO_2D( 0, 0, 0, 0 ) ! T ==> (U,V)
! take care of the land-sea mask to avoid "pollution" of coastal stress. p[uv]taui used in frazil and rheology
zztmp1 = 0.5_wp * ( 2. - umask(ji,jj,1) ) * MAX( tmask(ji,jj,1),tmask(ji+1,jj ,1) )
zztmp2 = 0.5_wp * ( 2. - vmask(ji,jj,1) ) * MAX( tmask(ji,jj,1),tmask(ji ,jj+1,1) )
p_taui(ji,jj) = zztmp1 * ( frcv(jpr_itx1)%z3(ji+1,jj ,1) + frcv(jpr_itx1)%z3(ji,jj,1) )
p_tauj(ji,jj) = zztmp2 * ( frcv(jpr_ity1)%z3(ji ,jj+1,1) + frcv(jpr_ity1)%z3(ji,jj,1) )
END_2D
CALL lbc_lnk( 'sbccpl', p_taui, 'U', -1._wp, p_tauj, 'V', -1._wp )
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
END SELECT
ENDIF
!
#endif
!
END SUBROUTINE sbc_cpl_ice_tau
SUBROUTINE sbc_cpl_ice_flx( kt, picefr, palbi, psst, pist, phs, phi )
!!----------------------------------------------------------------------
!! *** ROUTINE sbc_cpl_ice_flx ***
!!
!! ** Purpose : provide the heat and freshwater fluxes of the ocean-ice system
!!
!! ** Method : transform the fields received from the atmosphere into
!! surface heat and fresh water boundary condition for the
!! ice-ocean system. The following fields are provided:
!! * total non solar, solar and freshwater fluxes (qns_tot,
!! qsr_tot and emp_tot) (total means weighted ice-ocean flux)
!! NB: emp_tot include runoffs and calving.
!! * fluxes over ice (qns_ice, qsr_ice, emp_ice) where
!! emp_ice = sublimation - solid precipitation as liquid
!! precipitation are re-routed directly to the ocean and
!! calving directly enter the ocean (runoffs are read but included in trasbc.F90)
!! * solid precipitation (sprecip), used to add to qns_tot
!! the heat lost associated to melting solid precipitation
!! over the ocean fraction.
!! * heat content of rain, snow and evap can also be provided,
!! otherwise heat flux associated with these mass flux are
!! guessed (qemp_oce, qemp_ice)
!!
!! - the fluxes have been separated from the stress as
!! (a) they are updated at each ice time step compare to
!! an update at each coupled time step for the stress, and
!! (b) the conservative computation of the fluxes over the
!! sea-ice area requires the knowledge of the ice fraction
!! after the ice advection and before the ice thermodynamics,
!! so that the stress is updated before the ice dynamics
!! while the fluxes are updated after it.
!!
!! ** Details
!! qns_tot = (1-a) * qns_oce + a * qns_ice => provided
!! + qemp_oce + qemp_ice => recalculated and added up to qns
!!
!! qsr_tot = (1-a) * qsr_oce + a * qsr_ice => provided
!!
!! emp_tot = emp_oce + emp_ice => calving is provided and added to emp_tot (and emp_oce).
!! runoff (which includes rivers+icebergs) and iceshelf
!! are provided but not included in emp here. Only runoff will
!! be included in emp in other parts of NEMO code
!!
!! ** Note : In case of the ice-atm coupling with conduction fluxes (such as Jules interface for the Met-Office),
!! qsr_ice and qns_ice are not provided and they are not supposed to be used in the ice code.
!! However, by precaution we also "fake" qns_ice and qsr_ice this way:
!! qns_ice = qml_ice + qcn_ice ??
!! qsr_ice = qtr_ice_top ??
!!
!! ** Action : update at each nf_ice time step:
!! qns_tot, qsr_tot non-solar and solar total heat fluxes
!! qns_ice, qsr_ice non-solar and solar heat fluxes over the ice
!! emp_tot total evaporation - precipitation(liquid and solid) (-calving)
!! emp_ice ice sublimation - solid precipitation over the ice
!! dqns_ice d(non-solar heat flux)/d(Temperature) over the ice
!! sprecip solid precipitation over the ocean
!!----------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! ocean model time step index (only for a_i_last_couple)
REAL(wp), INTENT(in) , DIMENSION(:,:) :: picefr ! ice fraction [0 to 1]
! !! ! optional arguments, used only in 'mixed oce-ice' case or for Met-Office coupling
REAL(wp), INTENT(in) , DIMENSION(:,:,:), OPTIONAL :: palbi ! all skies ice albedo
REAL(wp), INTENT(in) , DIMENSION(:,: ), OPTIONAL :: psst ! sea surface temperature [Celsius]
REAL(wp), INTENT(inout), DIMENSION(:,:,:), OPTIONAL :: pist ! ice surface temperature [Kelvin] => inout for Met-Office
REAL(wp), INTENT(in) , DIMENSION(:,:,:), OPTIONAL :: phs ! snow depth [m]
REAL(wp), INTENT(in) , DIMENSION(:,:,:), OPTIONAL :: phi ! ice thickness [m]
!
INTEGER :: ji, jj, jl ! dummy loop index
REAL(wp), DIMENSION(jpi,jpj) :: zcptn, zcptrain, zcptsnw, ziceld, zmsk, zsnw
REAL(wp), DIMENSION(jpi,jpj) :: zemp_tot, zemp_ice, zemp_oce, ztprecip, zsprecip , zevap_oce, zdevap_ice
REAL(wp), DIMENSION(jpi,jpj) :: zqns_tot, zqns_oce, zqsr_tot, zqsr_oce, zqprec_ice, zqemp_oce, zqemp_ice
REAL(wp), DIMENSION(jpi,jpj) :: zevap_ice_total
REAL(wp), DIMENSION(jpi,jpj,jpl) :: zqns_ice, zqsr_ice, zdqns_ice, zqevap_ice, zevap_ice, zqtr_ice_top, ztsu
REAL(wp), DIMENSION(jpi,jpj) :: ztri
!!----------------------------------------------------------------------
!
#if defined key_si3 || defined key_cice
!
IF( ln_mixcpl ) zmsk(:,:) = 1. - xcplmask(:,:,0)
ziceld(:,:) = 1._wp - picefr(:,:)
zcptn (:,:) = rcp * sst_m(:,:)
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
! ! ========================= !
SELECT CASE( TRIM( sn_rcv_iceflx%cldes ) ) ! ice topmelt and botmelt !
! ! ========================= !
CASE ('coupled')
IF (ln_scale_ice_flux) THEN
WHERE( a_i(:,:,:) > 1.e-10_wp )
qml_ice(:,:,:) = frcv(jpr_topm)%z3(:,:,:) * a_i_last_couple(:,:,:) / a_i(:,:,:)
qcn_ice(:,:,:) = frcv(jpr_botm)%z3(:,:,:) * a_i_last_couple(:,:,:) / a_i(:,:,:)
ELSEWHERE
qml_ice(:,:,:) = 0.0_wp
qcn_ice(:,:,:) = 0.0_wp
END WHERE
ELSE
qml_ice(:,:,:) = frcv(jpr_topm)%z3(:,:,:)
qcn_ice(:,:,:) = frcv(jpr_botm)%z3(:,:,:)
ENDIF
END SELECT
!
! ! ========================= !
! ! freshwater budget ! (emp_tot)
! ! ========================= !
!
! ! solid Precipitation (sprecip)
! ! liquid + solid Precipitation (tprecip)
! ! total Evaporation - total Precipitation (emp_tot)
! ! sublimation - solid precipitation (cell average) (emp_ice)
SELECT CASE( TRIM( sn_rcv_emp%cldes ) )
CASE( 'conservative' ) ! received fields: jpr_rain, jpr_snow, jpr_ievp, jpr_tevp
zsprecip(:,:) = frcv(jpr_snow)%z3(:,:,1) ! May need to ensure positive here
ztprecip(:,:) = frcv(jpr_rain)%z3(:,:,1) + zsprecip(:,:) ! May need to ensure positive here
IF (.not. ln_couple_ocean_evap ) THEN
zemp_tot(:,:) = frcv(jpr_tevp)%z3(:,:,1) - ztprecip(:,:)
END IF
CASE( 'oce and ice' ) ! received fields: jpr_sbpr, jpr_semp, jpr_oemp, jpr_ievp
zemp_tot(:,:) = ziceld(:,:) * frcv(jpr_oemp)%z3(:,:,1) + picefr(:,:) * frcv(jpr_sbpr)%z3(:,:,1)
zemp_ice(:,:) = frcv(jpr_semp)%z3(:,:,1) * picefr(:,:)
zsprecip(:,:) = frcv(jpr_ievp)%z3(:,:,1) - frcv(jpr_semp)%z3(:,:,1)
ztprecip(:,:) = frcv(jpr_semp)%z3(:,:,1) - frcv(jpr_sbpr)%z3(:,:,1) + zsprecip(:,:)
CASE( 'none' ) ! Not available as for now: needs additional coding below when computing zevap_oce
! ! since fields received are not defined with none option
CALL ctl_stop( 'sbccpl/sbc_cpl_ice_flx: some fields are not defined. Change sn_rcv_emp value in namelist namsbc_cpl' )
CASE default ! Default
CALL ctl_stop( 'sbccpl/sbc_cpl_ice_flx: some fields are not defined. Change sn_rcv_emp value in namelist namsbc_cpl' )
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
END SELECT
! --- evaporation over ice (kg/m2/s) --- !
IF (ln_scale_ice_flux) THEN ! typically met-office requirements
IF (sn_rcv_emp%clcat == 'yes') THEN
WHERE( a_i(:,:,:) > 1.e-10 ) ; zevap_ice(:,:,:) = frcv(jpr_ievp)%z3(:,:,:) * a_i_last_couple(:,:,:) / a_i(:,:,:)
ELSEWHERE ; zevap_ice(:,:,:) = 0._wp
END WHERE
WHERE( picefr(:,:) > 1.e-10 ) ; zevap_ice_total(:,:) = SUM( zevap_ice(:,:,:) * a_i(:,:,:), dim=3 ) / picefr(:,:)
ELSEWHERE ; zevap_ice_total(:,:) = 0._wp
END WHERE
ELSE
WHERE( picefr(:,:) > 1.e-10 ) ; zevap_ice(:,:,1) = frcv(jpr_ievp)%z3(:,:,1) * SUM( a_i_last_couple, dim=3 ) / picefr(:,:)
ELSEWHERE ; zevap_ice(:,:,1) = 0._wp
END WHERE
zevap_ice_total(:,:) = zevap_ice(:,:,1)
DO jl = 2, jpl
zevap_ice(:,:,jl) = zevap_ice(:,:,1)
ENDDO
ENDIF
ELSE
IF (sn_rcv_emp%clcat == 'yes') THEN
zevap_ice(:,:,1:jpl) = frcv(jpr_ievp)%z3(:,:,1:jpl)
WHERE( picefr(:,:) > 1.e-10 ) ; zevap_ice_total(:,:) = SUM( zevap_ice(:,:,:) * a_i(:,:,:), dim=3 ) / picefr(:,:)
ELSEWHERE ; zevap_ice_total(:,:) = 0._wp
END WHERE
ELSE
zevap_ice(:,:,1) = frcv(jpr_ievp)%z3(:,:,1)
zevap_ice_total(:,:) = zevap_ice(:,:,1)
DO jl = 2, jpl
zevap_ice(:,:,jl) = zevap_ice(:,:,1)
ENDDO
ENDIF
ENDIF
IF ( TRIM( sn_rcv_emp%cldes ) == 'conservative' ) THEN
! For conservative case zemp_ice has not been defined yet. Do it now.
zemp_ice(:,:) = zevap_ice_total(:,:) * picefr(:,:) - frcv(jpr_snow)%z3(:,:,1) * picefr(:,:)
ENDIF
! zsnw = snow fraction over ice after wind blowing (=picefr if no blowing)
zsnw(:,:) = 0._wp ; CALL ice_var_snwblow( ziceld, zsnw )
! --- evaporation minus precipitation corrected (because of wind blowing on snow) --- !
zemp_ice(:,:) = zemp_ice(:,:) + zsprecip(:,:) * ( picefr(:,:) - zsnw(:,:) ) ! emp_ice = A * sublimation - zsnw * sprecip
IF ( ln_couple_ocean_evap ) THEN
zemp_oce(:,:) = frcv(jpr_tevp)%z3(:,:,1) - frcv(jpr_rain)%z3(:,:,1) & !Ocean evap minus rain (as all rain goes straight to ocean in GC5)
& - zsprecip(:,:) * ( 1._wp - zsnw(:,:) ) !subtract snow in leads after correction for blowing snow
zemp_tot(:,:) = zemp_oce(:,:) + zemp_ice(:,:)
zevap_oce(:,:) = frcv(jpr_tevp)%z3(:,:,1)
ELSE
zemp_oce(:,:) = zemp_tot(:,:) - zemp_ice(:,:) ! emp_oce = emp_tot - emp_ice
! --- evaporation over ocean (used later for qemp) --- !
zevap_oce(:,:) = frcv(jpr_tevp)%z3(:,:,1) - zevap_ice_total(:,:) * picefr(:,:)
END IF
! since the sensitivity of evap to temperature (devap/dT) is not prescribed by the atmosphere, we set it to 0
! therefore, sublimation is not redistributed over the ice categories when no subgrid scale fluxes are provided by atm.
zdevap_ice(:,:) = 0._wp
! --- Continental fluxes --- !
Loading
Loading full blame...