Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
MODULE timing
!!========================================================================
!! *** MODULE timing ***
!!========================================================================
!! History : 4.0 ! 2001-05 (R. Benshila)
!!------------------------------------------------------------------------
!!------------------------------------------------------------------------
!! timming_init : initialize timing process
!! timing_start : start Timer
!! timing_stop : stop Timer
!! timing_reset : end timing variable creation
!! timing_finalize : compute stats and write output in calling w*_info
!! timing_ini_var : create timing variables
!! timing_listing : print instumented subroutines in ocean.output
!! wcurrent_info : compute and print detailed stats on the current CPU
!! wave_info : compute and print averaged statson all processors
!! wmpi_info : compute and write global stats
!! supress : suppress an element of the timing linked list
!! insert : insert an element of the timing linked list
!!------------------------------------------------------------------------
USE in_out_manager ! I/O manager
USE dom_oce ! ocean domain
USE lib_mpp
IMPLICIT NONE
PRIVATE
PUBLIC timing_init, timing_finalize ! called in nemogcm module
PUBLIC timing_reset ! called in step module
PUBLIC timing_start, timing_stop ! called in each routine to time
#if ! defined key_mpi_off
INCLUDE 'mpif.h'
#endif
! Variables for fine grain timing
TYPE timer
CHARACTER(LEN=20) :: cname
CHARACTER(LEN=20) :: surname
INTEGER :: rank
REAL(dp) :: t_cpu, t_clock, tsum_cpu, tsum_clock, tmax_cpu, tmax_clock, tmin_cpu, tmin_clock, tsub_cpu, tsub_clock
INTEGER :: ncount, ncount_max, ncount_rate
INTEGER :: niter
LOGICAL :: l_tdone
TYPE(timer), POINTER :: next => NULL()
TYPE(timer), POINTER :: prev => NULL()
TYPE(timer), POINTER :: parent_section => NULL()
END TYPE timer
TYPE alltimer
CHARACTER(LEN=20), DIMENSION(:), POINTER :: cname => NULL()
REAL(dp), DIMENSION(:), POINTER :: tsum_cpu => NULL()
REAL(dp), DIMENSION(:), POINTER :: tsum_clock => NULL()
INTEGER, DIMENSION(:), POINTER :: niter => NULL()
TYPE(alltimer), POINTER :: next => NULL()
TYPE(alltimer), POINTER :: prev => NULL()
END TYPE alltimer
TYPE(timer), POINTER :: s_timer_root => NULL()
TYPE(timer), POINTER :: s_timer => NULL()
TYPE(timer), POINTER :: s_timer_old => NULL()
TYPE(timer), POINTER :: s_wrk => NULL()
REAL(dp) :: t_overclock, t_overcpu
LOGICAL :: l_initdone = .FALSE.
INTEGER :: nsize
! Variables for coarse grain timing
REAL(dp) :: tot_etime, tot_ctime
REAL(kind=dp), DIMENSION(2) :: t_elaps, t_cpu
REAL(dp), ALLOCATABLE, DIMENSION(:) :: all_etime, all_ctime
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
INTEGER :: nfinal_count, ncount, ncount_rate, ncount_max
INTEGER, DIMENSION(8) :: nvalues
CHARACTER(LEN=8), DIMENSION(2) :: cdate
CHARACTER(LEN=10), DIMENSION(2) :: ctime
CHARACTER(LEN=5) :: czone
! From of ouput file (1/proc or one global) !RB to put in nammpp or namctl
LOGICAL :: ln_onefile = .TRUE.
LOGICAL :: lwriter
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: timing.F90 14834 2021-05-11 09:24:44Z hadcv $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE timing_start(cdinfo)
!!----------------------------------------------------------------------
!! *** ROUTINE timing_start ***
!! ** Purpose : collect execution time
!!----------------------------------------------------------------------
CHARACTER(len=*), INTENT(in) :: cdinfo
!
IF(ASSOCIATED(s_timer) ) s_timer_old => s_timer
!
! Create timing structure at first call of the routine
CALL timing_ini_var(cdinfo)
! write(*,*) 'after inivar ', s_timer%cname
! ici timing_ini_var a soit retrouve s_timer et fait return soit ajoute un maillon
! maintenant on regarde si le call d'avant corrsspond a un parent ou si il est ferme
IF( .NOT. s_timer_old%l_tdone ) THEN
s_timer%parent_section => s_timer_old
ELSE
s_timer%parent_section => NULL()
ENDIF
s_timer%l_tdone = .FALSE.
IF( .NOT. l_istiled .OR. ntile == 1 ) s_timer%niter = s_timer%niter + 1 ! All tiles count as one iteration
s_timer%t_cpu = 0.
s_timer%t_clock = 0.
! CPU time collection
CALL CPU_TIME( s_timer%t_cpu )
! clock time collection
#if ! defined key_mpi_off
s_timer%t_clock= MPI_Wtime()
#else
CALL SYSTEM_CLOCK(COUNT_RATE=s_timer%ncount_rate, COUNT_MAX=s_timer%ncount_max)
CALL SYSTEM_CLOCK(COUNT = s_timer%ncount)
#endif
! write(*,*) 'end of start ', s_timer%cname
!
END SUBROUTINE timing_start
SUBROUTINE timing_stop(cdinfo, csection)
!!----------------------------------------------------------------------
!! *** ROUTINE timing_stop ***
!! ** Purpose : finalize timing and output
!!----------------------------------------------------------------------
CHARACTER(len=*), INTENT(in) :: cdinfo
CHARACTER(len=*), INTENT(in), OPTIONAL :: csection
!
INTEGER :: ifinal_count, iperiods
REAL(dp) :: zcpu_end, zmpitime,zcpu_raw,zclock_raw
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
!
s_wrk => NULL()
! clock time collection
#if ! defined key_mpi_off
zmpitime = MPI_Wtime()
#else
CALL SYSTEM_CLOCK(COUNT = ifinal_count)
#endif
! CPU time collection
CALL CPU_TIME( zcpu_end )
!!$ IF(associated(s_timer%parent_section))then
!!$ write(*,*) s_timer%cname,' <-- ', s_timer%parent_section%cname
!!$ ENDIF
! No need to search ... : s_timer has the last value defined in start
! s_timer => s_timer_root
! DO WHILE( TRIM(s_timer%cname) /= TRIM(cdinfo) )
! IF( ASSOCIATED(s_timer%next) ) s_timer => s_timer%next
! END DO
! CPU time correction
zcpu_raw = zcpu_end - s_timer%t_cpu - t_overcpu ! total time including child
s_timer%t_cpu = zcpu_raw - s_timer%tsub_cpu
! IF(s_timer%cname==trim('lbc_lnk_2d')) write(*,*) s_timer%tsub_cpu,zcpu_end
! clock time correction
#if ! defined key_mpi_off
zclock_raw = zmpitime - s_timer%t_clock - t_overclock ! total time including child
s_timer%t_clock = zclock_raw - t_overclock - s_timer%tsub_clock
#else
iperiods = ifinal_count - s_timer%ncount
IF( ifinal_count < s_timer%ncount ) &
iperiods = iperiods + s_timer%ncount_max
zclock_raw = REAL(iperiods) / s_timer%ncount_rate !- t_overclock
s_timer%t_clock = zclock_raw - s_timer%tsub_clock
#endif
! IF(s_timer%cname==trim('lbc_lnk_2d')) write(*,*) zclock_raw , s_timer%tsub_clock
! Correction of parent section
IF( .NOT. PRESENT(csection) ) THEN
IF ( ASSOCIATED(s_timer%parent_section ) ) THEN
s_timer%parent_section%tsub_cpu = zcpu_raw + s_timer%parent_section%tsub_cpu
s_timer%parent_section%tsub_clock = zclock_raw + s_timer%parent_section%tsub_clock
ENDIF
ENDIF
! time diagnostics
s_timer%tsum_clock = s_timer%tsum_clock + s_timer%t_clock
s_timer%tsum_cpu = s_timer%tsum_cpu + s_timer%t_cpu
!RB to use to get min/max during a time integration
! IF( .NOT. l_initdone ) THEN
! s_timer%tmin_clock = s_timer%t_clock
! s_timer%tmin_cpu = s_timer%t_cpu
! ELSE
! s_timer%tmin_clock = MIN( s_timer%tmin_clock, s_timer%t_clock )
! s_timer%tmin_cpu = MIN( s_timer%tmin_cpu , s_timer%t_cpu )
! ENDIF
! s_timer%tmax_clock = MAX( s_timer%tmax_clock, s_timer%t_clock )
! s_timer%tmax_cpu = MAX( s_timer%tmax_cpu , s_timer%t_cpu )
!
s_timer%tsub_clock = 0.
s_timer%tsub_cpu = 0.
s_timer%l_tdone = .TRUE.
!
!
! we come back
IF ( ASSOCIATED(s_timer%parent_section ) ) s_timer => s_timer%parent_section
! write(*,*) 'end of stop ', s_timer%cname
END SUBROUTINE timing_stop
SUBROUTINE timing_init( clname )
!!----------------------------------------------------------------------
!! *** ROUTINE timing_init ***
!! ** Purpose : open timing output file
!!----------------------------------------------------------------------
INTEGER :: iperiods, istart_count, ifinal_count
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
LOGICAL :: ll_f
CHARACTER(len=*), INTENT(in), OPTIONAL :: clname
CHARACTER(len=20) :: cln
IF( PRESENT(clname) ) THEN ; cln = clname
ELSE ; cln = 'timing.output'
ENDIF
IF( ln_onefile ) THEN
IF( lwp) CALL ctl_opn( numtime, cln, 'REPLACE', 'FORMATTED', 'SEQUENTIAL', -1, numout,.TRUE., narea )
lwriter = lwp
ELSE
CALL ctl_opn( numtime, cln, 'REPLACE', 'FORMATTED', 'SEQUENTIAL', -1, numout,.FALSE., narea )
lwriter = .TRUE.
ENDIF
IF( lwriter) THEN
WRITE(numtime,*)
WRITE(numtime,*) ' CNRS - NERC - Met OFFICE - MERCATOR-ocean - CMCC - INGV'
WRITE(numtime,*) ' NEMO team'
WRITE(numtime,*) ' Ocean General Circulation Model'
WRITE(numtime,*) ' version 4.0 (2019) '
WRITE(numtime,*)
WRITE(numtime,*) ' Timing Informations '
WRITE(numtime,*)
WRITE(numtime,*)
ENDIF
! Compute clock function overhead
#if ! defined key_mpi_off
t_overclock = MPI_WTIME()
t_overclock = MPI_WTIME() - t_overclock
#else
CALL SYSTEM_CLOCK(COUNT_RATE=ncount_rate, COUNT_MAX=ncount_max)
CALL SYSTEM_CLOCK(COUNT = istart_count)
CALL SYSTEM_CLOCK(COUNT = ifinal_count)
iperiods = ifinal_count - istart_count
IF( ifinal_count < istart_count ) &
iperiods = iperiods + ncount_max
t_overclock = REAL(iperiods) / ncount_rate
#endif
! Compute cpu_time function overhead
CALL CPU_TIME(zdum)
CALL CPU_TIME(t_overcpu)
! End overhead omputation
t_overcpu = t_overcpu - zdum
t_overclock = t_overcpu + t_overclock
! Timing on date and time
CALL DATE_AND_TIME(cdate(1),ctime(1),czone,nvalues)
CALL CPU_TIME(t_cpu(1))
#if ! defined key_mpi_off
! Start elapsed and CPU time counters
t_elaps(1) = MPI_WTIME()
#else
CALL SYSTEM_CLOCK(COUNT_RATE=ncount_rate, COUNT_MAX=ncount_max)
CALL SYSTEM_CLOCK(COUNT = ncount)
#endif
!
END SUBROUTINE timing_init
SUBROUTINE timing_finalize
!!----------------------------------------------------------------------
!! *** ROUTINE timing_finalize ***
!! ** Purpose : compute average time
!! write timing output file
!!----------------------------------------------------------------------
TYPE(timer), POINTER :: s_temp
INTEGER :: idum, iperiods, icode
INTEGER :: ji
LOGICAL :: ll_ord, ll_averep
CHARACTER(len=120) :: clfmt
REAL(dp), DIMENSION(:), ALLOCATABLE :: timing_glob
REAL(dp) :: zsypd ! simulated years per day (Balaji 2017)
REAL(dp) :: zperc, ztot
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
ll_averep = .TRUE.
! total CPU and elapse
CALL CPU_TIME(t_cpu(2))
t_cpu(2) = t_cpu(2) - t_cpu(1) - t_overcpu
#if ! defined key_mpi_off
t_elaps(2) = MPI_WTIME() - t_elaps(1) - t_overclock
#else
CALL SYSTEM_CLOCK(COUNT = nfinal_count)
iperiods = nfinal_count - ncount
IF( nfinal_count < ncount ) &
iperiods = iperiods + ncount_max
t_elaps(2) = REAL(iperiods) / ncount_rate - t_overclock
#endif
! End of timings on date & time
CALL DATE_AND_TIME(cdate(2),ctime(2),czone,nvalues)
! Compute the numer of routines
nsize = 0
s_timer => s_timer_root
DO WHILE( ASSOCIATED(s_timer) )
nsize = nsize + 1
s_timer => s_timer%next
END DO
idum = nsize
CALL mpp_sum('timing', idum)
IF( idum/jpnij /= nsize ) THEN
IF( lwriter ) WRITE(numtime,*) ' ===> W A R N I N G: '
IF( lwriter ) WRITE(numtime,*) ' Some CPU have different number of routines instrumented for timing'
IF( lwriter ) WRITE(numtime,*) ' No detailed report on averaged timing can be provided'
IF( lwriter ) WRITE(numtime,*) ' The following detailed report only deals with the current processor'
IF( lwriter ) WRITE(numtime,*)
ll_averep = .FALSE.
ENDIF
#if ! defined key_mpi_off
! in MPI gather some info
ALLOCATE( all_etime(jpnij), all_ctime(jpnij) )
CALL MPI_ALLGATHER(t_elaps(2), 1, MPI_DOUBLE_PRECISION, &
all_etime , 1, MPI_DOUBLE_PRECISION, &
MPI_COMM_OCE, icode)
CALL MPI_ALLGATHER(t_cpu(2) , 1, MPI_DOUBLE_PRECISION, &
all_ctime, 1, MPI_DOUBLE_PRECISION, &
MPI_COMM_OCE, icode)
tot_etime = SUM(all_etime(:))
tot_ctime = SUM(all_ctime(:))
#else
tot_etime = t_elaps(2)
tot_ctime = t_cpu (2)
#endif
! write output file
IF( lwriter ) WRITE(numtime,*)
IF( lwriter ) WRITE(numtime,*)
IF( lwriter ) WRITE(numtime,*) 'Total timing (sum) :'
IF( lwriter ) WRITE(numtime,*) '--------------------'
IF( lwriter ) WRITE(numtime,"('Elapsed Time (s) CPU Time (s)')")
IF( lwriter ) WRITE(numtime,'(5x,f12.3,1x,f12.3)') tot_etime, tot_ctime
IF( lwriter ) WRITE(numtime,*)
#if ! defined key_mpi_off
IF( ll_averep ) CALL waver_info
CALL wmpi_info
#endif
IF( lwriter ) CALL wcurrent_info
clfmt='(1X,"Timing started on ",2(A2,"/"),A4," at ",2(A2,":"),A2," MET ",A3,":",A2," from GMT")'
IF( lwriter ) WRITE(numtime, TRIM(clfmt)) &
& cdate(1)(7:8), cdate(1)(5:6), cdate(1)(1:4), &
& ctime(1)(1:2), ctime(1)(3:4), ctime(1)(5:6), &
& czone(1:3), czone(4:5)
clfmt='(1X, "Timing ended on ",2(A2,"/"),A4," at ",2(A2,":"),A2," MET ",A3,":",A2," from GMT")'
IF( lwriter ) WRITE(numtime, TRIM(clfmt)) &
& cdate(2)(7:8), cdate(2)(5:6), cdate(2)(1:4), &
& ctime(2)(1:2), ctime(2)(3:4), ctime(2)(5:6), &
& czone(1:3), czone(4:5)
#if ! defined key_mpi_off
ALLOCATE(timing_glob(4*jpnij), stat=icode)
CALL MPI_GATHER( (/compute_time, waiting_time(1), waiting_time(2), elapsed_time/), &
& 4, MPI_DOUBLE_PRECISION, timing_glob, 4, MPI_DOUBLE_PRECISION, 0, MPI_COMM_OCE, icode)
IF( narea == 1 ) THEN
WRITE(numtime,*) ' '
WRITE(numtime,*) ' Report on time spent on waiting MPI messages '
WRITE(numtime,*) ' total timing measured between nit000+1 and nitend-1 '
WRITE(numtime,*) ' warning: includes restarts writing time if output before nitend... '
WRITE(numtime,*) ' '
DO ji = 1, jpnij
zperc = 0._dp ; zsypd = 0._dp
ztot = SUM( timing_glob(4*ji-3:4*ji-1) )
WRITE(numtime,'(A28,F11.6, A34,I8)') 'Computing time : ',timing_glob(4*ji-3), ' on MPI rank : ', ji
IF ( ztot /= 0._dp ) zperc = timing_glob(4*ji-2) / ztot * 100.
WRITE(numtime,'(A28,F11.6,A2, F4.1,A3,A25,I8)') 'Waiting lbc_lnk time : ',timing_glob(4*ji-2) &
& , ' (', zperc,' %)', ' on MPI rank : ', ji
IF ( ztot /= 0._dp ) zperc = timing_glob(4*ji-1) / ztot * 100.
WRITE(numtime,'(A28,F11.6,A2, F4.1,A3,A25,I8)') 'Waiting global time : ',timing_glob(4*ji-1) &
& , ' (', zperc,' %)', ' on MPI rank : ', ji
IF ( timing_glob(4*ji) /= 0._dp ) zsypd = rn_Dt * REAL(nitend-nit000-1, dp) / (timing_glob(4*ji) * 365.)
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
WRITE(numtime,'(A28,F11.6,A7,F10.3,A2,A15,I8)') 'Total time : ',timing_glob(4*ji ) &
& , ' (SYPD: ', zsypd, ')', ' on MPI rank : ', ji
END DO
ENDIF
DEALLOCATE(timing_glob)
#endif
IF( lwriter ) CLOSE(numtime)
!
END SUBROUTINE timing_finalize
SUBROUTINE wcurrent_info
!!----------------------------------------------------------------------
!! *** ROUTINE wcurrent_info ***
!! ** Purpose : compute and write timing output file
!!----------------------------------------------------------------------
LOGICAL :: ll_ord
CHARACTER(len=2048) :: clfmt
! reorder the current list by elapse time
s_wrk => NULL()
s_timer => s_timer_root
DO
ll_ord = .TRUE.
s_timer => s_timer_root
DO WHILE ( ASSOCIATED( s_timer%next ) )
IF (.NOT. ASSOCIATED(s_timer%next)) EXIT
IF ( s_timer%tsum_clock < s_timer%next%tsum_clock ) THEN
ALLOCATE(s_wrk)
s_wrk = s_timer%next
CALL insert (s_timer, s_timer_root, s_wrk)
CALL suppress(s_timer%next)
ll_ord = .FALSE.
CYCLE
ENDIF
IF( ASSOCIATED(s_timer%next) ) s_timer => s_timer%next
END DO
IF( ll_ord ) EXIT
END DO
! write current info
WRITE(numtime,*) 'Detailed timing for proc :', narea-1
WRITE(numtime,*) '--------------------------'
WRITE(numtime,*) 'Section ', &
& 'Elapsed Time (s) ','Elapsed Time (%) ', &
& 'CPU Time(s) ','CPU Time (%) ','CPU/Elapsed ','Frequency'
s_timer => s_timer_root
clfmt = '(1x,a,4x,f12.3,6x,f12.3,x,f12.3,2x,f12.3,6x,f7.3,2x,i9)'
DO WHILE ( ASSOCIATED(s_timer) )
IF( s_timer%tsum_clock > 0._dp ) &
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
WRITE(numtime,TRIM(clfmt)) s_timer%cname, &
& s_timer%tsum_clock,s_timer%tsum_clock*100./t_elaps(2), &
& s_timer%tsum_cpu ,s_timer%tsum_cpu*100./t_cpu(2) , &
& s_timer%tsum_cpu/s_timer%tsum_clock, s_timer%niter
s_timer => s_timer%next
END DO
WRITE(numtime,*)
!
END SUBROUTINE wcurrent_info
#if ! defined key_mpi_off
SUBROUTINE waver_info
!!----------------------------------------------------------------------
!! *** ROUTINE wcurrent_info ***
!! ** Purpose : compute and write averaged timing informations
!!----------------------------------------------------------------------
TYPE(alltimer), POINTER :: sl_timer_glob_root => NULL()
TYPE(alltimer), POINTER :: sl_timer_glob => NULL()
TYPE(timer), POINTER :: sl_timer_ave_root => NULL()
TYPE(timer), POINTER :: sl_timer_ave => NULL()
INTEGER :: icode
INTEGER :: ierr
LOGICAL :: ll_ord
CHARACTER(len=200) :: clfmt
! Initialised the global strucutre
ALLOCATE(sl_timer_glob_root, Stat=ierr)
IF(ierr /= 0)THEN
WRITE(numtime,*) 'Failed to allocate global timing structure in waver_info'
RETURN
END IF
ALLOCATE(sl_timer_glob_root%cname (jpnij), &
sl_timer_glob_root%tsum_cpu (jpnij), &
sl_timer_glob_root%tsum_clock(jpnij), &
sl_timer_glob_root%niter (jpnij), Stat=ierr)
IF(ierr /= 0)THEN
WRITE(numtime,*) 'Failed to allocate global timing structure in waver_info'
RETURN
END IF
sl_timer_glob_root%cname(:) = ''
sl_timer_glob_root%tsum_cpu(:) = 0._dp
sl_timer_glob_root%tsum_clock(:) = 0._dp
sl_timer_glob_root%niter(:) = 0
sl_timer_glob_root%next => NULL()
sl_timer_glob_root%prev => NULL()
!ARPDBG - don't need to allocate a pointer that's immediately then
! set to point to some other object.
!ALLOCATE(sl_timer_glob)
!ALLOCATE(sl_timer_glob%cname (jpnij))
!ALLOCATE(sl_timer_glob%tsum_cpu (jpnij))
!ALLOCATE(sl_timer_glob%tsum_clock(jpnij))
!ALLOCATE(sl_timer_glob%niter (jpnij))
sl_timer_glob => sl_timer_glob_root
!
IF( narea .EQ. 1 ) THEN
ALLOCATE(sl_timer_ave_root)
sl_timer_ave_root%cname = ''
sl_timer_ave_root%t_cpu = 0._dp
sl_timer_ave_root%t_clock = 0._dp
sl_timer_ave_root%tsum_cpu = 0._dp
sl_timer_ave_root%tsum_clock = 0._dp
sl_timer_ave_root%tmax_cpu = 0._dp
sl_timer_ave_root%tmax_clock = 0._dp
sl_timer_ave_root%tmin_cpu = 0._dp
sl_timer_ave_root%tmin_clock = 0._dp
sl_timer_ave_root%tsub_cpu = 0._dp
sl_timer_ave_root%tsub_clock = 0._dp
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
sl_timer_ave_root%ncount = 0
sl_timer_ave_root%ncount_rate = 0
sl_timer_ave_root%ncount_max = 0
sl_timer_ave_root%niter = 0
sl_timer_ave_root%l_tdone = .FALSE.
sl_timer_ave_root%next => NULL()
sl_timer_ave_root%prev => NULL()
ALLOCATE(sl_timer_ave)
sl_timer_ave => sl_timer_ave_root
ENDIF
! Gather info from all processors
s_timer => s_timer_root
DO WHILE ( ASSOCIATED(s_timer) )
CALL MPI_GATHER(s_timer%cname , 20, MPI_CHARACTER, &
sl_timer_glob%cname, 20, MPI_CHARACTER, &
0, MPI_COMM_OCE, icode)
CALL MPI_GATHER(s_timer%tsum_clock , 1, MPI_DOUBLE_PRECISION, &
sl_timer_glob%tsum_clock, 1, MPI_DOUBLE_PRECISION, &
0, MPI_COMM_OCE, icode)
CALL MPI_GATHER(s_timer%tsum_cpu , 1, MPI_DOUBLE_PRECISION, &
sl_timer_glob%tsum_cpu, 1, MPI_DOUBLE_PRECISION, &
0, MPI_COMM_OCE, icode)
CALL MPI_GATHER(s_timer%niter , 1, MPI_INTEGER, &
sl_timer_glob%niter, 1, MPI_INTEGER, &
0, MPI_COMM_OCE, icode)
IF( narea == 1 .AND. ASSOCIATED(s_timer%next) ) THEN
ALLOCATE(sl_timer_glob%next)
ALLOCATE(sl_timer_glob%next%cname (jpnij))
ALLOCATE(sl_timer_glob%next%tsum_cpu (jpnij))
ALLOCATE(sl_timer_glob%next%tsum_clock(jpnij))
ALLOCATE(sl_timer_glob%next%niter (jpnij))
sl_timer_glob%next%prev => sl_timer_glob
sl_timer_glob%next%next => NULL()
sl_timer_glob => sl_timer_glob%next
ENDIF
s_timer => s_timer%next
END DO
IF( narea == 1 ) THEN
! Compute some stats
sl_timer_glob => sl_timer_glob_root
DO WHILE( ASSOCIATED(sl_timer_glob) )
sl_timer_ave%cname = sl_timer_glob%cname(1)
sl_timer_ave%tsum_cpu = SUM (sl_timer_glob%tsum_cpu (:)) / jpnij
sl_timer_ave%tsum_clock = SUM (sl_timer_glob%tsum_clock(:)) / jpnij
sl_timer_ave%tmax_cpu = MAXVAL(sl_timer_glob%tsum_cpu (:))
sl_timer_ave%tmax_clock = MAXVAL(sl_timer_glob%tsum_clock(:))
sl_timer_ave%tmin_cpu = MINVAL(sl_timer_glob%tsum_cpu (:))
sl_timer_ave%tmin_clock = MINVAL(sl_timer_glob%tsum_clock(:))
sl_timer_ave%niter = SUM (sl_timer_glob%niter (:))
!
IF( ASSOCIATED(sl_timer_glob%next) ) THEN
ALLOCATE(sl_timer_ave%next)
sl_timer_ave%next%prev => sl_timer_ave
sl_timer_ave%next%next => NULL()
sl_timer_ave => sl_timer_ave%next
ENDIF
sl_timer_glob => sl_timer_glob%next
END DO
! reorder the averaged list by CPU time
s_wrk => NULL()
sl_timer_ave => sl_timer_ave_root
DO
ll_ord = .TRUE.
sl_timer_ave => sl_timer_ave_root
DO WHILE( ASSOCIATED( sl_timer_ave%next ) )
IF( .NOT. ASSOCIATED(sl_timer_ave%next) ) EXIT
IF ( sl_timer_ave%tsum_clock < sl_timer_ave%next%tsum_clock ) THEN
ALLOCATE(s_wrk)
! Copy data into the new object pointed to by s_wrk
s_wrk = sl_timer_ave%next
! Insert this new timer object before our current position
CALL insert (sl_timer_ave, sl_timer_ave_root, s_wrk)
! Remove the old object from the list
CALL suppress(sl_timer_ave%next)
ll_ord = .FALSE.
CYCLE
ENDIF
IF( ASSOCIATED(sl_timer_ave%next) ) sl_timer_ave => sl_timer_ave%next
END DO
IF( ll_ord ) EXIT
END DO
! write averaged info
WRITE(numtime,"('Averaged timing on all processors :')")
WRITE(numtime,"('-----------------------------------')")
WRITE(numtime,"('Section',13x,'Elap. Time(s)',2x,'Elap. Time(%)',2x, &
& 'CPU Time(s)',2x,'CPU Time(%)',2x,'CPU/Elap',1x, &
& 'Max elap(%)',2x,'Min elap(%)',2x, &
& 'Freq')")
sl_timer_ave => sl_timer_ave_root
clfmt = '((A),E15.7,2x,f6.2,5x,f12.2,5x,f6.2,5x,f7.2,2x,f12.2,4x,f6.2,2x,f9.2)'
DO WHILE ( ASSOCIATED(sl_timer_ave) )
IF( sl_timer_ave%tsum_clock > 0. ) &
WRITE(numtime,TRIM(clfmt)) sl_timer_ave%cname(1:18), &
& sl_timer_ave%tsum_clock,sl_timer_ave%tsum_clock*100.*jpnij/tot_etime, &
& sl_timer_ave%tsum_cpu ,sl_timer_ave%tsum_cpu*100.*jpnij/tot_ctime , &
& sl_timer_ave%tsum_cpu/sl_timer_ave%tsum_clock, &
& sl_timer_ave%tmax_clock*100.*jpnij/tot_etime, &
& sl_timer_ave%tmin_clock*100.*jpnij/tot_etime, &
& sl_timer_ave%niter/REAL(jpnij)
sl_timer_ave => sl_timer_ave%next
END DO
WRITE(numtime,*)
!
DEALLOCATE(sl_timer_ave_root)
ENDIF
!
DEALLOCATE(sl_timer_glob_root)
!
END SUBROUTINE waver_info
SUBROUTINE wmpi_info
!!----------------------------------------------------------------------
!! *** ROUTINE wmpi_time ***
!! ** Purpose : compute and write a summary of MPI infos
!!----------------------------------------------------------------------
!
INTEGER :: idum, icode
INTEGER, ALLOCATABLE, DIMENSION(:) :: iall_rank
REAL(dp) :: ztot_ratio
REAL(dp) :: zmax_etime, zmax_ctime, zmax_ratio, zmin_etime, zmin_ctime, zmin_ratio
REAL(dp) :: zavg_etime, zavg_ctime, zavg_ratio
REAL(dp), ALLOCATABLE, DIMENSION(:) :: zall_ratio
CHARACTER(LEN=128), dimension(8) :: cllignes
CHARACTER(LEN=128) :: clhline, clstart_date, clfinal_date
CHARACTER(LEN=2048) :: clfmt
! Gather all times
ALLOCATE( zall_ratio(jpnij), iall_rank(jpnij) )
IF( narea == 1 ) THEN
iall_rank(:) = (/ (idum,idum=0,jpnij-1) /)
! Compute elapse user time
zavg_etime = tot_etime/REAL(jpnij,dp)
zmax_etime = MAXVAL(all_etime(:))
zmin_etime = MINVAL(all_etime(:))
! Compute CPU user time
zavg_ctime = tot_ctime/REAL(jpnij,dp)
zmax_ctime = MAXVAL(all_ctime(:))
zmin_ctime = MINVAL(all_ctime(:))
! Compute cpu/elapsed ratio
zall_ratio(:) = all_ctime(:) / all_etime(:)
ztot_ratio = SUM(all_ctime(:))/SUM(all_etime(:))
zavg_ratio = SUM(zall_ratio(:))/REAL(jpnij,dp)
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
zmax_ratio = MAXVAL(zall_ratio(:))
zmin_ratio = MINVAL(zall_ratio(:))
! Output Format
clhline ='1x,13("-"),"|",18("-"),"|",14("-"),"|",18("-"),/,'
cllignes(1)='(1x,"MPI summary report :",/,'
cllignes(2)='1x,"--------------------",//,'
cllignes(3)='1x,"Process Rank |"," Elapsed Time (s) |"," CPU Time (s) |"," Ratio CPU/Elapsed",/,'
cllignes(4)=' (4x,i6,4x,"|",f12.3,6x,"|",f12.3,2x,"|",4x,f7.3,/),'
WRITE(cllignes(4)(1:6),'(I6)') jpnij
cllignes(5)='1x,"Total |",f12.3,6x,"|",F12.3,2x,"|",4x,f7.3,/,'
cllignes(6)='1x,"Minimum |",f12.3,6x,"|",F12.3,2x,"|",4x,f7.3,/,'
cllignes(7)='1x,"Maximum |",f12.3,6x,"|",F12.3,2x,"|",4x,f7.3,/,'
cllignes(8)='1x,"Average |",f12.3,6x,"|",F12.3,2x,"|",4x,f7.3)'
clfmt=TRIM(cllignes(1))// TRIM(cllignes(2))//TRIM(cllignes(3))// &
& TRIM(clhline)//TRIM(cllignes(4))//TRIM(clhline)//TRIM(cllignes(5))// &
& TRIM(clhline)//TRIM(cllignes(6))//TRIM(clhline)//TRIM(cllignes(7))// &
& TRIM(clhline)//TRIM(cllignes(8))
WRITE(numtime, TRIM(clfmt)) &
(iall_rank(idum),all_etime(idum),all_ctime(idum),zall_ratio(idum),idum=1, jpnij), &
tot_etime, tot_ctime, ztot_ratio, &
zmin_etime, zmin_ctime, zmin_ratio, &
zmax_etime, zmax_ctime, zmax_ratio, &
zavg_etime, zavg_ctime, zavg_ratio
WRITE(numtime,*)
END IF
!
DEALLOCATE(zall_ratio, iall_rank)
!
END SUBROUTINE wmpi_info
#endif
SUBROUTINE timing_ini_var(cdinfo)
!!----------------------------------------------------------------------
!! *** ROUTINE timing_ini_var ***
!! ** Purpose : create timing structure
!!----------------------------------------------------------------------
CHARACTER(len=*), INTENT(in) :: cdinfo
LOGICAL :: ll_section
!
IF( .NOT. ASSOCIATED(s_timer_root) ) THEN
ALLOCATE(s_timer_root)
s_timer_root%cname = cdinfo
s_timer_root%t_cpu = 0._dp
s_timer_root%t_clock = 0._dp
s_timer_root%tsum_cpu = 0._dp
s_timer_root%tsum_clock = 0._dp
s_timer_root%tmax_cpu = 0._dp
s_timer_root%tmax_clock = 0._dp
s_timer_root%tmin_cpu = 0._dp
s_timer_root%tmin_clock = 0._dp
s_timer_root%tsub_cpu = 0._dp
s_timer_root%tsub_clock = 0._dp
s_timer_root%ncount = 0
s_timer_root%ncount_rate = 0
s_timer_root%ncount_max = 0
s_timer_root%niter = 0
s_timer_root%l_tdone = .FALSE.
s_timer_root%next => NULL()
s_timer_root%prev => NULL()
s_timer => s_timer_root
!
ALLOCATE(s_wrk)
s_wrk => NULL()
!
ALLOCATE(s_timer_old)
s_timer_old%cname = cdinfo
s_timer_old%t_cpu = 0._dp
s_timer_old%t_clock = 0._dp
s_timer_old%tsum_cpu = 0._dp
s_timer_old%tsum_clock = 0._dp
s_timer_old%tmax_cpu = 0._dp
s_timer_old%tmax_clock = 0._dp
s_timer_old%tmin_cpu = 0._dp
s_timer_old%tmin_clock = 0._dp
s_timer_old%tsub_cpu = 0._dp
s_timer_old%tsub_clock = 0._dp
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
s_timer_old%ncount = 0
s_timer_old%ncount_rate = 0
s_timer_old%ncount_max = 0
s_timer_old%niter = 0
s_timer_old%l_tdone = .TRUE.
s_timer_old%next => NULL()
s_timer_old%prev => NULL()
ELSE
s_timer => s_timer_root
! case of already existing area (typically inside a loop)
! write(*,*) 'in ini_var for routine : ', cdinfo
DO WHILE( ASSOCIATED(s_timer) )
IF( TRIM(s_timer%cname) .EQ. TRIM(cdinfo) ) THEN
! write(*,*) 'in ini_var for routine : ', cdinfo,' we return'
RETURN ! cdinfo is already in the chain
ENDIF
s_timer => s_timer%next
END DO
! end of the chain
s_timer => s_timer_root
DO WHILE( ASSOCIATED(s_timer%next) )
s_timer => s_timer%next
END DO
! write(*,*) 'after search', s_timer%cname
! cdinfo is not part of the chain so we add it with initialisation
ALLOCATE(s_timer%next)
! write(*,*) 'after allocation of next'
s_timer%next%cname = cdinfo
s_timer%next%t_cpu = 0._dp
s_timer%next%t_clock = 0._dp
s_timer%next%tsum_cpu = 0._dp
s_timer%next%tsum_clock = 0._dp
s_timer%next%tmax_cpu = 0._dp
s_timer%next%tmax_clock = 0._dp
s_timer%next%tmin_cpu = 0._dp
s_timer%next%tmin_clock = 0._dp
s_timer%next%tsub_cpu = 0._dp
s_timer%next%tsub_clock = 0._dp
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
s_timer%next%ncount = 0
s_timer%next%ncount_rate = 0
s_timer%next%ncount_max = 0
s_timer%next%niter = 0
s_timer%next%l_tdone = .FALSE.
s_timer%next%parent_section => NULL()
s_timer%next%prev => s_timer
s_timer%next%next => NULL()
s_timer => s_timer%next
ENDIF
! write(*,*) 'after allocation'
!
END SUBROUTINE timing_ini_var
SUBROUTINE timing_reset
!!----------------------------------------------------------------------
!! *** ROUTINE timing_reset ***
!! ** Purpose : go to root of timing tree
!!----------------------------------------------------------------------
l_initdone = .TRUE.
! IF(lwp) WRITE(numout,*)
! IF(lwp) WRITE(numout,*) 'timing_reset : instrumented routines for timing'
! IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~'
CALL timing_list(s_timer_root)
! WRITE(numout,*)
!
END SUBROUTINE timing_reset
RECURSIVE SUBROUTINE timing_list(ptr)
TYPE(timer), POINTER, INTENT(inout) :: ptr
!
IF( ASSOCIATED(ptr%next) ) CALL timing_list(ptr%next)
IF(lwp) WRITE(numout,*)' ', ptr%cname
!
END SUBROUTINE timing_list
SUBROUTINE insert(sd_current, sd_root ,sd_ptr)
!!----------------------------------------------------------------------
!! *** ROUTINE insert ***
!! ** Purpose : insert an element in timer structure
!!----------------------------------------------------------------------
TYPE(timer), POINTER, INTENT(inout) :: sd_current, sd_root, sd_ptr
!
IF( ASSOCIATED( sd_current, sd_root ) ) THEN
! If our current element is the root element then
! replace it with the one being inserted
sd_root => sd_ptr
ELSE
sd_current%prev%next => sd_ptr
END IF
sd_ptr%next => sd_current
sd_ptr%prev => sd_current%prev
sd_current%prev => sd_ptr
! Nullify the pointer to the new element now that it is held
! within the list. If we don't do this then a subsequent call
! to ALLOCATE memory to this pointer will fail.
sd_ptr => NULL()
!
END SUBROUTINE insert
SUBROUTINE suppress(sd_ptr)
!!----------------------------------------------------------------------
!! *** ROUTINE suppress ***
!! ** Purpose : supress an element in timer structure
!!----------------------------------------------------------------------
TYPE(timer), POINTER, INTENT(inout) :: sd_ptr
!
TYPE(timer), POINTER :: sl_temp
sl_temp => sd_ptr
sd_ptr => sd_ptr%next
IF ( ASSOCIATED(sl_temp%next) ) sl_temp%next%prev => sl_temp%prev
DEALLOCATE(sl_temp)
sl_temp => NULL()
!
END SUBROUTINE suppress
!!=====================================================================
END MODULE timing