Skip to content
Snippets Groups Projects
icedyn_rhg_eap.F90 93.3 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
MODULE icedyn_rhg_eap
   !!======================================================================
   !!                     ***  MODULE  icedyn_rhg_eap  ***
   !!   Sea-Ice dynamics : rheology Elasto-Viscous-Plastic
   !!======================================================================
   !! History :   -   !  2007-03  (M.A. Morales Maqueda, S. Bouillon) Original code
   !!            3.0  !  2008-03  (M. Vancoppenolle) adaptation to new model
   !!             -   !  2008-11  (M. Vancoppenolle, S. Bouillon, Y. Aksenov) add surface tilt in ice rheolohy
   !!            3.3  !  2009-05  (G.Garric)    addition of the evp case
   !!            3.4  !  2011-01  (A. Porter)   dynamical allocation
   !!            3.5  !  2012-08  (R. Benshila) AGRIF
   !!            3.6  !  2016-06  (C. Rousset)  Rewriting + landfast ice + mEVP (Bouillon 2013)
   !!            3.7  !  2017     (C. Rousset)  add aEVP (Kimmritz 2016-2017)
   !!            4.0  !  2018     (many people) SI3 [aka Sea Ice cube]
   !!                 !  2019     (S. Rynders, Y. Aksenov, C. Rousset)  change into eap rheology from
   !!                                           CICE code (Tsamados, Heorton)
   !!----------------------------------------------------------------------
#if defined key_si3
   !!----------------------------------------------------------------------
   !!   'key_si3'                                       SI3 sea-ice model
   !!----------------------------------------------------------------------
   !!   ice_dyn_rhg_eap : computes ice velocities from EVP rheology
   !!   rhg_eap_rst     : read/write EVP fields in ice restart
   !!----------------------------------------------------------------------
   USE phycst         ! Physical constant
   USE dom_oce        ! Ocean domain
   USE sbc_oce , ONLY : ln_ice_embd, nn_fsbc, ssh_m
   USE sbc_ice , ONLY : utau_ice, vtau_ice, snwice_mass, snwice_mass_b
   USE ice            ! sea-ice: ice variables
   USE icevar         ! ice_var_sshdyn
   USE icedyn_rdgrft  ! sea-ice: ice strength
   USE bdy_oce , ONLY : ln_bdy
   USE bdyice
#if defined key_agrif
   USE agrif_ice_interp
#endif
   !
   USE in_out_manager ! I/O manager
   USE iom            ! I/O manager library
   USE lib_mpp        ! MPP library
   USE lib_fortran    ! fortran utilities (glob_sum + no signed zero)
   USE lbclnk         ! lateral boundary conditions (or mpp links)
   USE prtctl         ! Print control

   USE netcdf         ! NetCDF library for convergence test
   IMPLICIT NONE
   PRIVATE

   PUBLIC   ice_dyn_rhg_eap   ! called by icedyn_rhg.F90
   PUBLIC   rhg_eap_rst       ! called by icedyn_rhg.F90

   REAL(wp), PARAMETER ::   pphi = 3.141592653589793_wp/12._wp    ! diamond shaped floe smaller angle (default phi = 30 deg)

   ! look-up table for calculating structure tensor
   INTEGER, PARAMETER ::   nx_yield = 41
   INTEGER, PARAMETER ::   ny_yield = 41
   INTEGER, PARAMETER ::   na_yield = 21

   REAL(wp), DIMENSION(nx_yield, ny_yield, na_yield) ::   s11r, s12r, s22r, s11s, s12s, s22s
   REAL(wp), DIMENSION(:,:), ALLOCATABLE ::   fimask   ! mask at F points for the ice

   !! for convergence tests
   INTEGER ::   ncvgid   ! netcdf file id
   INTEGER ::   nvarid   ! netcdf variable id

   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/ICE 4.0 , NEMO Consortium (2018)
   !! $Id: icedyn_rhg_eap.F90 11536 2019-09-11 13:54:18Z smasson $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE ice_dyn_rhg_eap( kt, Kmm, pstress1_i, pstress2_i, pstress12_i, pshear_i, pdivu_i, pdelta_i, paniso_11, paniso_12, prdg_conv )
      !!-------------------------------------------------------------------
      !!                 ***  SUBROUTINE ice_dyn_rhg_eap  ***
      !!                             EAP-C-grid
      !!
      !! ** purpose : determines sea ice drift from wind stress, ice-ocean
      !!  stress and sea-surface slope. Ice-ice interaction is described by
      !!  a non-linear elasto-anisotropic-plastic (EAP) law including shear
      !!  strength and a bulk rheology .
      !!
      !!  The points in the C-grid look like this, dear reader
      !!
      !!                              (ji,jj)
      !!                                 |
      !!                                 |
      !!                      (ji-1,jj)  |  (ji,jj)
      !!                             ---------
      !!                            |         |
      !!                            | (ji,jj) |------(ji,jj)
      !!                            |         |
      !!                             ---------
      !!                     (ji-1,jj-1)     (ji,jj-1)
      !!
      !! ** Inputs  : - wind forcing (stress), oceanic currents
      !!                ice total volume (vt_i) per unit area
      !!                snow total volume (vt_s) per unit area
      !!
      !! ** Action  : - compute u_ice, v_ice : the components of the
      !!                sea-ice velocity vector
      !!              - compute delta_i, shear_i, divu_i, which are inputs
      !!                of the ice thickness distribution
      !!
      !! ** Steps   : 0) compute mask at F point
      !!              1) Compute ice snow mass, ice strength
      !!              2) Compute wind, oceanic stresses, mass terms and
      !!                 coriolis terms of the momentum equation
      !!              3) Solve the momentum equation (iterative procedure)
      !!              4) Recompute delta, shear and divergence
      !!                 (which are inputs of the ITD) & store stress
      !!                 for the next time step
      !!              5) Diagnostics including charge ellipse
      !!
      !! ** Notes   : There is the possibility to use aEVP from the nice work of Kimmritz et al. (2016 & 2017)
      !!              by setting up ln_aEVP=T (i.e. changing alpha and beta parameters).
      !!              This is an upgraded version of mEVP from Bouillon et al. 2013
      !!              (i.e. more stable and better convergence)
      !!
      !! References : Hunke and Dukowicz, JPO97
      !!              Bouillon et al., Ocean Modelling 2009
      !!              Bouillon et al., Ocean Modelling 2013
      !!              Kimmritz et al., Ocean Modelling 2016 & 2017
      !!-------------------------------------------------------------------
      INTEGER                 , INTENT(in   ) ::   kt                                    ! time step
      INTEGER                 , INTENT(in   ) ::   Kmm                                   ! ocean time level index
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   pstress1_i, pstress2_i, pstress12_i   !
      REAL(wp), DIMENSION(:,:), INTENT(  out) ::   pshear_i  , pdivu_i   , pdelta_i      !
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   paniso_11 , paniso_12                 ! structure tensor components
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   prdg_conv                             ! for ridging
      !!
      INTEGER ::   ji, jj       ! dummy loop indices
      INTEGER ::   jter         ! local integers
      !
      REAL(wp) ::   zrhoco                                              ! rau0 * rn_cio
      REAL(wp) ::   zdtevp, z1_dtevp                                    ! time step for subcycling
      REAL(wp) ::   ecc2, z1_ecc2                                       ! square of yield ellipse eccenticity
      REAL(wp) ::   zalph1, z1_alph1, zalph2, z1_alph2                  ! alpha coef from Bouillon 2009 or Kimmritz 2017
      REAl(wp) ::   zbetau, zbetav
      REAL(wp) ::   zm1, zm2, zm3, zmassU, zmassV, zvU, zvV             ! ice/snow mass and volume
      REAL(wp) ::   zds2, zdt, zdt2, zdiv, zdiv2, zdsT                  ! temporary scalars
      REAL(wp) ::   zTauO, zTauB, zRHS, zvel                            ! temporary scalars
      REAL(wp) ::   zkt                                                 ! isotropic tensile strength for landfast ice
      REAL(wp) ::   zvCr                                                ! critical ice volume above which ice is landfast
      !
      REAL(wp) ::   zintb, zintn                                        ! dummy argument
      REAL(wp) ::   zfac_x, zfac_y
      REAL(wp) ::   zshear, zdum1, zdum2
      REAL(wp) ::   zstressptmp, zstressmtmp, zstress12tmpF             ! anisotropic stress tensor components
      REAL(wp) ::   zalphar, zalphas                                    ! for mechanical redistribution
      REAL(wp) ::   zmresult11, zmresult12, z1dtevpkth, zp5kth, z1_dtevp_A  ! for structure tensor evolution
      !
      REAL(wp), DIMENSION(jpi,jpj) ::   zstress12tmp                    ! anisotropic stress tensor component for regridding
      REAL(wp), DIMENSION(jpi,jpj) ::   zyield11, zyield22, zyield12    ! yield surface tensor for history
      REAL(wp), DIMENSION(jpi,jpj) ::   zdelta, zp_delt                 ! delta and P/delta at T points
      REAL(wp), DIMENSION(jpi,jpj) ::   zten_i                          ! tension
      REAL(wp), DIMENSION(jpi,jpj) ::   zbeta                           ! beta coef from Kimmritz 2017
      !
      REAL(wp), DIMENSION(jpi,jpj) ::   zdt_m                           ! (dt / ice-snow_mass) on T points
      REAL(wp), DIMENSION(jpi,jpj) ::   zaU  , zaV                      ! ice fraction on U/V points
      REAL(wp), DIMENSION(jpi,jpj) ::   zmU_t, zmV_t                    ! (ice-snow_mass / dt) on U/V points
      REAL(wp), DIMENSION(jpi,jpj) ::   zmf                             ! coriolis parameter at T points
      REAL(wp), DIMENSION(jpi,jpj) ::   v_oceU, u_oceV, v_iceU, u_iceV  ! ocean/ice u/v component on V/U points
      !
      REAL(wp), DIMENSION(jpi,jpj) ::   zds                             ! shear
      REAL(wp), DIMENSION(jpi,jpj) ::   zs1, zs2, zs12                  ! stress tensor components
      REAL(wp), DIMENSION(jpi,jpj) ::   zsshdyn                         ! array used for the calculation of ice surface slope:
      !                                                                 !    ocean surface (ssh_m) if ice is not embedded
      !                                                                 !    ice bottom surface if ice is embedded
      REAL(wp), DIMENSION(jpi,jpj) ::   zfU  , zfV                      ! internal stresses
      REAL(wp), DIMENSION(jpi,jpj) ::   zspgU, zspgV                    ! surface pressure gradient at U/V points
      REAL(wp), DIMENSION(jpi,jpj) ::   zCorU, zCorV                    ! Coriolis stress array
      REAL(wp), DIMENSION(jpi,jpj) ::   ztaux_ai, ztauy_ai              ! ice-atm. stress at U-V points
      REAL(wp), DIMENSION(jpi,jpj) ::   ztaux_oi, ztauy_oi              ! ice-ocean stress at U-V points
      REAL(wp), DIMENSION(jpi,jpj) ::   ztaux_bi, ztauy_bi              ! ice-OceanBottom stress at U-V points (landfast)
      REAL(wp), DIMENSION(jpi,jpj) ::   ztaux_base, ztauy_base          ! ice-bottom stress at U-V points (landfast)
      !
      REAL(wp), DIMENSION(jpi,jpj) ::   zmsk00, zmsk15
      REAL(wp), DIMENSION(jpi,jpj) ::   zmsk01x, zmsk01y                ! dummy arrays
      REAL(wp), DIMENSION(jpi,jpj) ::   zmsk00x, zmsk00y                ! mask for ice presence

      REAL(wp), PARAMETER          ::   zepsi  = 1.0e-20_wp             ! tolerance parameter
      REAL(wp), PARAMETER          ::   zmmin  = 1._wp                  ! ice mass (kg/m2)  below which ice velocity becomes very small
      REAL(wp), PARAMETER          ::   zamin  = 0.001_wp               ! ice concentration below which ice velocity becomes very small
      !! --- check convergence
      REAL(wp), DIMENSION(jpi,jpj) ::   zu_ice, zv_ice
      !! --- diags
      REAL(wp) ::   zsig1, zsig2, zsig12, zfac, z1_strength
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zsig_I, zsig_II, zsig1_p, zsig2_p
      !! --- SIMIP diags
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_xmtrp_ice ! X-component of ice mass transport (kg/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_ymtrp_ice ! Y-component of ice mass transport (kg/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_xmtrp_snw ! X-component of snow mass transport (kg/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_ymtrp_snw ! Y-component of snow mass transport (kg/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_xatrp     ! X-component of area transport (m2/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_yatrp     ! Y-component of area transport (m2/s)
      !!-------------------------------------------------------------------

      IF( kt == nit000 .AND. lwp )   WRITE(numout,*) '-- ice_dyn_rhg_eap: EAP sea-ice rheology'
      !
      ! for diagnostics and convergence tests
      DO_2D( 1, 1, 1, 1 )
         zmsk00(ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi06  ) ) ! 1 if ice    , 0 if no ice
      END_2D
      IF( nn_rhg_chkcvg > 0 ) THEN
         DO_2D( 1, 1, 1, 1 )
            zmsk15(ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - 0.15_wp ) ) ! 1 if 15% ice, 0 if less
         END_2D
      ENDIF
      !
      !------------------------------------------------------------------------------!
      ! 0) mask at F points for the ice
      !------------------------------------------------------------------------------!
      IF( kt == nit000 ) THEN
         ! ocean/land mask
         ALLOCATE( fimask(jpi,jpj) )
         IF( rn_ishlat == 0._wp ) THEN
            DO_2D( 0, 0, 0, 0 )
               fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
            END_2D
         ELSE
            DO_2D( 0, 0, 0, 0 )
               fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
               ! Lateral boundary conditions on velocity (modify fimask)
               IF( fimask(ji,jj) == 0._wp ) THEN
                  fimask(ji,jj) = rn_ishlat * MIN( 1._wp , MAX( umask(ji,jj,1), umask(ji,jj+1,1), &
                     &                                          vmask(ji,jj,1), vmask(ji+1,jj,1) ) )
               ENDIF
            END_2D
         ENDIF
         CALL lbc_lnk( 'icedyn_rhg_eap', fimask, 'F', 1.0_wp )
      ENDIF

      !------------------------------------------------------------------------------!
      ! 1) define some variables and initialize arrays
      !------------------------------------------------------------------------------!
      zrhoco = rho0 * rn_cio

      ! ecc2: square of yield ellipse eccenticrity
      ecc2    = rn_ecc * rn_ecc
      z1_ecc2 = 1._wp / ecc2

      ! alpha parameters (Bouillon 2009)
      IF( .NOT. ln_aEVP ) THEN
         zdtevp   = rDt_ice / REAL( nn_nevp )
         zalph1 =   2._wp * rn_relast * REAL( nn_nevp )
         zalph2 = zalph1 * z1_ecc2

         z1_alph1 = 1._wp / ( zalph1 + 1._wp )
         z1_alph2 = 1._wp / ( zalph2 + 1._wp )
      ELSE
         zdtevp   = rdt_ice
         ! zalpha parameters set later on adaptatively
      ENDIF
      z1_dtevp = 1._wp / zdtevp

      ! Initialise stress tensor
      zs1 (:,:) = pstress1_i (:,:)
      zs2 (:,:) = pstress2_i (:,:)
      zs12(:,:) = pstress12_i(:,:)

      ! constants for structure tensor
      z1_dtevp_A = z1_dtevp/10.0_wp
      z1dtevpkth = 1._wp / (z1_dtevp_A + 0.00002_wp)
      zp5kth = 0.5_wp * 0.00002_wp

      ! Ice strength
      CALL ice_strength

      ! landfast param from Lemieux(2016): add isotropic tensile strength (following Konig Beatty and Holland, 2010)
      IF( ln_landfast_L16 ) THEN   ;   zkt = rn_lf_tensile
      ELSE                         ;   zkt = 0._wp
      ENDIF
      !
      !------------------------------------------------------------------------------!
      ! 2) Wind / ocean stress, mass terms, coriolis terms
      !------------------------------------------------------------------------------!
      ! sea surface height
      !    embedded sea ice: compute representative ice top surface
      !    non-embedded sea ice: use ocean surface for slope calculation
      zsshdyn(:,:) = ice_var_sshdyn( ssh_m, snwice_mass, snwice_mass_b)

      DO_2D( 0, 0, 0, 0 )

         ! ice fraction at U-V points
         zaU(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji+1,jj) * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
         zaV(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji,jj+1) * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)

         ! Ice/snow mass at U-V points
         zm1 = ( rhos * vt_s(ji  ,jj  ) + rhoi * vt_i(ji  ,jj  ) )
         zm2 = ( rhos * vt_s(ji+1,jj  ) + rhoi * vt_i(ji+1,jj  ) )
         zm3 = ( rhos * vt_s(ji  ,jj+1) + rhoi * vt_i(ji  ,jj+1) )
         zmassU = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm2 * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
         zmassV = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm3 * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)

         ! Ocean currents at U-V points
         v_oceU(ji,jj)   = 0.25_wp * ( v_oce(ji,jj) + v_oce(ji,jj-1) + v_oce(ji+1,jj) + v_oce(ji+1,jj-1) ) * umask(ji,jj,1)
         u_oceV(ji,jj)   = 0.25_wp * ( u_oce(ji,jj) + u_oce(ji-1,jj) + u_oce(ji,jj+1) + u_oce(ji-1,jj+1) ) * vmask(ji,jj,1)

         ! Coriolis at T points (m*f)
         zmf(ji,jj)      = zm1 * ff_t(ji,jj)

         ! dt/m at T points (for alpha and beta coefficients)
         zdt_m(ji,jj)    = zdtevp / MAX( zm1, zmmin )

         ! m/dt
         zmU_t(ji,jj)    = zmassU * z1_dtevp
         zmV_t(ji,jj)    = zmassV * z1_dtevp

         ! Drag ice-atm.
         ztaux_ai(ji,jj) = zaU(ji,jj) * utau_ice(ji,jj)
         ztauy_ai(ji,jj) = zaV(ji,jj) * vtau_ice(ji,jj)

         ! Surface pressure gradient (- m*g*GRAD(ssh)) at U-V points
         zspgU(ji,jj)    = - zmassU * grav * ( zsshdyn(ji+1,jj) - zsshdyn(ji,jj) ) * r1_e1u(ji,jj)
         zspgV(ji,jj)    = - zmassV * grav * ( zsshdyn(ji,jj+1) - zsshdyn(ji,jj) ) * r1_e2v(ji,jj)

         ! masks
         zmsk00x(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassU ) )  ! 0 if no ice
         zmsk00y(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassV ) )  ! 0 if no ice

         ! switches
         IF( zmassU <= zmmin .AND. zaU(ji,jj) <= zamin ) THEN   ;   zmsk01x(ji,jj) = 0._wp
         ELSE                                                   ;   zmsk01x(ji,jj) = 1._wp   ;   ENDIF
         IF( zmassV <= zmmin .AND. zaV(ji,jj) <= zamin ) THEN   ;   zmsk01y(ji,jj) = 0._wp
         ELSE                                                   ;   zmsk01y(ji,jj) = 1._wp   ;   ENDIF

      END_2D
      CALL lbc_lnk( 'icedyn_rhg_eap', zmf, 'T', 1.0_wp, zdt_m, 'T', 1.0_wp )
      !
      !                                  !== Landfast ice parameterization ==!
      !
      IF( ln_landfast_L16 ) THEN         !-- Lemieux 2016
         DO_2D( 0, 0, 0, 0 )
            ! ice thickness at U-V points
            zvU = 0.5_wp * ( vt_i(ji,jj) * e1e2t(ji,jj) + vt_i(ji+1,jj) * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
            zvV = 0.5_wp * ( vt_i(ji,jj) * e1e2t(ji,jj) + vt_i(ji,jj+1) * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)
            ! ice-bottom stress at U points
            zvCr = zaU(ji,jj) * rn_lf_depfra * hu(ji,jj,Kmm) * ( 1._wp - icb_mask(ji,jj) ) ! if grounded icebergs are read: ocean depth = 0
            ztaux_base(ji,jj) = - rn_lf_bfr * MAX( 0._wp, zvU - zvCr ) * EXP( -rn_crhg * ( 1._wp - zaU(ji,jj) ) )
            ! ice-bottom stress at V points
            zvCr = zaV(ji,jj) * rn_lf_depfra * hv(ji,jj,Kmm) * ( 1._wp - icb_mask(ji,jj) ) ! if grounded icebergs are read: ocean depth = 0
            ztauy_base(ji,jj) = - rn_lf_bfr * MAX( 0._wp, zvV - zvCr ) * EXP( -rn_crhg * ( 1._wp - zaV(ji,jj) ) )
            ! ice_bottom stress at T points
            zvCr = at_i(ji,jj) * rn_lf_depfra * ht(ji,jj) * ( 1._wp - icb_mask(ji,jj) )    ! if grounded icebergs are read: ocean depth = 0
            tau_icebfr(ji,jj) = - rn_lf_bfr * MAX( 0._wp, vt_i(ji,jj) - zvCr ) * EXP( -rn_crhg * ( 1._wp - at_i(ji,jj) ) )
         END_2D
         CALL lbc_lnk( 'icedyn_rhg_eap', tau_icebfr(:,:), 'T', 1.0_wp )
         !
      ELSE                               !-- no landfast
         DO_2D( 0, 0, 0, 0 )
            ztaux_base(ji,jj) = 0._wp
            ztauy_base(ji,jj) = 0._wp
         END_2D
      ENDIF

      !------------------------------------------------------------------------------!
      ! 3) Solution of the momentum equation, iterative procedure
      !------------------------------------------------------------------------------!
      !
      !                                               ! ==================== !
      DO jter = 1 , nn_nevp                           !    loop over jter    !
         !                                            ! ==================== !
         l_full_nf_update = jter == nn_nevp   ! false: disable full North fold update (performances) for iter = 1 to nn_nevp-1
         !
         ! convergence test
         IF( nn_rhg_chkcvg == 1 .OR. nn_rhg_chkcvg == 2  ) THEN
            DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
               zu_ice(ji,jj) = u_ice(ji,jj) * umask(ji,jj,1) ! velocity at previous time step
               zv_ice(ji,jj) = v_ice(ji,jj) * vmask(ji,jj,1)
            END_2D
         ENDIF

         ! --- divergence, tension & shear (Appendix B of Hunke & Dukowicz, 2002) --- !
         DO_2D( 1, 0, 1, 0 )

            ! shear at F points
            zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj)   &
               &         + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj)   &
               &         ) * r1_e1e2f(ji,jj) * fimask(ji,jj)

         END_2D

         DO_2D( 0, 0, 0, 0 )

            ! shear**2 at T points (doc eq. A16)
            zds2 = ( zds(ji,jj  ) * zds(ji,jj  ) * e1e2f(ji,jj  ) + zds(ji-1,jj  ) * zds(ji-1,jj  ) * e1e2f(ji-1,jj  )  &
               &   + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1)  &
               &   ) * 0.25_wp * r1_e1e2t(ji,jj)

            ! divergence at T points
            zdiv  = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj)   &
               &    + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1)   &
               &    ) * r1_e1e2t(ji,jj)
            zdiv2 = zdiv * zdiv

            ! tension at T points
            zdt  = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj)   &
               &   - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj)   &
               &   ) * r1_e1e2t(ji,jj)
            zdt2 = zdt * zdt

            ! delta at T points
            zdelta(ji,jj) = SQRT( zdiv2 + ( zdt2 + zds2 ) * z1_ecc2 )

         END_2D
         CALL lbc_lnk( 'icedyn_rhg_eap', zdelta, 'T', 1.0_wp )

         ! P/delta at T points
         DO_2D( 1, 1, 1, 1 )
            zp_delt(ji,jj) = strength(ji,jj) / ( zdelta(ji,jj) + rn_creepl )
         END_2D

         DO_2D( 0, 1, 0, 1 )   ! loop ends at jpi,jpj so that no lbc_lnk are needed for zs1 and zs2

             ! shear at T points
            zdsT = ( zds(ji,jj  ) * e1e2f(ji,jj  ) + zds(ji-1,jj  ) * e1e2f(ji-1,jj  )  &
               &   + zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * e1e2f(ji-1,jj-1)  &
               &   ) * 0.25_wp * r1_e1e2t(ji,jj)

           ! divergence at T points (duplication to avoid communications)
            zdiv  = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj)   &
               &    + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1)   &
               &    ) * r1_e1e2t(ji,jj)

            ! tension at T points (duplication to avoid communications)
            zdt  = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj)   &
               &   - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj)   &
               &   ) * r1_e1e2t(ji,jj)

            ! --- anisotropic stress calculation --- !
            CALL update_stress_rdg (jter, nn_nevp, zdiv, zdt, zdsT, paniso_11(ji,jj), paniso_12(ji,jj), &
                                    zstressptmp, zstressmtmp, zstress12tmp(ji,jj), strength(ji,jj), zalphar, zalphas)

            ! structure tensor update
               CALL calc_ffrac(zstressptmp, zstressmtmp, zstress12tmp(ji,jj), paniso_11(ji,jj), paniso_12(ji,jj), zmresult11,  zmresult12)

               paniso_11(ji,jj) = (paniso_11(ji,jj)  + 0.5*2.e-5*zdtevp + zmresult11*zdtevp) / (1. + 2.e-5*zdtevp) ! implicit
               paniso_12(ji,jj) = (paniso_12(ji,jj)                     + zmresult12*zdtevp) / (1. + 2.e-5*zdtevp) ! implicit

            IF (jter == nn_nevp) THEN
               zyield11(ji,jj) = 0.5_wp * (zstressptmp + zstressmtmp)
               zyield22(ji,jj) = 0.5_wp * (zstressptmp - zstressmtmp)
               zyield12(ji,jj) = zstress12tmp(ji,jj)
               prdg_conv(ji,jj) = -min( zalphar, 0._wp)
            ENDIF

            ! alpha for aEVP
            !   gamma = 0.5*P/(delta+creepl) * (c*pi)**2/Area * dt/m
            !   alpha = beta = sqrt(4*gamma)
            IF( ln_aEVP ) THEN
               zalph1   = MAX( 50._wp, rpi * SQRT( 0.5_wp * zp_delt(ji,jj) * r1_e1e2t(ji,jj) * zdt_m(ji,jj) ) )
               z1_alph1 = 1._wp / ( zalph1 + 1._wp )
               zalph2   = zalph1
               z1_alph2 = z1_alph1
               ! explicit:
               ! z1_alph1 = 1._wp / zalph1
               ! z1_alph2 = 1._wp / zalph1
               ! zalph1 = zalph1 - 1._wp
               ! zalph2 = zalph1
            ENDIF

            ! stress at T points (zkt/=0 if landfast)
            zs1(ji,jj) = ( zs1(ji,jj) * zalph1 + zstressptmp ) * z1_alph1
            zs2(ji,jj) = ( zs2(ji,jj) * zalph1 + zstressmtmp ) * z1_alph1
         END_2D
         CALL lbc_lnk( 'icedyn_rhg_eap', zstress12tmp, 'T', 1.0_wp , paniso_11, 'T', 1.0_wp , paniso_12, 'T', 1.0_wp)

        ! Save beta at T-points for further computations
         IF( ln_aEVP ) THEN
            DO_2D( 1, 1, 1, 1 )
               zbeta(ji,jj) = MAX( 50._wp, rpi * SQRT( 0.5_wp * zp_delt(ji,jj) * r1_e1e2t(ji,jj) * zdt_m(ji,jj) ) )
            END_2D
         ENDIF

         DO_2D( 1, 0, 1, 0 )
            ! stress12tmp at F points
            zstress12tmpF = ( zstress12tmp(ji,jj+1) * e1e2t(ji,jj+1) + zstress12tmp(ji+1,jj+1) * e1e2t(ji+1,jj+1)  &
               &            + zstress12tmp(ji,jj  ) * e1e2t(ji,jj  ) + zstress12tmp(ji+1,jj  ) * e1e2t(ji+1,jj  )  &
               &            ) * 0.25_wp * r1_e1e2f(ji,jj)

            ! alpha for aEVP
            IF( ln_aEVP ) THEN
               zalph2   = MAX( zbeta(ji,jj), zbeta(ji+1,jj), zbeta(ji,jj+1), zbeta(ji+1,jj+1) )
               z1_alph2 = 1._wp / ( zalph2 + 1._wp )
               ! explicit:
               ! z1_alph2 = 1._wp / zalph2
               ! zalph2 = zalph2 - 1._wp
            ENDIF

            ! stress at F points (zkt/=0 if landfast)
            zs12(ji,jj) = ( zs12(ji,jj) * zalph1 + zstress12tmpF ) * z1_alph1

         END_2D
         CALL lbc_lnk( 'icedyn_rhg_eap', zs1, 'T', 1.0_wp, zs2, 'T', 1.0_wp, zs12, 'F', 1.0_wp )

         ! --- Ice internal stresses (Appendix C of Hunke and Dukowicz, 2002) --- !
         DO_2D( 0, 0, 0, 0 )
            !                   !--- U points
            zfU(ji,jj) = 0.5_wp * ( ( zs1(ji+1,jj) - zs1(ji,jj) ) * e2u(ji,jj)                                             &
               &                  + ( zs2(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj) - zs2(ji,jj) * e2t(ji,jj) * e2t(ji,jj)    &
               &                    ) * r1_e2u(ji,jj)                                                                      &
               &                  + ( zs12(ji,jj) * e1f(ji,jj) * e1f(ji,jj) - zs12(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1)  &
               &                    ) * 2._wp * r1_e1u(ji,jj)                                                              &
               &                  ) * r1_e1e2u(ji,jj)
            !
            !                !--- V points
            zfV(ji,jj) = 0.5_wp * ( ( zs1(ji,jj+1) - zs1(ji,jj) ) * e1v(ji,jj)                                             &
               &                  - ( zs2(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1) - zs2(ji,jj) * e1t(ji,jj) * e1t(ji,jj)    &
               &                    ) * r1_e1v(ji,jj)                                                                      &
               &                  + ( zs12(ji,jj) * e2f(ji,jj) * e2f(ji,jj) - zs12(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj)  &
               &                    ) * 2._wp * r1_e2v(ji,jj)                                                              &
               &                  ) * r1_e1e2v(ji,jj)
            !
            !                !--- ice currents at U-V point
            v_iceU(ji,jj) = 0.25_wp * ( v_ice(ji,jj) + v_ice(ji,jj-1) + v_ice(ji+1,jj) + v_ice(ji+1,jj-1) ) * umask(ji,jj,1)
            u_iceV(ji,jj) = 0.25_wp * ( u_ice(ji,jj) + u_ice(ji-1,jj) + u_ice(ji,jj+1) + u_ice(ji-1,jj+1) ) * vmask(ji,jj,1)
            !
         END_2D
         !
         ! --- Computation of ice velocity --- !
         !  Bouillon et al. 2013 (eq 47-48) => unstable unless alpha, beta vary as in Kimmritz 2016 & 2017
         !  Bouillon et al. 2009 (eq 34-35) => stable
         IF( MOD(jter,2) == 0 ) THEN ! even iterations
            !
            DO_2D( 0, 0, 0, 0 )
               !                 !--- tau_io/(v_oce - v_ice)
               zTauO = zaV(ji,jj) * zrhoco * SQRT( ( v_ice (ji,jj) - v_oce (ji,jj) ) * ( v_ice (ji,jj) - v_oce (ji,jj) )  &
                  &                              + ( u_iceV(ji,jj) - u_oceV(ji,jj) ) * ( u_iceV(ji,jj) - u_oceV(ji,jj) ) )
               !                 !--- Ocean-to-Ice stress
               ztauy_oi(ji,jj) = zTauO * ( v_oce(ji,jj) - v_ice(ji,jj) )
               !
               !                 !--- tau_bottom/v_ice
               zvel  = 5.e-05_wp + SQRT( v_ice(ji,jj) * v_ice(ji,jj) + u_iceV(ji,jj) * u_iceV(ji,jj) )
               zTauB = ztauy_base(ji,jj) / zvel
               !                 !--- OceanBottom-to-Ice stress
               ztauy_bi(ji,jj) = zTauB * v_ice(ji,jj)
               !
               !                 !--- Coriolis at V-points (energy conserving formulation)
               zCorV(ji,jj)  = - 0.25_wp * r1_e2v(ji,jj) *  &
                  &    ( zmf(ji,jj  ) * ( e2u(ji,jj  ) * u_ice(ji,jj  ) + e2u(ji-1,jj  ) * u_ice(ji-1,jj  ) )  &
                  &    + zmf(ji,jj+1) * ( e2u(ji,jj+1) * u_ice(ji,jj+1) + e2u(ji-1,jj+1) * u_ice(ji-1,jj+1) ) )
               !
               !                 !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
               zRHS = zfV(ji,jj) + ztauy_ai(ji,jj) + zCorV(ji,jj) + zspgV(ji,jj) + ztauy_oi(ji,jj)
               !
               !                 !--- landfast switch => 0 = static  friction : TauB > RHS & sign(TauB) /= sign(RHS)
               !                                         1 = sliding friction : TauB < RHS
               rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztauy_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
               !
               IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
                  zbetav = MAX( zbeta(ji,jj), zbeta(ji,jj+1) )
                  v_ice(ji,jj) = ( (          rswitch   * ( zmV_t(ji,jj) * ( zbetav * v_ice(ji,jj) + v_ice_b(ji,jj) )         & ! previous velocity
                     &                                    + zRHS + zTauO * v_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmV_t(ji,jj) * ( zbetav + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) * (  v_ice_b(ji,jj)                                                   &
                     &                                     + v_ice  (ji,jj) * MAX( 0._wp, zbetav - zdtevp * rn_lf_relax )     & ! static friction => slow decrease to v=0
                     &                                    ) / ( zbetav + 1._wp )                                              &
                     &             ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00y(ji,jj)
               ELSE               !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
                  v_ice(ji,jj) = ( (         rswitch   * ( zmV_t(ji,jj)  * v_ice(ji,jj)                                       & ! previous velocity
                     &                                    + zRHS + zTauO * v_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmV_t(ji,jj) + zTauO - zTauB )                      & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) *   v_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax )         & ! static friction => slow decrease to v=0
                     &              ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) )                  & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &            )   * zmsk00y(ji,jj)
               ENDIF
            END_2D
            CALL lbc_lnk( 'icedyn_rhg_eap', v_ice, 'V', -1.0_wp )
            !
#if defined key_agrif
!!          CALL agrif_interp_ice( 'V', jter, nn_nevp )
            CALL agrif_interp_ice( 'V' )
#endif
            IF( ln_bdy )   CALL bdy_ice_dyn( 'V' )
            !
            DO_2D( 0, 0, 0, 0 )
               !                 !--- tau_io/(u_oce - u_ice)
               zTauO = zaU(ji,jj) * zrhoco * SQRT( ( u_ice (ji,jj) - u_oce (ji,jj) ) * ( u_ice (ji,jj) - u_oce (ji,jj) )  &
                  &                              + ( v_iceU(ji,jj) - v_oceU(ji,jj) ) * ( v_iceU(ji,jj) - v_oceU(ji,jj) ) )
               !                 !--- Ocean-to-Ice stress
               ztaux_oi(ji,jj) = zTauO * ( u_oce(ji,jj) - u_ice(ji,jj) )
               !
               !                 !--- tau_bottom/u_ice
               zvel  = 5.e-05_wp + SQRT( v_iceU(ji,jj) * v_iceU(ji,jj) + u_ice(ji,jj) * u_ice(ji,jj) )
               zTauB = ztaux_base(ji,jj) / zvel
               !                 !--- OceanBottom-to-Ice stress
               ztaux_bi(ji,jj) = zTauB * u_ice(ji,jj)
               !
               !                 !--- Coriolis at U-points (energy conserving formulation)
               zCorU(ji,jj)  =   0.25_wp * r1_e1u(ji,jj) *  &
                  &    ( zmf(ji  ,jj) * ( e1v(ji  ,jj) * v_ice(ji  ,jj) + e1v(ji  ,jj-1) * v_ice(ji  ,jj-1) )  &
                  &    + zmf(ji+1,jj) * ( e1v(ji+1,jj) * v_ice(ji+1,jj) + e1v(ji+1,jj-1) * v_ice(ji+1,jj-1) ) )
               !
               !                 !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
               zRHS = zfU(ji,jj) + ztaux_ai(ji,jj) + zCorU(ji,jj) + zspgU(ji,jj) + ztaux_oi(ji,jj)
               !
               !                 !--- landfast switch => 0 = static  friction : TauB > RHS & sign(TauB) /= sign(RHS)
               !                                         1 = sliding friction : TauB < RHS
               rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztaux_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
               !
               IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
                  zbetau = MAX( zbeta(ji,jj), zbeta(ji+1,jj) )
                  u_ice(ji,jj) = ( (          rswitch   * ( zmU_t(ji,jj) * ( zbetau * u_ice(ji,jj) + u_ice_b(ji,jj) )         & ! previous velocity
                     &                                    + zRHS + zTauO * u_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmU_t(ji,jj) * ( zbetau + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) * (  u_ice_b(ji,jj)                                                   &
                     &                                     + u_ice  (ji,jj) * MAX( 0._wp, zbetau - zdtevp * rn_lf_relax )     & ! static friction => slow decrease to v=0
                     &                                    ) / ( zbetau + 1._wp )                                              &
                     &             ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00x(ji,jj)
               ELSE               !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
                  u_ice(ji,jj) = ( (         rswitch   * ( zmU_t(ji,jj)  * u_ice(ji,jj)                                       & ! previous velocity
                     &                                    + zRHS + zTauO * u_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmU_t(ji,jj) + zTauO - zTauB )                      & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) *   u_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax )         & ! static friction => slow decrease to v=0
                     &              ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) )                  & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &            )   * zmsk00x(ji,jj)
               ENDIF
            END_2D
            CALL lbc_lnk( 'icedyn_rhg_eap', u_ice, 'U', -1.0_wp )
            !
#if defined key_agrif
!!          CALL agrif_interp_ice( 'U', jter, nn_nevp )
            CALL agrif_interp_ice( 'U' )
#endif
            IF( ln_bdy )   CALL bdy_ice_dyn( 'U' )
            !
         ELSE ! odd iterations
            !
            DO_2D( 0, 0, 0, 0 )
               !                 !--- tau_io/(u_oce - u_ice)
               zTauO = zaU(ji,jj) * zrhoco * SQRT( ( u_ice (ji,jj) - u_oce (ji,jj) ) * ( u_ice (ji,jj) - u_oce (ji,jj) )  &
                  &                              + ( v_iceU(ji,jj) - v_oceU(ji,jj) ) * ( v_iceU(ji,jj) - v_oceU(ji,jj) ) )
               !                 !--- Ocean-to-Ice stress
               ztaux_oi(ji,jj) = zTauO * ( u_oce(ji,jj) - u_ice(ji,jj) )
               !
               !                 !--- tau_bottom/u_ice
               zvel  = 5.e-05_wp + SQRT( v_iceU(ji,jj) * v_iceU(ji,jj) + u_ice(ji,jj) * u_ice(ji,jj) )
               zTauB = ztaux_base(ji,jj) / zvel
               !                 !--- OceanBottom-to-Ice stress
               ztaux_bi(ji,jj) = zTauB * u_ice(ji,jj)
               !
               !                 !--- Coriolis at U-points (energy conserving formulation)
               zCorU(ji,jj)  =   0.25_wp * r1_e1u(ji,jj) *  &
                  &    ( zmf(ji  ,jj) * ( e1v(ji  ,jj) * v_ice(ji  ,jj) + e1v(ji  ,jj-1) * v_ice(ji  ,jj-1) )  &
                  &    + zmf(ji+1,jj) * ( e1v(ji+1,jj) * v_ice(ji+1,jj) + e1v(ji+1,jj-1) * v_ice(ji+1,jj-1) ) )
               !
               !                 !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
               zRHS = zfU(ji,jj) + ztaux_ai(ji,jj) + zCorU(ji,jj) + zspgU(ji,jj) + ztaux_oi(ji,jj)
               !
               !                 !--- landfast switch => 0 = static  friction : TauB > RHS & sign(TauB) /= sign(RHS)
               !                                         1 = sliding friction : TauB < RHS
               rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztaux_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
               !
               IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
                  zbetau = MAX( zbeta(ji,jj), zbeta(ji+1,jj) )
                  u_ice(ji,jj) = ( (          rswitch   * ( zmU_t(ji,jj) * ( zbetau * u_ice(ji,jj) + u_ice_b(ji,jj) )         & ! previous velocity
                     &                                    + zRHS + zTauO * u_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmU_t(ji,jj) * ( zbetau + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) * (  u_ice_b(ji,jj)                                                   &
                     &                                     + u_ice  (ji,jj) * MAX( 0._wp, zbetau - zdtevp * rn_lf_relax )     & ! static friction => slow decrease to v=0
                     &                                    ) / ( zbetau + 1._wp )                                              &
                     &             ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00x(ji,jj)
               ELSE               !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
                  u_ice(ji,jj) = ( (         rswitch   * ( zmU_t(ji,jj)  * u_ice(ji,jj)                                       & ! previous velocity
                     &                                    + zRHS + zTauO * u_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmU_t(ji,jj) + zTauO - zTauB )                      & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) *   u_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax )         & ! static friction => slow decrease to v=0
                     &              ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) )                  & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &            )   * zmsk00x(ji,jj)
               ENDIF
            END_2D
            CALL lbc_lnk( 'icedyn_rhg_eap', u_ice, 'U', -1.0_wp )
            !
#if defined key_agrif
!!          CALL agrif_interp_ice( 'U', jter, nn_nevp )
            CALL agrif_interp_ice( 'U' )
#endif
            IF( ln_bdy )   CALL bdy_ice_dyn( 'U' )
            !
            DO_2D( 0, 0, 0, 0 )
               !                 !--- tau_io/(v_oce - v_ice)
               zTauO = zaV(ji,jj) * zrhoco * SQRT( ( v_ice (ji,jj) - v_oce (ji,jj) ) * ( v_ice (ji,jj) - v_oce (ji,jj) )  &
                  &                              + ( u_iceV(ji,jj) - u_oceV(ji,jj) ) * ( u_iceV(ji,jj) - u_oceV(ji,jj) ) )
               !                 !--- Ocean-to-Ice stress
               ztauy_oi(ji,jj) = zTauO * ( v_oce(ji,jj) - v_ice(ji,jj) )
               !
               !                 !--- tau_bottom/v_ice
               zvel  = 5.e-05_wp + SQRT( v_ice(ji,jj) * v_ice(ji,jj) + u_iceV(ji,jj) * u_iceV(ji,jj) )
               zTauB = ztauy_base(ji,jj) / zvel
               !                 !--- OceanBottom-to-Ice stress
               ztauy_bi(ji,jj) = zTauB * v_ice(ji,jj)
               !
               !                 !--- Coriolis at v-points (energy conserving formulation)
               zCorV(ji,jj)  = - 0.25_wp * r1_e2v(ji,jj) *  &
                  &    ( zmf(ji,jj  ) * ( e2u(ji,jj  ) * u_ice(ji,jj  ) + e2u(ji-1,jj  ) * u_ice(ji-1,jj  ) )  &
                  &    + zmf(ji,jj+1) * ( e2u(ji,jj+1) * u_ice(ji,jj+1) + e2u(ji-1,jj+1) * u_ice(ji-1,jj+1) ) )
               !
               !                 !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
               zRHS = zfV(ji,jj) + ztauy_ai(ji,jj) + zCorV(ji,jj) + zspgV(ji,jj) + ztauy_oi(ji,jj)
               !
               !                 !--- landfast switch => 0 = static  friction : TauB > RHS & sign(TauB) /= sign(RHS)
               !                                         1 = sliding friction : TauB < RHS
               rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztauy_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
               !
               IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
                  zbetav = MAX( zbeta(ji,jj), zbeta(ji,jj+1) )
                  v_ice(ji,jj) = ( (          rswitch   * ( zmV_t(ji,jj) * ( zbetav * v_ice(ji,jj) + v_ice_b(ji,jj) )         & ! previous velocity
                     &                                    + zRHS + zTauO * v_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmV_t(ji,jj) * ( zbetav + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) * (  v_ice_b(ji,jj)                                                   &
                     &                                     + v_ice  (ji,jj) * MAX( 0._wp, zbetav - zdtevp * rn_lf_relax )     & ! static friction => slow decrease to v=0
                     &                                    ) / ( zbetav + 1._wp )                                              &
                     &             ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00y(ji,jj)
               ELSE               !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
                  v_ice(ji,jj) = ( (         rswitch   * ( zmV_t(ji,jj)  * v_ice(ji,jj)                                       & ! previous velocity
                     &                                    + zRHS + zTauO * v_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmV_t(ji,jj) + zTauO - zTauB )                      & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) *   v_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax )         & ! static friction => slow decrease to v=0
                     &              ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) )                  & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &            )   * zmsk00y(ji,jj)
               ENDIF
            END_2D
            CALL lbc_lnk( 'icedyn_rhg_eap', v_ice, 'V', -1.0_wp )
            !
#if defined key_agrif
!!          CALL agrif_interp_ice( 'V', jter, nn_nevp )
            CALL agrif_interp_ice( 'V' )
#endif
            IF( ln_bdy )   CALL bdy_ice_dyn( 'V' )
            !
         ENDIF

         ! convergence test
         IF( nn_rhg_chkcvg == 2 )   CALL rhg_cvg_eap( kt, jter, nn_nevp, u_ice, v_ice, zu_ice, zv_ice, zmsk15 )
         !
         !                                                ! ==================== !
      END DO                                              !  end loop over jter  !
      !                                                   ! ==================== !
      IF( ln_aEVP )   CALL iom_put( 'beta_evp' , zbeta )
      !
      CALL lbc_lnk( 'icedyn_rhg_eap', prdg_conv, 'T', 1.0_wp )  ! only need this in ridging module after rheology completed
      !
      !------------------------------------------------------------------------------!
      ! 4) Recompute delta, shear and div (inputs for mechanical redistribution)
      !------------------------------------------------------------------------------!
      DO_2D( 1, 0, 1, 0 )

         ! shear at F points
         zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj)   &
            &         + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj)   &
            &         ) * r1_e1e2f(ji,jj) * fimask(ji,jj)

      END_2D

      DO_2D( 0, 0, 0, 0 )

         ! tension**2 at T points
         zdt  = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj)   &
            &   - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj)   &
            &   ) * r1_e1e2t(ji,jj)
         zdt2 = zdt * zdt

         zten_i(ji,jj) = zdt

         ! shear**2 at T points (doc eq. A16)
         zds2 = ( zds(ji,jj  ) * zds(ji,jj  ) * e1e2f(ji,jj  ) + zds(ji-1,jj  ) * zds(ji-1,jj  ) * e1e2f(ji-1,jj  )  &
            &   + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1)  &
            &   ) * 0.25_wp * r1_e1e2t(ji,jj)

         ! shear at T points
         pshear_i(ji,jj) = SQRT( zdt2 + zds2 )

         ! divergence at T points
         pdivu_i(ji,jj) = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj)   &
            &             + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1)   &
            &             ) * r1_e1e2t(ji,jj)

         ! delta at T points
         zfac            = SQRT( pdivu_i(ji,jj) * pdivu_i(ji,jj) + ( zdt2 + zds2 ) * z1_ecc2 ) ! delta
         rswitch         = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zfac ) ) ! 0 if delta=0
         pdelta_i(ji,jj) = zfac + rn_creepl * rswitch ! delta+creepl

      END_2D
      CALL lbc_lnk( 'icedyn_rhg_eap', pshear_i, 'T', 1.0_wp, pdivu_i, 'T', 1.0_wp, pdelta_i, 'T', 1.0_wp, &
         &                              zten_i, 'T', 1.0_wp, zs1    , 'T', 1.0_wp, zs2     , 'T', 1.0_wp, &
         &                                zs12, 'F', 1.0_wp )

      ! --- Store the stress tensor for the next time step --- !
      pstress1_i (:,:) = zs1 (:,:)
      pstress2_i (:,:) = zs2 (:,:)
      pstress12_i(:,:) = zs12(:,:)
      !

      !------------------------------------------------------------------------------!
      ! 5) diagnostics
      !------------------------------------------------------------------------------!
      ! --- ice-ocean, ice-atm. & ice-oceanbottom(landfast) stresses --- !
      IF(  iom_use('utau_oi') .OR. iom_use('vtau_oi') .OR. iom_use('utau_ai') .OR. iom_use('vtau_ai') .OR. &
         & iom_use('utau_bi') .OR. iom_use('vtau_bi') ) THEN
         !
         CALL lbc_lnk( 'icedyn_rhg_eap', ztaux_oi, 'U', -1.0_wp, ztauy_oi, 'V', -1.0_wp, ztaux_ai, 'U', -1.0_wp, &
            &                            ztauy_ai, 'V', -1.0_wp, ztaux_bi, 'U', -1.0_wp, ztauy_bi, 'V', -1.0_wp )
         !
         CALL iom_put( 'utau_oi' , ztaux_oi * zmsk00 )
         CALL iom_put( 'vtau_oi' , ztauy_oi * zmsk00 )
         CALL iom_put( 'utau_ai' , ztaux_ai * zmsk00 )
         CALL iom_put( 'vtau_ai' , ztauy_ai * zmsk00 )
         CALL iom_put( 'utau_bi' , ztaux_bi * zmsk00 )
         CALL iom_put( 'vtau_bi' , ztauy_bi * zmsk00 )
      ENDIF

      ! --- divergence, shear and strength --- !
      IF( iom_use('icediv') )   CALL iom_put( 'icediv' , pdivu_i  * zmsk00 )   ! divergence
      IF( iom_use('iceshe') )   CALL iom_put( 'iceshe' , pshear_i * zmsk00 )   ! shear
      IF( iom_use('icedlt') )   CALL iom_put( 'icedlt' , pdelta_i * zmsk00 )   ! delta
      IF( iom_use('icestr') )   CALL iom_put( 'icestr' , strength * zmsk00 )   ! strength

      ! --- Stress tensor invariants (SIMIP diags) --- !
      IF( iom_use('normstr') .OR. iom_use('sheastr') ) THEN
         !
         ALLOCATE( zsig_I(jpi,jpj) , zsig_II(jpi,jpj) )
         !
         DO_2D( 1, 1, 1, 1 )

            ! Ice stresses
            ! sigma1, sigma2, sigma12 are some useful recombination of the stresses (Hunke and Dukowicz MWR 2002, Bouillon et al., OM2013)
            ! These are NOT stress tensor components, neither stress invariants, neither stress principal components
            ! I know, this can be confusing...
            zfac             =   strength(ji,jj) / ( pdelta_i(ji,jj) + rn_creepl )
            zsig1            =   zfac * ( pdivu_i(ji,jj) - pdelta_i(ji,jj) )
            zsig2            =   zfac * z1_ecc2 * zten_i(ji,jj)
            zsig12           =   zfac * z1_ecc2 * pshear_i(ji,jj)

            ! Stress invariants (sigma_I, sigma_II, Coon 1974, Feltham 2008)
            zsig_I (ji,jj)   =   zsig1 * 0.5_wp                                      ! 1st stress invariant, aka average normal stress, aka negative pressure
            zsig_II(ji,jj)   =   SQRT ( zsig2 * zsig2 * 0.25_wp + zsig12 * zsig12 )  ! 2nd  ''       ''    , aka maximum shear stress

         END_2D
         !
         ! Stress tensor invariants (normal and shear stress N/m) - SIMIP diags - definitions following Coon (1974) and Feltham (2008)
         IF( iom_use('normstr') )   CALL iom_put( 'normstr', zsig_I (:,:) * zmsk00(:,:) ) ! Normal stress
         IF( iom_use('sheastr') )   CALL iom_put( 'sheastr', zsig_II(:,:) * zmsk00(:,:) ) ! Maximum shear stress

         DEALLOCATE ( zsig_I, zsig_II )

      ENDIF

      ! --- Normalized stress tensor principal components --- !
      ! This are used to plot the normalized yield curve, see Lemieux & Dupont, 2020
      ! Recommendation 1 : we use ice strength, not replacement pressure
      ! Recommendation 2 : need to use deformations at PREVIOUS iterate for viscosities
      IF( iom_use('sig1_pnorm') .OR. iom_use('sig2_pnorm') ) THEN
         !
         ALLOCATE( zsig1_p(jpi,jpj) , zsig2_p(jpi,jpj) , zsig_I(jpi,jpj) , zsig_II(jpi,jpj) )
         !
         DO_2D( 1, 1, 1, 1 )

            ! Ice stresses computed with **viscosities** (delta, p/delta) at **previous** iterates
            !                        and **deformations** at current iterates
            !                        following Lemieux & Dupont (2020)
            zfac             =   zp_delt(ji,jj)
            zsig1            =   zfac * ( pdivu_i(ji,jj) - ( zdelta(ji,jj) + rn_creepl ) )
            zsig2            =   zfac * z1_ecc2 * zten_i(ji,jj)
            zsig12           =   zfac * z1_ecc2 * pshear_i(ji,jj)

            ! Stress invariants (sigma_I, sigma_II, Coon 1974, Feltham 2008), T-point
            zsig_I(ji,jj)    =   zsig1 * 0.5_wp                                      ! 1st stress invariant, aka average normal stress, aka negative pressure
            zsig_II(ji,jj)   =   SQRT ( zsig2 * zsig2 * 0.25_wp + zsig12 * zsig12 )  ! 2nd  ''       ''    , aka maximum shear stress

            ! Normalized  principal stresses (used to display the ellipse)
            z1_strength      =   1._wp / MAX( 1._wp, strength(ji,jj) )
            zsig1_p(ji,jj)   =   ( zsig_I(ji,jj) + zsig_II(ji,jj) ) * z1_strength
            zsig2_p(ji,jj)   =   ( zsig_I(ji,jj) - zsig_II(ji,jj) ) * z1_strength
         END_2D
         !
         CALL iom_put( 'sig1_pnorm' , zsig1_p )
         CALL iom_put( 'sig2_pnorm' , zsig2_p )

         DEALLOCATE( zsig1_p , zsig2_p , zsig_I, zsig_II )

      ENDIF

      ! --- yieldcurve --- !
      IF( iom_use('yield11') .OR. iom_use('yield12') .OR. iom_use('yield22')) THEN

         CALL lbc_lnk( 'icedyn_rhg_eap', zyield11, 'T', 1.0_wp, zyield22, 'T', 1.0_wp, zyield12, 'T', 1.0_wp )

         CALL iom_put( 'yield11', zyield11 * zmsk00 )
         CALL iom_put( 'yield22', zyield22 * zmsk00 )
         CALL iom_put( 'yield12', zyield12 * zmsk00 )
      ENDIF

      ! --- anisotropy tensor --- !
      IF( iom_use('aniso') ) THEN
         CALL lbc_lnk( 'icedyn_rhg_eap', paniso_11, 'T', 1.0_wp )
         CALL iom_put( 'aniso' , paniso_11 * zmsk00 )
      ENDIF

      ! --- SIMIP --- !
      IF(  iom_use('dssh_dx') .OR. iom_use('dssh_dy') .OR. &
         & iom_use('corstrx') .OR. iom_use('corstry') .OR. iom_use('intstrx') .OR. iom_use('intstry') ) THEN
         !
         CALL lbc_lnk( 'icedyn_rhg_eap', zspgU, 'U', -1.0_wp, zspgV, 'V', -1.0_wp, &
            &                            zCorU, 'U', -1.0_wp, zCorV, 'V', -1.0_wp, &
            &                              zfU, 'U', -1.0_wp,   zfV, 'V', -1.0_wp )

         CALL iom_put( 'dssh_dx' , zspgU * zmsk00 )   ! Sea-surface tilt term in force balance (x)
         CALL iom_put( 'dssh_dy' , zspgV * zmsk00 )   ! Sea-surface tilt term in force balance (y)
         CALL iom_put( 'corstrx' , zCorU * zmsk00 )   ! Coriolis force term in force balance (x)
         CALL iom_put( 'corstry' , zCorV * zmsk00 )   ! Coriolis force term in force balance (y)
         CALL iom_put( 'intstrx' , zfU   * zmsk00 )   ! Internal force term in force balance (x)
         CALL iom_put( 'intstry' , zfV   * zmsk00 )   ! Internal force term in force balance (y)
      ENDIF

      IF(  iom_use('xmtrpice') .OR. iom_use('ymtrpice') .OR. &
         & iom_use('xmtrpsnw') .OR. iom_use('ymtrpsnw') .OR. iom_use('xatrp') .OR. iom_use('yatrp') ) THEN
         !
         ALLOCATE( zdiag_xmtrp_ice(jpi,jpj) , zdiag_ymtrp_ice(jpi,jpj) , &
            &      zdiag_xmtrp_snw(jpi,jpj) , zdiag_ymtrp_snw(jpi,jpj) , zdiag_xatrp(jpi,jpj) , zdiag_yatrp(jpi,jpj) )
         !
         DO_2D( 0, 0, 0, 0 )
            ! 2D ice mass, snow mass, area transport arrays (X, Y)
            zfac_x = 0.5 * u_ice(ji,jj) * e2u(ji,jj) * zmsk00(ji,jj)
            zfac_y = 0.5 * v_ice(ji,jj) * e1v(ji,jj) * zmsk00(ji,jj)

            zdiag_xmtrp_ice(ji,jj) = rhoi * zfac_x * ( vt_i(ji+1,jj) + vt_i(ji,jj) ) ! ice mass transport, X-component
            zdiag_ymtrp_ice(ji,jj) = rhoi * zfac_y * ( vt_i(ji,jj+1) + vt_i(ji,jj) ) !        ''           Y-   ''

            zdiag_xmtrp_snw(ji,jj) = rhos * zfac_x * ( vt_s(ji+1,jj) + vt_s(ji,jj) ) ! snow mass transport, X-component
            zdiag_ymtrp_snw(ji,jj) = rhos * zfac_y * ( vt_s(ji,jj+1) + vt_s(ji,jj) ) !          ''          Y-   ''

            zdiag_xatrp(ji,jj)     = zfac_x * ( at_i(ji+1,jj) + at_i(ji,jj) )        ! area transport,      X-component
            zdiag_yatrp(ji,jj)     = zfac_y * ( at_i(ji,jj+1) + at_i(ji,jj) )        !        ''            Y-   ''

         END_2D

         CALL lbc_lnk( 'icedyn_rhg_eap', zdiag_xmtrp_ice, 'U', -1.0_wp, zdiag_ymtrp_ice, 'V', -1.0_wp, &
            &                            zdiag_xmtrp_snw, 'U', -1.0_wp, zdiag_ymtrp_snw, 'V', -1.0_wp, &
            &                            zdiag_xatrp    , 'U', -1.0_wp, zdiag_yatrp    , 'V', -1.0_wp )

         CALL iom_put( 'xmtrpice' , zdiag_xmtrp_ice )   ! X-component of sea-ice mass transport (kg/s)
         CALL iom_put( 'ymtrpice' , zdiag_ymtrp_ice )   ! Y-component of sea-ice mass transport
         CALL iom_put( 'xmtrpsnw' , zdiag_xmtrp_snw )   ! X-component of snow mass transport (kg/s)
         CALL iom_put( 'ymtrpsnw' , zdiag_ymtrp_snw )   ! Y-component of snow mass transport
         CALL iom_put( 'xatrp'    , zdiag_xatrp     )   ! X-component of ice area transport
         CALL iom_put( 'yatrp'    , zdiag_yatrp     )   ! Y-component of ice area transport

         DEALLOCATE( zdiag_xmtrp_ice , zdiag_ymtrp_ice , &
            &        zdiag_xmtrp_snw , zdiag_ymtrp_snw , zdiag_xatrp , zdiag_yatrp )

      ENDIF
      !
      ! --- convergence tests --- !
      IF( nn_rhg_chkcvg == 1 .OR. nn_rhg_chkcvg == 2 ) THEN
         IF( iom_use('uice_cvg') ) THEN
            IF( ln_aEVP ) THEN   ! output: beta * ( u(t=nn_nevp) - u(t=nn_nevp-1) )
               CALL iom_put( 'uice_cvg', MAX( ABS( u_ice(:,:) - zu_ice(:,:) ) * zbeta(:,:) * umask(:,:,1) , &
                  &                           ABS( v_ice(:,:) - zv_ice(:,:) ) * zbeta(:,:) * vmask(:,:,1) ) * zmsk15(:,:) )
            ELSE                 ! output: nn_nevp * ( u(t=nn_nevp) - u(t=nn_nevp-1) )
               CALL iom_put( 'uice_cvg', REAL( nn_nevp ) * MAX( ABS( u_ice(:,:) - zu_ice(:,:) ) * umask(:,:,1) , &
                  &                                             ABS( v_ice(:,:) - zv_ice(:,:) ) * vmask(:,:,1) ) * zmsk15(:,:) )
            ENDIF
         ENDIF
      ENDIF
      !
   END SUBROUTINE ice_dyn_rhg_eap


   SUBROUTINE rhg_cvg_eap( kt, kiter, kitermax, pu, pv, pub, pvb, pmsk15 )
      !!----------------------------------------------------------------------
      !!                    ***  ROUTINE rhg_cvg_eap  ***
      !!
      !! ** Purpose :   check convergence of oce rheology
      !!
      !! ** Method  :   create a file ice_cvg.nc containing the convergence of ice velocity
      !!                during the sub timestepping of rheology so as:
      !!                  uice_cvg = MAX( u(t+1) - u(t) , v(t+1) - v(t) )
      !!                This routine is called every sub-iteration, so it is cpu expensive
      !!
      !! ** Note    :   for the first sub-iteration, uice_cvg is set to 0 (too large otherwise)
      !!----------------------------------------------------------------------
      INTEGER ,                 INTENT(in) ::   kt, kiter, kitermax       ! ocean time-step index
      REAL(wp), DIMENSION(:,:), INTENT(in) ::   pu, pv, pub, pvb          ! now and before velocities
      REAL(wp), DIMENSION(:,:), INTENT(in) ::   pmsk15
      !!
      INTEGER           ::   it, idtime, istatus
      INTEGER           ::   ji, jj          ! dummy loop indices
      REAL(wp)          ::   zresm           ! local real
      CHARACTER(len=20) ::   clname
      !!----------------------------------------------------------------------

      ! create file